Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Radio emission from the unusual supernova 1998bw and its association with the γ-ray burst of 25 April 1998

Abstract

Data accumulated over the past year strongly favour the idea that γ-ray bursts lie at cosmological distances, although the nature of the power source remains unclear. Here we report radio observations of the supernova SN1998bw, which exploded at about the same time, and in about the same direction, as the γ-ray burst GRB980425. At its peak, the supernova was unusually luminous at radio wavelengths. A simple interpretation of the data requires that the source expanded with an apparent velocity of at least twice the speed of light, indicating that the supernova was accompanied by a shock wave moving at relativistic speeds (the ejects of supernovae are typically characterized by non-relativistic velocities). The energy of the shock is at least 1049 erg, with an inferred ejecta mass of 10−5 solar masses, and we suggest that the early phase of this shock wave produced the burst of γ-rays. Although in general the properties of supernovae are very different from those of γ-ray bursts, we argue that this unusual supernova establishes a second class of γ-ray burst, which is distinctly different from the cosmological kind.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The position of objects within the 8-arcmin (radius) location error circle of the WFC for GRB980425 (ref.13).
Figure 2: The radio light curve and spectrum of SN1998bw.
Figure 3: The different regimes of interstellar scattering.

Similar content being viewed by others

References

  1. Metzger, M. R. Spectral constraints on the redshift of the optical counterpart to the γ-ray burst of 8 May 1997. Nature 387, 878–880 (1997).

    Article  ADS  CAS  Google Scholar 

  2. Kulkarni, S. R. et al. Identification of a host galaxy at redshift z = 3.42 for the γ-ray burst of 14 December 1997. Nature 393, 35–39 (1998).

    Article  ADS  CAS  Google Scholar 

  3. Boella, G. et al. BeppoSAX, the wide band mission for X-ray astronomy. Astron. Astrophys. Suppl. Ser. 122, 299–399 (1997).

    Article  ADS  Google Scholar 

  4. Costa, E. et al. Discovery of an X-ray afterglow associated with the γ-ray burst of 28 February 1997. Nature 387, 783–785 (1997).

    Article  ADS  CAS  Google Scholar 

  5. Van Paradijs, J. et al. Transient optical emission from the error box of the γ-ray burst of 28 February 1997. Nature 368, 686–688 (1997).

    Article  ADS  Google Scholar 

  6. Frail, D. A., Kulkarni, S. R., Nicastro, L., Feroci, M. & Taylor, G. B. The radio afterglow from the γ-ray burst of 8 May 1997. Nature 389, 261–263 (1997).

    Article  ADS  CAS  Google Scholar 

  7. Mészáros, P. & Rees, M. J. Optical and long-wavelength afterglow from gamma-ray bursts. Astrophys. J. 476, 232–237 (1997).

    Article  ADS  Google Scholar 

  8. Vietri, M. The afterglow of gamma-ray bursts: the cases of GRB 970228 and GRB 970508. Astrophys. J. 488, L105–L108 (1997).

    Article  ADS  Google Scholar 

  9. Waxman, E. Gamma-ray-burst afterglow: supporting the cosmological fireball model, constraining parameters, and making prediction. Astrophys. J. 485, L5–L8 (1997).

    Article  ADS  Google Scholar 

  10. Fishman, G. J. & Meegan, C. A. Gamma-ray bursts. Annu. Rev. Astron. Astrophys. 33, 415–458 (1995).

    Article  ADS  Google Scholar 

  11. Piran, T. in Unsolved Problems in Astrophysics (eds Bahcall, J. N. & Ostriker, J. P.) 343–377 (Princeton Univ. Press, (1997)).

    Google Scholar 

  12. Galama, T. J. et al. An unusual supernova in the error box of the γ-ray burst of 25 April 1998. Nature 395, 670–672 (1998).

    Article  ADS  CAS  Google Scholar 

  13. Soffitta, P. et al. IAU Circ. No. 6884 (1998).

    Google Scholar 

  14. Wieringa, M. et al. IAU Circ. No. 6896 (1998).

    Google Scholar 

  15. Sadler, E. M., Stathakis, R. A., Boyle, B. J. & Ekers, R. D. IAU Circ. No. 6901 (1998).

    Google Scholar 

  16. Woosley, S. E., Eastman, R. G. & Schmidt, B. P. Gamma-ray bursts and Type Ic supernovae: SN 1998bw.Preprint astro-ph/9806299 available at 〈http://xxx.lanl.gov/abs/astro-ph/9806299〉 (1998).

  17. Iwamoto, K. et al. Ahypernova model for the supernova associated with the γ-ray burst of 25 April 1998. Nature 395, 672–674 (1998).

    Article  ADS  CAS  Google Scholar 

  18. Pian, E. et al. GCN Note. No. 61 (1998).

    Google Scholar 

  19. Pian, E., Frontera, F., Antonelli, L. A. & Piro, L. Wiering, M. GCN NoteNo. 69 (1998).

    Google Scholar 

  20. Wieringa, M., Frail, D. A., Kulkarni, S. R., Higdon, J. L. & Wark, R. GCN Note No. 63 (1998).

    Google Scholar 

  21. Galama, T. J. et al. GCN Note No. 62 (1998).

    Google Scholar 

  22. Bloom, J. S., Kulkarni, S. R., Djorgovski, S. G., McCarthy, P. & Frail, D. GCN Note No. 64 (1998).

    Google Scholar 

  23. Galama, T. J. et al. IAU Circ. No. 6895 (1998).

    Google Scholar 

  24. Lidman, C. et al. IAU Circ. No. 6895 (1998).

    Google Scholar 

  25. Tinney, C., Stathakis, R., Cannon, R. & Galama, T. IAU Circ. No. 6896 (1998).

    Google Scholar 

  26. Patat, F. & Piemonte, A. IAU Circ. No. 6918 (1998).

    Google Scholar 

  27. Miller, D. L. & Branch, D. Supernova absolute-magnitude distributions. Astron. J. 100, 530–539 (1990).

    Article  ADS  Google Scholar 

  28. Hamuy, M. et al. IAU Circ. No. 5574 (1992).

    Google Scholar 

  29. Weiler, K. W. & Sramek, R. A. Supernovae and supernova-remnants. Rev. Astron. Astrophys. 26, 295–341 (1988).

    Article  ADS  CAS  Google Scholar 

  30. Chevalier, R. A. Synchrotron self-absorption in radio supernovae. Astrohys. J. 499, 810–819 (1998).

    Article  ADS  Google Scholar 

  31. Ball, L., Campbell-Wilson, D., Crawford, D. F. & Turtle, A. J. Radio observations of SN 1987A at 843 MHz. Astrophys. J. 453, 864–872 (1995).

    Article  ADS  Google Scholar 

  32. van Dyk, S. D., Weiler, K. W., Sramek, R. A. & Panagia, N. SN 1988Z: the most distant radio supernova. Astrophys. J. 419, L69–L72 (1993).

    Article  ADS  Google Scholar 

  33. Narayan, R. The physics of pulsar scintillation. Phil. Trans. R. Soc. Lond. A 341, 151–165 (1992).

    Article  ADS  Google Scholar 

  34. Goodman, J. Radio scintillation of compact extra-galactic radio sources. Mon. Not. R. Astron. Soc. 294, 307–311 (1998).

    Article  Google Scholar 

  35. Walker, M. A. Interstellar scintillation of compact extra-galactic radio sources. Mon. Not. R. Astron. Soc. 294, 307–311 (1998).

    Article  ADS  Google Scholar 

  36. Chevalier, R. A. The radio and X-ray emission from type II supernovae. Astrophys. J. 259, 302–310 (1982).

    Article  ADS  CAS  Google Scholar 

  37. Ball, L. & Kirk, J. G. The acceleration of electrons in the radio supernova SN 1986J. Astron. Astrophys. 303, L57–L60 (1995).

    ADS  CAS  Google Scholar 

  38. Shklovskii, I. S. Synchotron self-absorption of the radio emission of supernova 1983.51. Sov. Astron. Lett. 11, 105–106 (1985).

    ADS  Google Scholar 

  39. Slysh, V. I. Synchrotron self-absorption of radio emission from supernovae. Sov. Astron. Lett. 16, 339–342 (1990).

    ADS  Google Scholar 

  40. Scott, M. A. & Readhead, A. C. S. The low-frequency structure of powerful radio sources and limits to departures from equipartition. Mon. Not. R. Astron. Soc. 180, 539–550 (1977).

    Article  ADS  Google Scholar 

  41. Hoyle, F., Burbidge, G. R. & Sargent, W. L. W. On the nature of the quasi-stellar sources. Nature 209, 751–753 (1966).

    Article  ADS  Google Scholar 

  42. Kellerman, K. I. & Pauliny-Toth, I. I. K. The spectra of opaque radio sources. Astrophys. J. 155, L71–L78 (1968).

    Article  ADS  Google Scholar 

  43. Readhead, A. C. S. Equipartition brightness temperature and the inverse Compton catastrophe. Astrophys. J. 426, 51–59 (1994).

    Article  ADS  Google Scholar 

  44. Waxman, E. & Loeb, A. Asub-relativistic shock model for the radio emission of SN 1998bw.Preprint astro-ph/9808135 available at 〈http://xxx.lanl.gov/abs/astro-ph/9808135〉 (1998).

  45. Conway, R. G. et al. The radio polarization of quasars. Mon. Not. R. Astron. Soc. 168, 137–162 (1974).

    Article  ADS  Google Scholar 

  46. Hughes, P. A., Aller, H. D. & Aller, M. F. Synchrotron emission from shocked relativistic jets. I. The theory of radio-wavelengths variability and its relation to superluminal motion. Astrophys. J. 341, 54–67 (1989).

    Article  ADS  Google Scholar 

  47. Hughes, P. A., Aller, H. D. & Aller, M. F. Synchrotron emission from shocked relativistic jets. I. A model for the centimeter wave band quiescent and burst emission from BL Lacertae. Astrophys. J. 341, 68–79 (1989).

    Article  ADS  Google Scholar 

  48. Colgate, S. A. Early gamma rays from supernovae. Astrophys. J. 187, 333–335 (1974).

    Article  ADS  CAS  Google Scholar 

  49. Ensman, L. & Burrows, A. Shock breakout in SN 1987A. Astrophys. J. 393, 742–755 (1992).

    Article  ADS  Google Scholar 

  50. Bloom, J. S., Kulkarni, S. R., Harrison, F., Prince, T. & Frail, D. A. Expected characteristics of the subclass of supernova gamma-ray bursts. Astrophys. J. 506, L105–L108 (1998).

    Article  ADS  Google Scholar 

  51. Norris, J. P., Bonnell, J. T. & Watanabe, K. Constraints on association of single-pulse gamma-ray bursts and supernovae.Preprint astro-ph/9807322 available at 〈http://xxx.lanl.gov/abs/astro-ph/9807322〉 (1998).

Download references

Acknowledgements

We thank L. Avery and G. Moriarty-Schieven for help in making the JCMT observations. D.A.F. and S.R.K. thank M. Rupen, M. Rees and B. Paczynski for discussions. S.R.K. thanks A. Readhead for extensive discussions of brightness temperature. The Australia Telescope is funded by the Commonwealth of Australia for operation as a National Facility managed by CSIRO. The James Clerk Maxwell Telescope is operated by The Joint Astronomy Centre on behalf of the Particle Physics and Astronomy Research council of the United Kingdom, the Netherlands Organization for Scientific Research, and the National Research Council of Canada. The VLA is a facility of the National Science Foundation operated under cooperative agreement by Associated Universities, Inc. The research of S.R.K. and E.S.P. is supported by the National Science Foundation and NASA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. R. Kulkarni.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kulkarni, S., Frail, D., Wieringa, M. et al. Radio emission from the unusual supernova 1998bw and its association with the γ-ray burst of 25 April 1998. Nature 395, 663–669 (1998). https://doi.org/10.1038/27139

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/27139

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing