Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Carbon cycling and chronology of climate warming during the Palaeocene/Eocene transition

Abstract

Current models of the global carbon cycle lack natural mechanisms to explain known large, transient shifts in past records of the stable carbon-isotope ratio (δ13C) of carbon reservoirs1,2. The injection into the atmosphere of 1,200–2,000 gigatons of carbon, as methane from the decomposition of sedimentary methane hydrates, has been proposed to explain a δ13C anomaly3,4 associated with high-latitude warming1 and changes in marine5,6,7 and terrestrial8 biota near the Palaeocene–Eocene boundary, about 55 million years ago. These events may thus be considered as a natural ‘experiment’ on the effects of transient greenhouse warming. Here we use physical, chemical and spectral analyses of a sediment core from the western North Atlantic Ocean to show that two-thirds of the carbon-isotope anomaly occurred within no more than a few thousand years, indicating that carbon was catastrophically released into the ocean and atmosphere. Both the δ13C anomaly and biotic changes began between 54.93 and 54.98 million years ago, and are synchronous in oceans and on land. The longevity of the δ13C anomaly suggests that the residence time of carbon in the Palaeocene global carbon cycle was 120 thousand years, which is similar to the modelled response after a massive input of methane3,4. Our results suggest that large natural perturbations to the global carbon cycle have occurred in the past—probably by abrupt failure of sedimentary carbon reservoirs—at rates that are similar to those induced today by human activity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Cyclostratigraphy and magnetochronology of the uppermost Palaeocene.
Figure 2: Stratigraphy around the δ13C anomaly.
Figure 3: Power spectra for Site 1051 and modern summer insolation.

Similar content being viewed by others

References

  1. Kennett,J. P. & Stott,L. D. Abrupt deep-sea warming, paleoceanographic changes and benthic extinctions at the end of the Paleocene. Nature 353, 225–229 (1991).

    Article  ADS  Google Scholar 

  2. Bains,S., Corfield,R. M. & Norris,R. D. Mechanisms of climate warming at the end of the Paleocene. Science 285, 724–727 (1999).

    Article  CAS  Google Scholar 

  3. Dickens,G. R., O'Neil,R. R., Rea,D. K. & Owen,R. M. Dissociation of oceanic methane hydrate as a cause of the carbon isotope excursion at the end of the Paleocene. Paleoceanography 10, 965–971 (1995).

    Article  ADS  Google Scholar 

  4. Dickens,G. R. Methane oxidation during the late Paleocene thermal maximum. Bull. Soc. Géol. Fr. (in the press).

  5. Kelly,D. C., Bralower,T. J., Zachos,J. C., Permoli Silva,I. & Thomas,E. Rapid diversification of planktonic foraminifera in the topical Pacific (ODP Site 865) during the late Paleocene thermal maximum. Geology 24, 423–426 (1996).

    Article  ADS  Google Scholar 

  6. Thomas,E. in Global Catastrophies in Earth History: an Interdisciplinary Conference on Impacts, Volcanism, and Mass Mortality (eds Sharpton, V. L. & Ward, P.) 481–495 (Geological Society of America, Boulder, Colorado, 1990).

    Book  Google Scholar 

  7. Thomas,E. in Late Paleocene-Early Eocene Climatic and Biotic Events (eds Aubry, M.-P., Lucas, S. & Berggren, W. A.) 214–243 (Colombia Univ. Press, New York, 1998).

    Google Scholar 

  8. Koch,P. L., Zachos,J. C. & Gingerich,P. D. Correlation between isotope records in marine and continental carbon reservoirs near the Palaeocene/Eocene boundary. Nature 359, 319–322 (1992).

    Article  ADS  Google Scholar 

  9. Stott,L. D., Kennett,J. P., Shackleton,N. J. & Corfield,R. M. The evolution of Antarctic surface waters during the Paleogene: inferences from stable isotopic composition of planktonic foraminifera. Proc. ODP Sci. Res. 113, 849–863 (1990).

    Google Scholar 

  10. Thomas,E. & Shackleton,N. J. in Correlation of the Early Paleogene in Northwest Europe (eds Knox, R. W., Corfield, R. M. & Dunay, R. E.) 401–441 (Geological Society, London, 1996).

    Google Scholar 

  11. Pak,D., Miller,K. G. & Browning,J. Global significance of an isotopic record from the New Jersey Coastal Plain: Linkage between the shelf and deep sea in the late Paleocene to early Eocene. Proc. ODP Sci. Res. X 150, 305–315 (1997).

    Google Scholar 

  12. Lu,G. & Keller,G. (1993). The Palaeocene-Eocene transition in the Antarctic Indian Ocean: Inference from planktonic foraminifera. Mar. Micropaleontol. 21, 101–142 (1993).

    Article  ADS  Google Scholar 

  13. Bralower,T. J. et al. High resolution records of the late Paleocene thermal maximum and circum-Caribbean volcanism: is there a causal link? Geology 25, 963–966 (1997).

    Article  ADS  Google Scholar 

  14. Koch,P. L., Zachos,J. C. & Dettman,D. L. Stable isotope stratigraphy and paleoclimatology of the Paleogene Bighorn Basin (Wyoming, USA). Palaeogeogr., Palaeoclimatol., Palaeoecol. 115, 61–89 (1995).

    Article  Google Scholar 

  15. Clyde,W. C. & Gingerich,P. D. Mammalian community response to the latest Palaeocene thermal maximum: An isotaphonomic study in the northern Bighord Basin, Wyoming. Geology 26, 1011–1014 (1998).

    Article  ADS  Google Scholar 

  16. Hooker,J. J. in Late Paleocene-Early Eocene Climatic and Biotic Events (eds Aubry, M.-P., Lucas, S. & Berggren, W. A.) 428–450 (Columbia Univ. Press, New York, 1998).

    Google Scholar 

  17. Röhl,U. & Abrams,L. J. in Proc. ODP Sci. Res. (eds Leckie, R. M. et al.) Vol. 165 (Ocean Drilling Program, College Station, Texas, in the press).

  18. Aubry,M.-P., Berggren,W. A., Stott,L. D. & Sinha,A. in Correlation of the Early Paleogene in Northwest Europe (eds Knox, R. W., Corfield, R. M. & Dunay, R. E.) 353–380 (Geological Society, London, 1996).

    Google Scholar 

  19. Wing,S. L. in Late Paleocene-Early Eocene Climatic and Biotic Events (eds Aubry, M.-P., Lucas, S. & Berggren, W. A. ) 380–400 (Columbia Univ. Press, New York, 1998).

    Google Scholar 

  20. Berggren,W. A., Kent,D. V., Swisher,C. C. III & Aubry,M.-P. in Geochronology, Time Scales and Global Stratigraphic Correlations: A Unified Temporal Framework for an Historical Geology (eds Berggren, W. A., Kent, D. V., Aubry, M.-P. & Hardenbol, J.) 129–212 (Society for Economic Paleontologists and Mineralogists, Tulsa, Oklahoma, 1995).

    Google Scholar 

  21. Norris,R. D. et al. Black Nose Paleoceanographic Transect, Western North Atlantic. Proc. ODP Init. Rep. B 171, 1–749 (1998).

    Google Scholar 

  22. Jansen,J. H. F., Van der Gaast,S. J., Koster,B. & Vaars,A. J. CORTEX, a shipboard XRF-scanner for element analyses in split sediment cores. Mar. Geol. 151, 143–153 (1998).

    Article  ADS  CAS  Google Scholar 

  23. Herbert,T. D., Premoli Silva,I., Erba,E. & Fischer,A. G. in Geochronology, Time Scales and Global Stratigraphic Correlation (eds Berggren, W. A., Kent, D. V., Aubry, M.-P. & Hardenbol, J.) 81–93 (Society for Economic Paleontologists and Mineralogists, Tulsa, Oklahoma, 1995).

    Book  Google Scholar 

  24. Cande,S. C. & Kent,D. V. Revised calibration of the geomagnetic polarity time scale for the Late Cretaceous and Cenozoic. J. Geophys. Res. 100, 6093–6095 (1995).

    Article  ADS  Google Scholar 

  25. Wing,S. L., Boa,H. & Koch,P. L. in Warm Climates in Earth History (eds Huber, B. T., MacLeod, K. & Wong, S. L.) (Cambridge Univ. Press, Cambridge, UK, in the press).

  26. Wing,S. L., Alroy,J. & Hickey,L. J. Plant and mammal diversity in the Paleocene to early Eocene of the Bighorn Basin. Palaeogeogr., Palaeoclimatol., Palaeoecol. 115, 117–155 (1995).

    Article  Google Scholar 

  27. Maas,M., Anthony,M. R. L., Gingerich,P. D., Gunnell,G. F. & Krause,D. W. Mammalian genetic diversity and turnover in the Late Paleocene and early Eocene of the Bighorn and Crazy Mountains Basins, Wyoming and Montana (USA). Palaegeogr., Palaeoclimatol., Palaeoecol. 115, 181–207 (1995).

    Article  ADS  Google Scholar 

  28. Gornitz,V. & Fung,I. Potential distribution of methane hydrates in the world's oceans. Glob. Biogeochem. Cycles 8, 335–347 (1994).

    Article  ADS  CAS  Google Scholar 

  29. Berger,A. Long-term variations of daily insolation and quaternary climatic change. J. Atmos. Sci. 35, 2362–2367 (1978).

    Article  ADS  Google Scholar 

  30. Paillard,D., Labeyrie,L. & Yiou,P. Macintosh program performs time-series analysis. Eos 77, 379 (1996).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank G. Dickens, M. P. Aubry, W. A. Berggren, D. Kent, P. Koch and D. Kroon for discussions, and the staff of the Ocean Drilling Program in Bremen for technical assistance. This work was supported by the Joint Oceanographic Institutions—US Science Support Advisory Committee (JOI-USSAC), and the National Science Foundation and the Deutsche Forhungsgemeinschaft.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard D Norris.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Norris, R., Röhl, U. Carbon cycling and chronology of climate warming during the Palaeocene/Eocene transition. Nature 401, 775–778 (1999). https://doi.org/10.1038/44545

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/44545

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing