Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Galaxy formation by dissipationless particles heavier than neutrinos

Abstract

In a baryon dominated universe, there is no scale length corresponding to the masses of galaxies. If neutrinos with mass <50eV dominate the present mass density of the universe, then their Jeans mass MJv 1016M, which resembles supercluster rather than galactic masses. Neutral particles that interact much more weakly than neutrinos would decouple much earlier, have a smaller number density today, and consequently could have a mass >50 eV without exceeding the observational mass density limit. A candidate particle is the gravitino, the spin 3/2 supersymmetric partner of the graviton, which has been shown1 to have a mass 1 keV if stable2. The Jeans mass for a 1-keV noninteracting particle is 1012 M, about the mass of a typical spiral galaxy including the nonluminous halo. We suggest here that the gravitino dominated universe can produce galaxies by gravitational instability while avoiding several observational difficulties associated with the neutrino dominated universe.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Pagels, H. & Primack, J. R. Phys. Rev. Lett. 48, 223 (1982).

    Article  ADS  CAS  Google Scholar 

  2. Weinberg, S. Phys. Rev. Lett. 48, 1303 (1982).

    Article  ADS  CAS  Google Scholar 

  3. Schramm, D. N. & Steigman, G. Astrophys. J. 243, 1 (1981).

    Article  ADS  CAS  Google Scholar 

  4. Davis, M., Geller, M. J. & Huchra, J. Astrophys. J. 221, 1 (1978).

    Article  ADS  Google Scholar 

  5. Peebles, P. J. E. Astr. J. 84, 730 (1979).

    Article  ADS  Google Scholar 

  6. Davis, M., Tonry, J., Huchra, J. & Latham, D. W. Astrophys. J. Lett. 238, L113 (1980).

    Article  ADS  Google Scholar 

  7. Lubimov, V. A., Novikov, E. G., Nozik, V. Z., Tretyakov, E. F. & Kosik, V. S. Phys. Lett. B94, 266 (1980).

    Article  Google Scholar 

  8. Silk, J. & Wilson, M. Phys. Scr. 21, 708 (1980).

    Article  ADS  CAS  Google Scholar 

  9. Rees, M. J. in Observational Cosmology (ed. Gunn, J. E.) 259 (Geneva Observatory, Sauverny, 1978).

    Google Scholar 

  10. Bisnovatyi-Kogan, G. S. & Novikov, I. D. Soviet Astr. 24, 516 (1980).

    ADS  Google Scholar 

  11. Bond, J. R., Efstathiou, G. & Silk, J. Phys. Rev. Lett. 45, 1980 (1980).

    Article  ADS  CAS  Google Scholar 

  12. Davis, M., Lecar, M., Pryor, C. & Witten, E. Astrophys. J. 250, 423 (1981).

    Article  ADS  CAS  Google Scholar 

  13. Doroshkevich, A. G., Khlopov, M. Yu., Sunyaev, R. A., Szalay, A. S. & Zeldovich, Ya. B. Ann. N.Y. Acad. Sci. 375, 32 (1981).

    Article  ADS  CAS  Google Scholar 

  14. Bond, J. R. & Szalay, A. S. Proc. Neutrino, Maui (1981).

  15. Weinberg, S. Gravitation and Cosmology (Wiley, New York, 1972).

    Google Scholar 

  16. Peebles, P. J. E. The Large Scale Structure of the Universe, 304 (Princeton University Press, 1980).

    Google Scholar 

  17. Guyot, M. & Zeldovich, Ya. B. Astr. Astrophys. 9, 227 (1970).

    ADS  Google Scholar 

  18. Meszaros, P. Astr. Astrophys. 37, 225 (1974).

    ADS  Google Scholar 

  19. Bond, J. R., Szalay, A. S. & Turner, M. Phys. Rev. Lett. (in the press).

  20. Doroshkevish, A. G., Zeldovich, Ya. B., Sunyaev, R. A. & Khlopov, M. Yu. Soviet Astr. Lett. 6, 252 (1980).

    ADS  Google Scholar 

  21. White, S. M. & Rees, M. J. Mon. Not. R. Astr. Soc. 183, 341 (1978).

    Article  ADS  Google Scholar 

  22. Faber, S. M. in Proc. Vatican Conf. on Cosmology and Fundamental Physics (in the press).

  23. Bhavsar, S. P., Gott, J. R. & Aarseth, S. J. Astrophys. J. 246, 656 (1981).

    Article  ADS  Google Scholar 

  24. Kirschner, R. P., Oemler, A. Jr, Schechter, P. L. & Shechtman, S. A. Astrophys. J. Lett. 248, (1981).

  25. Dekel, A. Astrophys. J. Lett. (in the press).

  26. Sargent, W. L. W., Young, P. J., Boksenberg, A. & Tytler, D. Astrophys. J. Suppl. 42, (1980).

  27. Dekel, A. Astrophys. J. (submitted).

  28. Gunn, J. in Proc. Vatican Conf. on Cosmology and Fundamental Physics (in the press).

  29. Tremaine, S. & Gunn, J. Phys. Rev. Lett. 42, 407 (1979).

    Article  ADS  CAS  Google Scholar 

  30. Sato, H. & Takahara, F. Prog. theor. Phys. 64, 2021 (1980).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Blumenthal, G., Pagels, H. & Primack, J. Galaxy formation by dissipationless particles heavier than neutrinos. Nature 299, 37–38 (1982). https://doi.org/10.1038/299037a0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/299037a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing