Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Stability of atmospheric CO2 levels across the Triassic/Jurassic boundary

Abstract

The Triassic/Jurassic boundary, 208 million years ago, is associated with widespread extinctions in both the marine and terrestrial biota. The cause of these extinctions has been widely attributed to the eruption of flood basalts of the Central Atlantic Magmatic Province1,2,3,4. This volcanic event is thought to have released significant amounts of CO2 into the atmosphere, which could have led to catastrophic greenhouse warming5,6,7, but the evidence for CO2-induced extinction remains equivocal. Here we present the carbon isotope compositions of pedogenic calcite from palaeosol formations, spanning a 20-Myr period across the Triassic/Jurassic boundary. Using a standard diffusion model8,9, we interpret these isotopic data to represent a rise in atmospheric CO2 concentrations of about 250 p.p.m. across the boundary, as compared with previous estimates of a 2,000–4,000 p.p.m. increase4,5. The relative stability of atmospheric CO2 across this boundary suggests that environmental degradation and extinctions during the Early Jurassic were not caused by volcanic outgassing of CO2. Other volcanic effects—such as the release of atmospheric aerosols or tectonically driven sea-level change—may have been responsible for this event.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Location of basins containing the sampled palaeosols.

Similar content being viewed by others

References

  1. Stothers, R. B. Flood basalts and extinction events. Geophys. Res. Lett. 20, 1399–1402 (1993).

    Article  ADS  Google Scholar 

  2. Courtillot, V. Mass extinctions in the last 300 million years: one impact and seven flood basalts? Israel J. Earth Sci. 43, 255–266 (1994).

    Google Scholar 

  3. Marzoli, A. et al. Extensive 200-million-year-old continental flood basalts of the central Atlantic province. Science 284, 616–618 (1999).

    Article  ADS  CAS  Google Scholar 

  4. Yapp, C. J. & Poths, H. Carbon isotopes in continental weathering environments and variations in ancient atmospheric CO2 pressure. Earth Planet. Sci. Lett. 137, 71–82 (1996).

    Article  ADS  CAS  Google Scholar 

  5. McElwain, J. C., Beerling, D. J. & Woodward, F. I. Fossil plants and global warming at the Triassic-Jurassic boundary. Science 285, 1386–1390 (1999).

    Article  CAS  Google Scholar 

  6. Olsen, P. E. Giant lava flows, mass extinctions, and mantle plumes. Science 284, 604–605 (1999).

    Article  CAS  Google Scholar 

  7. Hallam, A. The end-Triassic extinction in relation to a superplume event. Geol. Soc. Am. Abs. Prog. 37, 380 (2000).

    Google Scholar 

  8. Cerling, T. E. Carbon dioxide in the atmosphere: evidence from Cenozoic and Mesozoic paleosols. Am. J. Sci. 291, 377–400 (1991).

    Article  ADS  CAS  Google Scholar 

  9. Cerling, T. E. Stable carbon isotopes in paleosol carbonates. Spec. Publ. Int. Ass. Sediment. 27, 43–60 (1999).

    CAS  Google Scholar 

  10. Sepkoski, J. J. Jr. in Global Events and Event Stratigraphy in the Phanerozoic (ed. Walliser, O. H.) 35–51 (Springer, Berlin, 1996).

    Book  Google Scholar 

  11. Curtis, K. & Padian, K. An Early Jurassic microvertebrate fauna from the Kayenta Formation of northeastern Arizona; microfaunal change across the Triassic-Jurassic boundary. PaleoBios 19, 19–37 (1999).

    Google Scholar 

  12. Pálfy et al. Timing the end-Triassic mass extinction: first on land, then in the sea? Geology 28, 39–42 (2000).

    Article  ADS  Google Scholar 

  13. Olsen, P. E., Shubin, N. H. & Anders, M. H. New Early Jurassic tetrapod assemblages constrain Triassic-Jurassic tetrapod extinction event. Science 237, 1025–1029 (1987).

    Article  ADS  CAS  Google Scholar 

  14. Hallam, A. & Wignall, P. B. Mass Extinctions and Their Aftermath (Oxford, New York, 1997).

    Google Scholar 

  15. Hallam, A. & Wignall, P. B. Mass extinctions and sea-level changes. Earth Sci. Rev. 48, 217–250 (1999).

    Article  ADS  Google Scholar 

  16. Hodych, J. P. & Dunning, G. R. Did the Manicouagan impact trigger end-of-Triassic mass extinction? Geology 20, 51–54 (1992).

    Article  ADS  CAS  Google Scholar 

  17. Fowell, S. J. & Olsen, P. E. Time calibration of Triassic/Jurassic microfloral turnover, eastern North America. Tectonophysics 222, 361–369 (1993).

    Article  ADS  Google Scholar 

  18. Ekart, D. D., Cerling, T. E., Montanez, I. P. & Tabor, N. J. A 400 million year carbon isotope record of pedogenic carbonate: implications for paleoatmospheric carbon dioxide. Am. J. Sci. 299, 805–827 (1999).

    Article  ADS  CAS  Google Scholar 

  19. Berner, R. A. Enriched: GEOCARB II; a revised model of atmospheric CO2 over Phanerozoic time. Am. J. Sci. 294, 56–91 (1994).

    Article  ADS  CAS  Google Scholar 

  20. Hubert, J. F. Paleosol caliche in the New Haven Arkose, Newark Group, Connecticut. Palaeogeogr. Palaeoclimatol. Palaeoecol. 24, 151–168 (1978).

    Article  Google Scholar 

  21. Coffey, B. P. & Textoris, D. A. Paleosols and paleoclimatic evolution, Durham sub-basin, North Carolina. Geol. Nat. Hist. Sur. Connecticut Misc. Rep. 1, 6 (1996).

    Google Scholar 

  22. Tanner, L. H. in The Continental Jurassic (ed. Morales, M.) 656–574 (Museum of Northern Arizona, Flagstaff, Arizona, 1996).

    Google Scholar 

  23. Tanner, L. H. Palustrine-lacustrine and alluvial facies of the (Norian) Owl Rock Formation (Chinle Group), Four Corners region, southwestern U.S.A.: implications for Late Triassic paleoclimate. J. Sedim. Res. 70, 1280–1289 (2000).

    Article  CAS  Google Scholar 

  24. Olsen, P. E. Stratigraphic record of the early Mesozoic breakup of Pangea in the Laurasia-Gondwana rift system. Annu. Rev. Earth Planet. Sci. 25, 337–401 (1997).

    Article  ADS  CAS  Google Scholar 

  25. Ekart, D. D. & Cerling, T. E. PCO2 during deposition of the Late Jurassic Morrison Formation and other paleoclimatic/ecologic data as inferred by stable carbon isotope analyses. Geol. Soc. Am. Abs. Prog. 28, 252 (1996).

    Google Scholar 

  26. Suchecki, R. K., Hubert, J. F. & De Wet, C. B. Isotopic imprint of climate and hydrogeochemistry on terrestrial strata of the Triassic-Jurassic Hartford and Fundy rift basins. J. Sed. Res. 58, 801–811 (1988).

    CAS  Google Scholar 

  27. Coffin, M. F. & Eldholm, O. Scratching the surface: estimating dimensions of large igneous provinces. Geology 21, 515–518 (1993).

    Article  ADS  Google Scholar 

  28. Caldeira, K. G. & Rampino, M. R. Deccan volcanism, greenhouse warming, and the Cretaceous/Tertiary boundary. Geol. Soc. Am. Spec. Pap. 247, 117–123 (1990).

    Google Scholar 

  29. Wallace, P. & Anderson, A. T. in Encyclopedia of Volcanoes (ed. Sigurdsson, H.) 149–170 (Academic, New York, 2000).

    Google Scholar 

  30. Parfitt, E. A. & Wilson, L. Impact of basaltic eruptions on climate. Geol. Soc. Am. Abs. Prog. 32, 501 (2000).

    Google Scholar 

Download references

Acknowledgements

This study was supported by grants from the Research and Disciplinary Fund and the Special Initiative Fund, Bloomsburg University (L.H.T.), and from the Connecticut Department of Environmental Protection (D.P.I). We thank the Navajo nation for permitting us to conduct research on reservation lands. We also thank S. Driese, D. Fastovsky and A. Hallam for their comments on this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lawrence H. Tanner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tanner, L., Hubert, J., Coffey, B. et al. Stability of atmospheric CO2 levels across the Triassic/Jurassic boundary. Nature 411, 675–677 (2001). https://doi.org/10.1038/35079548

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35079548

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing