Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Superconductivity in the rare-earth-free Tl–Ba–Cu–O system above liquid-nitrogen temperature

Abstract

The initial discovery by Bednorz and Muller1 of 35-K superconduc-tivity in the La–Ba–Cu–O system has stimulated worldwide activity in searching for higher-temperature superconductors. Elemental substitution has proved to be most effective in raising transition temperature. Substitution of Sr for Ba has produced 40-K super-conductivity2–5, and substitution of Y for La has produced a new high-temperature superconductor with transition temperature above liquid-nitrogen temperature6. A class of superconducting compounds of the form RBa2Cu3O7−x has been explored by further substitutions of other rare earths (Y is considered in the rare-earth [R] category here) for Y7–13. To date, a rare earth, an alkaline earth, copper and oxygen have been required for all high-temperature superconductors14,15. (Zhang et al.14 reported 90-K superconductivity in the Th–Ba–Pb(Zr) –Cu–O system. Pan et al.15 reported 50-K superconductivity in the Y–Ba–Ag–O system. As Th is a member of the actinide series which belongs to the same Group 3B in the periodic table as the lanthanide series and Ag belongs to the same Group IB as Cu, high-temperature supercon-ductors are still thought to be closed in the Group 3B–Group 2A–Group 1B–oxygen system.) Only partial substitutions have led to superconductors, but with no significant rise of transition tem-perature (the only exception is 40-K superconductivity in La2CuO4−x, refs 16, 17). Here we report superconductivity in the rare-earth-free Tl–Ba–Cu–O system. We have observed sharp drops of resistance starting above 90 K with zero resistance at 81 K in this system. Magnetic measurements have confirmed that these sharp drops of resistance in the Tl–Ba–Cu-–O samples origi-nate from superconductivity. The samples are stable in air for at least two months, and their preparation is easily reproduced.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Bednorz, J. G. & Muller, K. A. Z. Phys B64, 189–193 (1986).

    Article  CAS  Google Scholar 

  2. Chu, C. W. et al. Phys. Rev. Lett. 58, 405–407 (1987).

    Article  ADS  CAS  Google Scholar 

  3. Chu, C. W. et al. Science 235, 567–569 (1987).

    Article  ADS  CAS  Google Scholar 

  4. Cava, J. et al. Phys. Rev. Lett. 58, 408–410 (1987).

    Article  ADS  CAS  Google Scholar 

  5. Tarascon, J. M. et al. Science 235, 1373–1376 (1987).

    Article  ADS  CAS  Google Scholar 

  6. Wu, M. K. et al. Phys. Rev. Lett. 58, 908–910 (1987).

    Article  ADS  CAS  Google Scholar 

  7. Murphy, D. et al. Phys. Rev. Lett. 58, 1888–1890 (1987).

    Article  ADS  CAS  Google Scholar 

  8. Hor, P. H. et al. Phys. Rev. Lett. 58, 1891–1894 (1987).

    Article  ADS  CAS  Google Scholar 

  9. Moodenbaugh, M. et al. Phys. Rev. Lett. 58, 1885–1887 (1987).

    Article  ADS  CAS  Google Scholar 

  10. Hosoya, S. et al. Jap. J. appl. Phys. 26, L325–L326 (1987).

    Article  CAS  Google Scholar 

  11. Kitazawa, K. et al. Jap. J. appl. Phys. 26, L339–L341 (1987).

    Article  CAS  Google Scholar 

  12. Hikami, S. et al. Jap. J. appl. Phys. 26, L347–L348 (1987).

    Article  CAS  Google Scholar 

  13. Hosoya, S. et al. Jap. J. appl. Phys. 26, L456–L457 (1987).

    Article  CAS  Google Scholar 

  14. Zhang, Y. L. et al. preprint (1987).

  15. Pan, K. K. et al. Phys. Lett. A125, 147–148 (1987).

    Article  CAS  Google Scholar 

  16. Grant, P. M. et al. Phys. Rev. Lett. 58, 2482–2485 (1987).

    Article  ADS  CAS  Google Scholar 

  17. Michel, C. et al. Z. Phys. B68, 421–423 (1987).

    Article  CAS  Google Scholar 

  18. Cava, J. et al. Phys. Rev. Lett. 58, 1676–1679 (1987).

    Article  ADS  CAS  Google Scholar 

  19. Weast, R. C. W. & Astle, M. J. (eds) in Handbook of Physics and Chemistry, 62nd edn, B-156, F-175 (CRC, Boca Raton, 1981).

  20. Bailar, J. C. Jr et al. Comprehensive Inorganic Chemistry (Pergamon, Oxford, 1973).

    Google Scholar 

  21. Hermann, A. M. & Sheng, Z. Z. Appl. Phys. Lett. 51, 1854–1856 (1987).

    Article  ADS  CAS  Google Scholar 

  22. Hermann, R. et al. Appl. Phys. Commun. 7, 275–283 (1987).

    ADS  CAS  Google Scholar 

  23. White, G. K. & Woods, S. B. Phil. Trans. R. Soc. A251, 272 (1959).

    Article  ADS  Google Scholar 

  24. Ovshinsky, S. R. et al. Phys. Rev. Lett. 58, 2579–2581 (1987).

    Article  ADS  CAS  Google Scholar 

  25. Kagoshima, S. et al. Jap. J. appl. Phys. 26, L318–L319 (1987).

    Article  CAS  Google Scholar 

  26. Matsushita, A. et al. Jap. J. appl. Phys. 26, L332–L333 (1987).

    Article  CAS  Google Scholar 

  27. Norton, M. L. J. Phys. E. Sci. Instrum, 19, 268–270 (1986).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sheng, Z., Hermann, A. Superconductivity in the rare-earth-free Tl–Ba–Cu–O system above liquid-nitrogen temperature. Nature 332, 55–58 (1988). https://doi.org/10.1038/332055a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/332055a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing