Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Positional cloning of zebrafish ferroportin1 identifies a conserved vertebrate iron exporter

Abstract

Defects in iron absorption and utilization lead to iron deficiency and overload disorders. Adult mammals absorb iron through the duodenum, whereas embryos obtain iron through placental transport. Iron uptake from the intestinal lumen through the apical surface of polarized duodenal enterocytes is mediated by the divalent metal transporter, DMT1 (refs 1,2,3). A second transporter has been postulated to export iron across the basolateral surface to the circulation. Here we have used positional cloning to identify the gene responsible for the hypochromic anaemia of the zebrafish mutant weissherbst. The gene, ferroportin1, encodes a multiple-transmembrane domain protein, expressed in the yolk sac, that is a candidate for the elusive iron exporter. Zebrafish ferroportin1 is required for the transport of iron from maternally derived yolk stores to the circulation and functions as an iron exporter when expressed in Xenopus oocytes. Human Ferroportin1 is found at the basal surface of placental syncytiotrophoblasts, suggesting that it also transports iron from mother to embryo. Mammalian Ferroportin1 is expressed at the basolateral surface of duodenal enterocytes and could export cellular iron into the circulation. We propose that Ferroportin1 function may be perturbed in mammalian disorders of iron deficiency or overload.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Phenotypic analysis of weissherbst (weh) mutants.
Figure 2: Positional cloning of the weissherbst gene.
Figure 3: Developmental expression of Ferroportin1 and phenotypic rescue of weh embryos.
Figure 4: Ferroportin1 expression in human and mouse tissues.

Similar content being viewed by others

References

  1. Fleming,M. D. et al. Microcytic anemia mice have a mutation in Nramp2, a candidate iron transporter gene. Nature Genet. 16, 383–386 (1997).

    Article  CAS  Google Scholar 

  2. Gunshin,H. et al. Cloning and characterization of a mammalian proton-coupled metal-ion transporter. Nature 388, 482– 488 (1997).

    Article  ADS  CAS  Google Scholar 

  3. Andrews,N. C. Disorders of iron metabolism. N. Engl. J. Med. 341, 1986–1995 (1999).

    Article  CAS  Google Scholar 

  4. Haffter,P. et al. The identification of genes with unique and essential functions in the development of the zebrafish, Danio rerio. Development 123, 1–36 ( 1996).

    CAS  PubMed  Google Scholar 

  5. Ransom,D. G. et al. Characterization of zebrafish mutants with defects in embryonic hematopoiesis. Development 123, 311– 319 (1996).

    CAS  PubMed  Google Scholar 

  6. Ransom,D. G. & Zon,L. I. in The Zebrafish: Genetics and Genomics (eds Detrich, H. W. I., Westerfield, M. & Zon, L. I.) 195 –210 (Academic, San Diego, 1999).

    Google Scholar 

  7. Vos,P. et al. AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res. 23, 4407–4414 (1995).

    Article  CAS  Google Scholar 

  8. Postlethwait,J. H. et al. Vertebrate genome evolution and the zebrafish gene map. Nature Genet. 18, 345–349 (1998).

    Article  CAS  Google Scholar 

  9. Eisenstein,R. S. & Blemings,K. P. Iron regulatory proteins, iron responsive elements and iron homeostasis. J. Nutr. 128, 2295–2298 ( 1998).

    Article  CAS  Google Scholar 

  10. Kimmel,C. B., Ballard,W. W., Kimmel,S. R., Ullmann,B. & Schilling,T. F. Stages of embryonic development of the zebrafish. Dev. Dyn. 203, 253– 310 (1995).

    Article  CAS  Google Scholar 

  11. Richards,M. P. Trace mineral metabolism in the avian embryo. Poult. Sci. 76, 152–164 (1997).

    Article  CAS  Google Scholar 

  12. Dumont,J. N. Oogenesis in Xenopus laevis (Daudin). VI. The route of injected tracer transport in the follicle and developing oocyte. J. Exp. Zool. 204, 193–217 ( 1978).

    Article  CAS  Google Scholar 

  13. Craik,J. C. Levels of calcium and iron in the ovaries and eggs of cod Gadus morhua L. and plaice Pleuronectes platessa L. Comp. Biochem. Physiol. A. 83, 515–517 (1986).

    Article  CAS  Google Scholar 

  14. Al-Adhami,M. A. & Kunz,Y. W. Ontogenesis of haematopoietic sites in brachydanio rerio (Hamilton–Buchanan) (Teleostei). Develop. Growth Differ. 19, 171–179 (1977).

    Article  Google Scholar 

  15. Rieb,J.-P. La circulation sangunie chez l'embryon de Brachydanio rerio. Annales d'Embryologie et de Morphogenese 6, 43– 54 (1973).

    Google Scholar 

  16. Bannerman,R. M. Genetic defects of iron transport. Fed. Proc. 35, 2281–2285 (1976).

    CAS  PubMed  Google Scholar 

  17. Kingston,P. J., Bannerman,C. E. & Bannerman, R. M. Iron deficiency anaemia in newborn sla mice: a genetic defect of placental iron transport. Br. J. Haematol. 40, 265–276 ( 1978).

    Article  CAS  Google Scholar 

  18. Vulpe,C. D. et al. Hephaestin, a ceruloplasmin homologue implicated in intestinal iron transport, is defective in the sla mouse. Nature Genet. 21, 195–199 ( 1999).

    Article  CAS  Google Scholar 

  19. Askwith,C. et al. The FET3 gene of S. cerevisiae encodes a multicopper oxidase required for ferrous iron uptake. Cell 76, 403–410 (1994).

    Article  CAS  Google Scholar 

  20. Stearman,R., Yuan,D. S., Yamaguchi-Iwai, Y., Klausner,R. D. & Dancis,A. A permease–oxidase complex involved in high-affinity iron uptake in yeast. Science 271, 1552–1557 (1996).

    Article  ADS  CAS  Google Scholar 

  21. Westerfield,M. The Zebrafish Book (Univ. Oregon Press, Eugene, 1993 ).

    Google Scholar 

  22. Thompson,M. A. et al. The cloche and spadetail genes differentially affect hematopoiesis and vasculogenesis. Dev. Biol. 197, 248–269 (1998).

    Article  CAS  Google Scholar 

  23. Knapik,E. W. et al. A microsatellite genetic linkage map for zebrafish. Nature Genet. 18, 338–343 (1998).

    Article  CAS  Google Scholar 

  24. Johnson,S. L., Africa,D., Horne,S. & Postlethwait,J. H. Half-tetrad analysis in zebrafish: mapping the ros mutation and the centromere of linkage group I. Genetics 139, 1727– 1735 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Shimoda,N. et al. Zebrafish genetic map with 2000 microsatellite markers. Genomics 58, 219-232 (1999).

    Article  Google Scholar 

  26. Farr,C. J., Saiki,R. K., Erlich,H. A., McCormick,F. & Marshall,C. J. Analysis of RAS gene mutations in acute myeloid leukemia by polymerase chain reaction and oligonucleotide probes. Proc. Natl Acad. Sci. USA 85, 1629 –1633 (1988).

    Article  ADS  CAS  Google Scholar 

  27. Wood,W. I., Gitschier,J., Lasky,L. A. & Lawn,R. M. Base composition-independent hybridization in tetramethylammonium chloride: a method for oligonucleotide screening of highly complex gene libraries. Proc. Natl Acad. Sci. USA 82, 1585– 1588 (1985).

    Article  ADS  CAS  Google Scholar 

  28. Palis,J. & Kingsley,P. D. Differential gene expression during early murine yolk sac development. Mol. Reprod. Dev. 42, 19–27 (1995).

    Article  CAS  Google Scholar 

  29. Brownlie,A. et al. Positional cloning of the zebrafish sauternes gene: a model for congenital sideroblastic anaemia. Nature Genet. 20, 244–250 (1998).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank J. Amatruda, C. Trenor, V. Sellers and J. Levy for critical review of this manuscript; P. Haffter and C. Nusslein-Volhard for providing the zebrafish blood mutants before publication; C. Amemiya, J. Postlethwait, D. Nathan, A. Oates and J. Best for helpful discussions and experimental advice; D. Giarla for administrative assistance; B. Hogan, J. Rossant and L. Solnica-Krezel for discussions on placental and yolk sac biology; and L. Kunkel, G. Gilliland and W. Talbot for support and advice. L.I.Z. and N.C.A. are Associate Investigators of the Howard Hughes Medical Institute. This work was supported by grants from the NIH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leonard I. Zon.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Donovan, A., Brownlie, A., Zhou, Y. et al. Positional cloning of zebrafish ferroportin1 identifies a conserved vertebrate iron exporter. Nature 403, 776–781 (2000). https://doi.org/10.1038/35001596

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35001596

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing