Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Evidence that humans evolved from a knuckle-walking ancestor

Abstract

Bipedalism has traditionally been regarded as the fundamental adaptation that sets hominids apart from other primates. Fossil evidence demonstrates that by 4.1 million years ago1, and perhaps earlier2, hominids exhibited adaptations to bipedal walking. At present, however, the fossil record offers little information about the origin of bipedalism, and despite nearly a century of research on existing fossils and comparative anatomy, there is still no consensus concerning the mode of locomotion that preceded bipedalism3,4,5,6,7,8,9,10. Here we present evidence that fossils attributed to Australopithecus anamensis (KNM-ER 20419)11 and A. afarensis (AL 288-1)12 retain specialized wrist morphology associated with knuckle-walking. This distal radial morphology differs from that of later hominids and non-knuckle-walking anthropoid primates, suggesting that knuckle-walking is a derived feature of the African ape and human clade. This removes key morphological evidence for a Pan–Gorilla clade, and suggests that bipedal hominids evolved from a knuckle-walking ancestor that was already partly terrestrial.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The wrist joint during the swing phase (left column) and support phase (right column) of knuckle-walking.
Figure 2: Measurements and canonical variates analysis (CVA) of the distal radius.
Figure 3: Palmar view of distal radii.

Similar content being viewed by others

References

  1. Leakey, M. G., Fiebel, C. S., McDougall, I. & Walker, A. C. New four-million-year-old hominid species from Kanapoi and Allia Bay, Kenya. Nature 376, 565–571 (1995).

    Article  ADS  CAS  Google Scholar 

  2. White, T. D., Suwa, G. & Asfaw, B. Australopithecus ramidus, a new species of early hominid from Aramis, Ethiopia. Nature 371, 306– 312 (1994).

    Article  ADS  CAS  Google Scholar 

  3. Keith, A. Man's posture: its evolution and disorders. Br. Med. J. 1, 451–454, 499–502, 545–548, 587–590, 624–626, 669–672 (1923).

    Article  CAS  Google Scholar 

  4. Washburn, S. L. Behavior and the origin of man. Proc. R. Anthropol. Inst. Gr. Br. Ireland 3, 21–27 ( 1967).

    Google Scholar 

  5. Marzke, M. W. Origin of the human hand. Am. J. Phys. Anthropol. 34 , 61–84 (1971).

    Article  CAS  Google Scholar 

  6. Tuttle, R. H. Darwin's apes, dental apes, and the descent of man: normal science in evolutionary anthropology. Curr. Anthropol. 15, 389– 398 (1974).

    Article  Google Scholar 

  7. Stern, J. T. Jr Before bipedality. Yrbk Phys. Anthropol. 19, 59–68 (1975).

    Google Scholar 

  8. Fleagle, J. G. et al. Climbing: a biomechanical link with brachiation and bipedalism. Symp. Zool. Soc. Lond. 48, 359– 373 (1981).

    Google Scholar 

  9. Rose, M. D. in Origine(s) de la Bipédie Chez les Hominidés (eds Coppens, Y. & Senut, B.) 37–48 (Centre National de la Recherche Scientifique, Paris, 1991).

    Google Scholar 

  10. Gebo, D. L. Climbing, brachiation, and terrestrial quadrupedalism: historical precursors of hominid bipedalism. Am. J. Phys. Anthropol. 101, 55–92 (1996).

    Article  CAS  Google Scholar 

  11. Heinrich, R. E., Rose, M. D., Leakey, R. E. & Walker, A. C. Hominid radius from the Middle Pliocene of Lake Turkana, Kenya. Am. J. Phys. Anthropol. 92, 139–148 (1993).

    Article  CAS  Google Scholar 

  12. Johanson, D. C. et al. Morphology of the Pliocene partial hominid skeleton (AL288-1) from the Hadar Formation, Ethiopia. Am. J. Phys. Anthropol. 57, 403–451 (1982).

    Article  Google Scholar 

  13. Jenkins, F. A. Jr & Fleagle, J. G. in Primate Functional Morphology and Evolution (ed. Tuttle, R. H.) 213–231 (Mouton, The Hague, 1975).

    Google Scholar 

  14. Tuttle, R. H. Knuckle-walking and the evolution of hominoid hands. Am. J. Phys. Anthropol. 26, 171–206 ( 1967).

    Article  Google Scholar 

  15. Tuttle, R. H. Quantitative and functional studies on the hands of the anthropoidea: I. The Hominoidea. J. Morphol. 128, 309– 363 (1969).

    Article  CAS  Google Scholar 

  16. Susman, R. L. & Stern, J. T. Jr Telemetered electromyography of flexor digitorum profundus and flexor digitorum superficialis in Pan troglodytes and implications for interpretation of the O.H. 7 hand. Am. J. Phys. Anthropol. 50, 565–574 (1979).

    Article  CAS  Google Scholar 

  17. Schmitt, D. Forelimb mechanics as a function of substrate type during quadrupedalism in two anthropoid primates. J. Hum. Evol. 26, 441–457 (1994).

    Article  Google Scholar 

  18. Richmond, B. G. Ontogeny and Biomechanics of Phalangeal Form in Primates. Thesis, State Univ. New York at Stony Brook (1998).

    Google Scholar 

  19. Stern, J. T. Jr & Susman, R. L. The locomotor anatomy of Australopithecus afarensis. Am. J. Phys. Anthropol. 60, 279–317 ( 1983).

    Article  Google Scholar 

  20. Susman, R. L. Comparative and functional morphology of hominoid fingers. Am. J. Phys. Anthropol. 50, 215–235 (1979).

    Article  CAS  Google Scholar 

  21. Begun, D. R. Knuckle-walking ancestors. Science 259, 294 (1993).

    Article  Google Scholar 

  22. Andrews, P. J. & Martin, L. B. Cladistic relationships of extant and fossil hominoids. J. Hum. Evol. 16, 101–118 (1987).

    Article  Google Scholar 

  23. Begun, D. R. Miocene fossil hominids and the chimp-human clade. Science 257, 1929–1933 (1992).

    Article  ADS  CAS  Google Scholar 

  24. Ruvolo, M. Molecular phylogeny of the hominoids: inferences from multiple independent DNA sequence data sets. Mol. Biol. Evol. 14, 248–265 (1997).

    Article  CAS  Google Scholar 

  25. Dainton, M. & Macho, G. A. Did knuckle walking evolve twice? J. Hum. Evol. 36, 171– 194 (1999).

    Article  CAS  Google Scholar 

  26. Hunt, K. D. The postural feeding hypothesis: an ecological model for the origin of bipedalism. S. Afr. J. Sci. 9, 77– 90 (1996).

    ADS  Google Scholar 

  27. Hewes, G. W. Food transport and the origin of hominid bipedalism. Am. Anthropol. 63, 687–710 ( 1961).

    Article  Google Scholar 

  28. Lovejoy, C. O. The origin of man. Science 211, 341– 350 (1981).

    Article  ADS  CAS  Google Scholar 

  29. Napier, J. R. & Davis, P. The forelimb skeleton and associated remains of Proconsul africanus. Foss. Mamm. Afr. 16, 1–70 (1959).

    Google Scholar 

  30. Grine, F. E. & Susman, R. L. Radius of Paranthropus robustus from Member 1, Swartkrans Formation, South Africa. Am. J. Phys. Anthropol. 84, 229–248 (1991).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank L. Aiello, E. Delson, B. Demes, J. Fleagle, F. Grine, W. Jungers, S. Larson, D. Lieberman, O. Pearson, D. Pilbeam, J. Polk, E. Sarmiento, R. Susman and B. Wood for providing valuable comments; F. Grine, L. Gordon, R. Thorington, R. Potts, A. Walker, and C. Ward for providing access to specimens in their care; and The Henry Luce Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brian G. Richmond.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Richmond, B., Strait, D. Evidence that humans evolved from a knuckle-walking ancestor. Nature 404, 382–385 (2000). https://doi.org/10.1038/35006045

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35006045

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing