Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Elaborate CNS cooling structures in large dinosaurs

Abstract

DURING sustained activity, or when exposed to high ambient temperatures, terrestrial animals often experience periods of core hyperthermia. The central nervous system (CNS) is very sensitive to elevated temperatures1–3, and consequently, both bradymetabolic and tachymetabolic4 terrestrial vertebrates have evolved physiological mechanisms which effect localised cooling of the brain, and thereby reduce any thermal impairment of CNS functioning. In modern reptiles this temperature gradient is produced by evaporative cooling from the buccal cavity and upper respiratory tract5,6, conducting heat from the brain through the floor of the cranium7. Mammals dissipate heat, by evaporation, from the nasal mucosa to the air flowing through the nasal passages. The cooled venous blood draining from this highly vascularised mucosa flows into the cavernous sinus, where counter-current heat exchange with the carotid arteries, elaborated into a rete in many forms, results in brain cooling8,9 (Fig. 1a). Dinosaurs would have experienced similar thermal problems to those of modern vertebrates, and these would have been particularly acute in the larger forms whose low surface area to volume ratio would have restricted dissipation of the enormous amounts of heat generated by the skeletal muscles during activity. It is therefore proposed that they required and possessed comparable physiological mechanisms to protect the brain during core hyperthermia.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Percht, H., Christopherson, J., Hensel, H. & Larcher, W. Temperature and Life 656–658 (Springer, Berlin, 1973).

    Book  Google Scholar 

  2. Becht, F. C. Am. J. Physiol. 22, 456–476 (1908).

    Article  Google Scholar 

  3. Webb, G. J. W. & Witten, G. J. Comp. Biochem. Physiol. 45A, 829–832 (1973).

    Article  CAS  Google Scholar 

  4. Bligh, J. & Johnson, K. G. J. appl. Physiol. 35, 941–961 (1973).

    Article  CAS  Google Scholar 

  5. Crawford, E. G., Palomeque, J. & Barber, B. J. Comp. Biochem. Physiol. 56A, 161–163 (1977).

    Article  Google Scholar 

  6. Webb, G. J. W. & Johnson, C. R. Comp. Biochem. Physiol. 43A, 593–611 (1972).

    Article  Google Scholar 

  7. Crawford, E. C. Science 177, 431–433 (1972).

    Article  ADS  Google Scholar 

  8. Baker, M. A. & Hayward, J. N. J. Physiol., Lond. 198, 561–579 (1968).

    Article  CAS  Google Scholar 

  9. Hayward, J. N. & Baker, M. A. Brain Res. 16, 417–440 (1969).

    Article  CAS  Google Scholar 

  10. Romer, A. S. Vertebrate Paleontology (University of Chicago Press, 1966).

    Google Scholar 

  11. Galton, P. M. J. Paleontol. 44, 464–73 (1970).

    Google Scholar 

  12. Ostrom, J. H. Am. J. Sci. 262, 975–997 (1964).

    Article  ADS  Google Scholar 

  13. Ostrom, J. H. Am. Mus. nat. Hist. Bull. 122(2), 33–186 (1961).

    Google Scholar 

  14. Ostrom, J. H. Postilla 62, 1–29 (1962).

    Google Scholar 

  15. Young, B. A., Bligh, J. & Louw, G. J. Thermal Biol. 1, 195–198 (1976).

    Article  CAS  Google Scholar 

  16. Dodson, P. Syst. Zool. 24, 37–54 (1975).

    Article  Google Scholar 

  17. Hopson, J. A. Paleobiology 1, 21–43 (1975).

    Article  Google Scholar 

  18. Heath, J. E. Physiol. Zool. 39, 30–35 (1966).

    Article  Google Scholar 

  19. Bakker, R. T. Discovery (New Haven) 3, 11–22 (1968).

    Google Scholar 

  20. Bakker, R. T. Nature 229, 172–174 (1971).

    Article  ADS  CAS  Google Scholar 

  21. Coombs, W. P. Paleogeogr., Palaeoclimatol., Palaeocol. 17, 1–33 (1975).

    Article  ADS  Google Scholar 

  22. Taylor, C. R. Physiol. Zool. 39, 127–139 (1966).

    Article  Google Scholar 

  23. Ostrom, J. H. Evolution 20, 290–308 (1966).

    Article  Google Scholar 

  24. Johnson, C. R. Comp. Biochem. Physiol. 43A, 1025–1029 (1972).

    Article  Google Scholar 

  25. Schmidt-Nielsen, K. et al. Condor 71, 341–352 (1969).

    Article  Google Scholar 

  26. Bakker, R. T. Evolution 25, 636–658 (1971).

    Article  Google Scholar 

  27. Farlow, J. O., Thompson, C. V., Rostner, D. E. Science 192, 1123–1125 (1976).

    Article  ADS  CAS  Google Scholar 

  28. Magilton, J. H. & Swift, C. S. J. appl. Physiol. 27, 18–20 (1969).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

WHEELER, P. Elaborate CNS cooling structures in large dinosaurs. Nature 275, 441–443 (1978). https://doi.org/10.1038/275441a0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/275441a0

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing