Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Progress
  • Published:

Cancer-epigenetics comes of age

Abstract

The discovery of numerous hypermethylated promoters of tumour–suppressor genes, along with a better understanding of gene–silencing mechanisms, has moved DNA methylation from obscurity to recognition as an alternative mechanism of tumour–suppressor inactivation in cancer. Epigenetic events can also facilitate genetic damage, as illustrated by the increased mutagenicity of 5–methylcytosine and the silencing of the MLH1 mismatch repair gene by DNA methylation in colorectal tumours. We review here current mechanistic understanding of the role of DNA methylation in malignant transformation, and suggest Knudson's two–hit hypothesis should now be expanded to include epigenetic mechanisms of gene inactivation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Mechanism of transcriptional repression by DNA methylation.
Figure 2: Knudson's two–hit hypothesis revised.

Similar content being viewed by others

References

  1. Yang, A.S., Jones, P.A. & Shibata, A. The mutational burden of 5–methylcytosine. in Epigenetic Mechanisms of Gene Regulation (eds Riggs, A.D., Martienssen, R.A., and Russo, V.E.A.) 77–94 (Cold Spring Harbor Laboratory Press, Cold Spring Harbour, 1996).

    Google Scholar 

  2. Razin, A. & Cedar, H. DNA methylation and gene expression. Microbiol. Rev. 55, 451– 458 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Yeivin, A. & Razin, A. Gene methylation patterns and expression. in DNA Methylation: Molecular Biology and Biological Significance (eds Jost, J.P. & Saluz, H.P.) 523–568 (Birkhauser Verlag, Basel, 1993).

    Chapter  Google Scholar 

  4. Kass, S.U., Pruss, D. & Wolffe, A.P. How does DNA methylation repress transcription? Trends Genet. 13, 444–449 (1997).

    Article  CAS  Google Scholar 

  5. Jones, P.A. The methylation paradox. Trends Genet. (in press).

  6. Razin, A. & Riggs, A.D. DNA methylation and gene function. Science 210, 604–610 (1980).

    Article  CAS  Google Scholar 

  7. Stoger, R. et al. Maternal–specific methylation of the imprinted mouse Igf2r locus identifies the expressed locus as carrying the imprinting signal. Cell 73, 61–71 (1993).

    Article  CAS  Google Scholar 

  8. Larsen, F., Solheim, J. & Prydz, H. A methylated CpG island 3' in the apolipoprotein–E gene does not repress its transcription. Hum. Mol. Genet. 2, 775–780 (1993).

    Article  CAS  Google Scholar 

  9. Barry, C., Faugeron, G. & Rossignol, J.–L. Methylation induced premeiotically in Ascobolus : coextension with DNA repeat lengths and effect on transcript elongation. Proc. Natl Acad. Sci. USA 90, 4557– 4561 (1993).

    Article  CAS  Google Scholar 

  10. Rountree, M.R. & Selker, E.U. DNA methylation inhibits elongation but not initiation of transcription in Neurospora crassa . Genes Dev. 11, 2383– 2395 (1997).

    Article  CAS  Google Scholar 

  11. Clark, S.J., Harrison, J. & Molloy, P.L. Sp1 binding is inhibited by (m)Cp(m)CpG methylation. Gene 195, 67–71 (1997).

    Article  CAS  Google Scholar 

  12. Prendergast, G.C. & Ziff, E.B. Methylation–sensitive sequence–specific DNA binding by the c–Myc basic region. Science 251, 186–189 ( 1991).

    Article  CAS  Google Scholar 

  13. Zhang, X.Y., Ehrlich, K.C., Wang, R.Y. & Ehrlich, M. Effect of site–specific DNA methylation and mutagenesis on recognition by methylated DNA–binding protein from human placenta. Nucleic Acids Res. 14, 8387–8397 (1986).

    Article  CAS  Google Scholar 

  14. Asiedu, C.K., Scotto, L., Assoian, R.K. & Ehrlich, M. Binding of AP–1/CREB proteins and of MDBP to contiguous sites downstream of the human TGF–β 1 gene. Biochim. Biophys. Acta 1219, 55–63 (1994).

    Article  CAS  Google Scholar 

  15. Bestor, T.H. Gene silencing. Methylation meets acetylation. Nature 393, 311–312 (1998).

    Article  CAS  Google Scholar 

  16. Nan, X., Campoy, F.J. & Bird, A. MeCP2 is a transcriptional repressor with abundant binding sites in genomic chromatin. Cell 88, 471 –481 (1997).

    Article  CAS  Google Scholar 

  17. Nan, X. et al. Transcriptional repression by the methyl–CpG–binding protein MeCP2 involves a histone deacetylase complex. Nature 393, 386–389 (1998).

    Article  CAS  Google Scholar 

  18. Jones, P.L. et al. Methylated DNA and MeCP2 recruit histone deacetylase to repress transcription. Nature Genet. 19, 187– 191 (1998).

    Article  CAS  Google Scholar 

  19. Bird, A.P. CpG–rich islands and the function of DNA methylation. Nature 321, 209–213 ( 1986).

    Article  CAS  Google Scholar 

  20. Gardiner–Garden, M. & Frommer, M. CpG islands in vertebrate genomes. J. Mol. Biol. 196, 261 –282 (1987).

    Article  Google Scholar 

  21. Larsen, F., Gundersen, G., Lopez, R. & Prydz, H. CpG islands as gene markers in the human genome. Genomics 13, 1095–1107 (1992).

    Article  CAS  Google Scholar 

  22. Wutz, A. et al. Imprinted expression of the Igf2r gene depends on an intronic CpG island. Nature 389, 745– 749 (1997).

    Article  CAS  Google Scholar 

  23. Singer–Sam, J. & Riggs, A.D. X chromosome inactivation and DNA methylation. in DNA Methylation: Molecular Biology and Biological Significance (eds Jost, J.P. & Saluz, H.P.) 358 –384 (Birkhauser Verlag, Basel, 1993 ).

    Chapter  Google Scholar 

  24. Issa, J.P. et al. Methylation of the oestrogen receptor CpG island links ageing and neoplasia in human colon. Nature Genet. 7, 536–540 (1994).

    Article  CAS  Google Scholar 

  25. Issa, J.P., Vertino, P.M., Boehm, C.D., Newsham, I.F. & Baylin, S.B. Switch from monoallelic to biallelic human IGF2 promoter methylation during aging and carcinogenesis. Proc. Natl Acad. Sci. USA 93, 11757– 11762 (1996).

    Article  CAS  Google Scholar 

  26. Jones, P.A. et al. De novo methylation of the MyoD1 CpG island during the establishment of immortal cell lines. Proc. Natl Acad. Sci. USA 87, 6117–6121 ( 1990).

    Article  CAS  Google Scholar 

  27. Antequera, F., Boyes, J. & Bird, A. High levels of de novo methylation and altered chromatin structure at CpG islands in cell lines. Cell 62, 503– 514 (1990).

    Article  CAS  Google Scholar 

  28. Feinberg, A.P., Gehrke, C.W., Kuo, K.C. & Ehrlich, M. Reduced genomic 5–methylcytosine content in human colonic neoplasia. Cancer Res. 48, 1159–1161 ( 1988).

    CAS  PubMed  Google Scholar 

  29. Jones, P.A. DNA methylation errors and cancer. Cancer Res. 56, 2463–2467 (1996).

    CAS  PubMed  Google Scholar 

  30. Baylin, S.B., Herman, J.G., Graff, J.R., Vertino, P.M. & Issa, J.P. Alterations in DNA methylation: a fundamental aspect of neoplasia. Adv. Cancer Res. 72 , 141–196 (1998).

    Article  CAS  Google Scholar 

  31. Okano, M., Xie, S. & Li, E. Cloning and characterization of a family of novel mammalian DNA (cytosine–5) methyltransferases. Nature Genet. 19, 219 –220 (1998).

    Article  CAS  Google Scholar 

  32. Gonzalez–Zuleta, M. et al. Methylation of the 5´ CpG island of the p16/CDKN2 tumor suppressor gene in normal and transformed human tissues correlates with gene silencing. Cancer Res. 55, 4531– 4535 (1995).

    Google Scholar 

  33. Gonzalgo, M.L. et al. The role of DNA methylation in expression of the p19/p16 locus in human bladder cancer cell lines. Cancer Res. 58, 1245–1252 (1998).

    CAS  PubMed  Google Scholar 

  34. Ohtani–Fujita, N. et al. Hypermethylation in the retinoblastoma gene is associated with unilateral, sporadic retinoblastoma. Cancer Genet. Cytogenet. 98, 43–49 ( 1997).

    Article  Google Scholar 

  35. Prowse, A.H. et al. Somatic inactivation of the VHL gene in Von Hippel–Lindau disease tumors. Am. J. Hum. Genet. 60, 765 –771 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Herman, J.G. et al. Incidence and functional consequences of hMLH1 promoter hypermethylation in colorectal carcinoma. Proc. Natl Acad. Sci. USA 95, 6870–6875 ( 1998).

    Article  CAS  Google Scholar 

  37. Lock, L.F., Takagi, N. & Martin, G.R. Methylation of the Hprt gene on the inactive X occurs after chromosome inactivation. Cell 48, 39–46 (1987).

    Article  CAS  Google Scholar 

  38. Grant, M., Zuccotti, M. & Monk, M. Methylation of CpG sites of two X–linked genes coincides with X–inactivation in the female mouse embryo but not in the germ line. Nature Genet. 2, 161– 166 (1992).

    Article  CAS  Google Scholar 

  39. Singer–Sam, J. et al. Use of a HpaII–polymerase chain reaction assay to study DNA methylation in the Pgk–1 CpG island of mouse embryos at the time of X–chromosome inactivation. Mol. Cell. Biol. 10, 4987–4989 (1990).

    Article  Google Scholar 

  40. Norris, D.P., Brockdorff, N. & Rastan, S. Methylation status of CpG–rich islands on active and inactive mouse X chromosomes. Mamm. Genome. 1, 78–83 (1991).

    Article  CAS  Google Scholar 

  41. Li, E., Beard, C. & Jaenisch, R. Role for DNA methylation in genomic imprinting. Nature 366, 362–365 ( 1993).

    Article  CAS  Google Scholar 

  42. Laird, P.W. et al. Suppression of intestinal neoplasia by DNA hypomethylation. Cell 81, 197–205 (1995).

    Article  CAS  Google Scholar 

  43. Moulton, T. et al. Epigenetic lesions at the H19 locus in Wilms' tumour patients. Nature Genet. 7, 440– 447 (1994).

    Article  CAS  Google Scholar 

  44. Steenman, M.J. et al. Loss of imprinting of IGF2 is linked to reduced expression and abnormal methylation of H19 in Wilms' tumour. Nature Genet. 7, 433–439 ( 1994).

    Article  CAS  Google Scholar 

  45. Ohtani–Fujita, N. et al. CpG methylation inactivates the promoter activity of the human retinoblastoma tumor–suppressor gene. Oncogene 8, 1063–1067 (1993).

    PubMed  Google Scholar 

  46. Veigl, M.L. et al. Biallelic inactivation of hMLH1 by epigenetic gene silencing, a novel mechanism causing human MSI cancers. Proc. Natl Acad. Sci. USA 95, 8698–8702 (1998).

    Article  CAS  Google Scholar 

  47. Cunningham, J.M. et al. Hypermethylation of the hMLH1 promoter in colon cancer with microsatellite instability. Cancer Res. 58, 3455–3460 (1998).

    CAS  PubMed  Google Scholar 

  48. Lengauer, C., Kinzler, K.W. & Vogelstein, B. DNA methylation and genetic instability in colorectal cancer cells. Proc. Natl Acad. Sci. USA 94, 2545–2550 (1997).

    Article  CAS  Google Scholar 

  49. Ahuja, N. et al. Association between CpG island methylation and microsatellite instability in colorectal cancer. Cancer Res. 57, 3370–3374 (1997).

    CAS  PubMed  Google Scholar 

  50. Hussain, S.P. & Harris, C.C. Molecular epidemiology of human cancer: contribution of mutation spectra studies of tumor suppressor genes. Cancer Res. 58, 4023–4037 (1998).

    CAS  PubMed  Google Scholar 

  51. Kamb, A. et al. A cell cycle regulator potentially involved in genesis of many tumor types. Science 264, 436– 440 (1994).

    Article  CAS  Google Scholar 

  52. Hatada, I., Sugama, T. & Mukai, T. A new imprinted gene cloned by a methylation–sensitive genome scanning method. Nucleic Acids Res. 21, 5577–5582 (1993).

    Article  CAS  Google Scholar 

  53. Ushijima, T. et al. Establishment of methylation–sensitive–representational difference analysis and isolation of hypo– and hypermethylated genomic fragments in mouse liver tumors. Proc. Natl Acad. Sci. USA 94, 2284–2289 (1997).

    Article  CAS  Google Scholar 

  54. Gonzalgo, M.L. et al. Identification and characterization of differentially methylated regions of genomic DNA by methylation–sensitive arbitrarily primed PCR. Cancer Res. 57, 594–599 (1997).

    CAS  PubMed  Google Scholar 

  55. Huang, T.H. et al. Identification of DNA methylation markers for human breast carcinomas using the methylation–sensitive restriction fingerprinting technique. Cancer Res. 57, 1030– 1034 (1997).

    CAS  PubMed  Google Scholar 

  56. Toyota, M. et al. Identification of novel aberrantly methylated CpG islands in colorectal carcinoma. Proc. Am. Assoc. Cancer Res. 39, 95 (1998).

    Google Scholar 

  57. Frommer, M. et al. A genomic sequencing protocol that yields a positive display of 5–methylcytosine residues in individual DNA strands. Proc. Natl Acad. Sci. USA 89, 1827– 1831 (1992).

    Article  CAS  Google Scholar 

  58. Rein, T., DePamphilis, M.L. & Zorbas, H. Identifying 5–methylcytosine and related modifications in DNA genomes. Nucleic Acids Res. 26, 2255 –2264 (1998).

    Article  CAS  Google Scholar 

  59. Gonzalgo, M.L. et al. Low frequency of p16/CDKN2A methylation in sporadic melanoma: comparative approaches for methylation analysis of primary tumors. Cancer Res. 57, 5336–5347 (1997).

    CAS  PubMed  Google Scholar 

  60. Herman, J.G., Graff, J.R., Myohanen, S., Nelkin, B.D. & Baylin, S.B. Methylation–specific PCR: a novel PCR assay for methylation status of CpG islands. Proc. Natl Acad. Sci. USA 93, 9821–9826 (1996).

    Article  CAS  Google Scholar 

  61. Gonzalgo, M.L. & Jones, P.A. Rapid quantitation of methylation differences at specific sites using methylation–sensitive single nucleotide primer extension (Ms–SNuPE). Nucleic Acids Res. 25, 2529–2531 ( 1997).

    Article  CAS  Google Scholar 

  62. Xiong, Z. & Laird, P.W. COBRA: a sensitive and quantitative DNA methylation assay. Nucleic Acids Res. 25, 2532–2534 (1997).

    Article  CAS  Google Scholar 

  63. Bender, C.M., Pao, M.M. & Jones, P.A. Inhibition of DNA methylation by 5–aza–2´–deoxycytidine suppresses the growth of human tumor cell lines. Cancer Res. 58, 95–101 (1998).

    CAS  PubMed  Google Scholar 

  64. Lübbert, M. et al. Cytogenic response to low–dose 5–aza–2´–deoxycytidine (DAC) in poor–risk myelodysplastic syndromes (MDS)—phase II study results. Blood 90 (suppl. 1), 582a (1997).

    Google Scholar 

  65. Silverman, L.R. et al. A randomized controlled trial of subcutaneous azacytidine (aza C) in patients with the myelodysplastic syndrome (MDS): a study of the cancer and leukemia group (CALGB). Proc. ASCO 17, 14a (1998).

    Google Scholar 

  66. Jackson–Grusby, L., Laird, P.W., Magge, S.N., Moeller, B.J. & Jaenisch, R. Mutagenicity of 5–aza–2´–deoxycytidine is mediated by the mammalian DNA methyltransferase. Proc. Natl Acad. Sci. USA 94, 4681–4685 (1997).

    Article  Google Scholar 

  67. Ramchandani, S., MacLeod, A.R., Pinard, M., von Hofe, E. & Szyf, M. Inhibition of tumorigenesis by a cytosine–DNA, methyltransferase, antisense oligodeoxynucleotide. Proc. Natl Acad. Sci. USA 94, 684–689 ( 1997).

    Article  CAS  Google Scholar 

  68. Sakai, T. et al. Allele–specific hypermethylation of the retinoblastoma tumor–suppressor gene. Am. J. Hum. Genet. 48, 880–888 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Greenblatt, M.S., Bennett, W.P., Hollstein, M. & Harris, C.C. Mutations in the p53 tumor suppressor gene: clues to cancer etiology and molecular pathogenesis. Cancer Res. 54, 4855–4878 (1994).

    CAS  PubMed  Google Scholar 

  70. Myohanen, S.K., Baylin, S.B. & Herman, J.G. Hypermethylation can selectively silence individual p16ink4A alleles in neoplasia. Cancer Res. 58, 591–593 (1998).

    CAS  PubMed  Google Scholar 

  71. Yeager, T.R. et al. Overcoming cellular senescence in human cancer pathogenesis. Genes Dev. 12, 163–174 (1998).

    Article  CAS  Google Scholar 

  72. Flores, J.F. et al. Analysis of the CDKN2A, CDKN2B and CDK4 genes in 48 Australian melanoma kindreds. Oncogene 15, 2999–3005 (1997).

    Article  CAS  Google Scholar 

  73. Batova, A. et al. Frequent and selective methylation of p15 and deletion of both p15 and p16 in T–cell acute lymphoblastic leukemia. Cancer Res. 57, 832–836 (1997).

    CAS  PubMed  Google Scholar 

  74. Hiltunen, M.O. et al. Hypermethylation of the APC (adenomatous polyposis coli) gene promoter region in human colorectal carcinoma. Int. J. Cancer 70, 644–648 ( 1997).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by NIH/NCI grants R35 CA 49758 (P.A.J.) and R01 CA 75090 (P.W.L.)

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jones, P., Laird, P. Cancer-epigenetics comes of age. Nat Genet 21, 163–167 (1999). https://doi.org/10.1038/5947

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/5947

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing