Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Bacteria Swim by Rotating their Flagellar Filaments

Abstract

IT is widely agreed that bacteria swim by moving their flagella, but how this motion is generated remains obscure1,2. A flagellum has a helical filament, a proximal hook, and components at its base associated with the cell wall and the cytoplasmic membrane. If there are several flagella per cell, the filaments tend to form bundles and to move in unison. When viewed by high-speed cinematography, the bundles show a screw-like motion. It is commonly believed that each filament propagates a helical wave3. We will show here that existing evidence favours a model in which each filament rotates.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Smith, R. W., and Koffler, H., Adv. microbiol. Physiol., 6, 219 (1971).

    Article  CAS  Google Scholar 

  2. Doetsch, R. N., CRC Crit. Rev. Microbiol., 1, 73 (1971).

    Article  CAS  Google Scholar 

  3. Lowy, J., and Spencer, M., Symp. Soc. exp. Biol., 22, 215 (1968).

    CAS  PubMed  Google Scholar 

  4. Stocker, B. A. D., Symp. Soc. gen. Microbiol., 6, 19 (1956).

    Google Scholar 

  5. Doetsch, R. N., J. theor. Biol., 11, 411 (1966).

    Article  CAS  Google Scholar 

  6. Doetsch, R. N., and Hageage, G. J., Biol. Rev., 43, 317 (1968).

    Article  CAS  Google Scholar 

  7. Vaituzis, Z., and Doetsch, R. N., J. Bact., 100, 512 (1969).

    CAS  PubMed  Google Scholar 

  8. Mussill, M., and Jarosch, R., Protoplasma, 75, 465 (1972).

    Article  CAS  Google Scholar 

  9. Chwang, A. T., Wu, T. Y., and Winet, H., Biophys. J., 12, 1549 (1972).

    Article  ADS  CAS  Google Scholar 

  10. Murray, R. G. E., and Birch-Andersen, A., Can. J. Microbiol., 9, 393 (1963).

    Article  Google Scholar 

  11. DePamphilis, M. L., and Adler, J., J. Bact., 105, 384 (1971).

    CAS  PubMed  Google Scholar 

  12. DePamphilis, M. L., and Adler, J., J. Bact., 105, 396 (1971).

    CAS  PubMed  Google Scholar 

  13. Coakley, C. J., and Holwill, M. E. J., J. theor. Biol., 35, 525 (1972).

    Article  CAS  Google Scholar 

  14. Huxley, A. F., and Simmons, R. M., Nature, 233, 533 (1971).

    Article  ADS  CAS  Google Scholar 

  15. Huxley, H. E., Science, N. Y., 164, 1356 (1969).

    Article  ADS  CAS  Google Scholar 

  16. DePamphilis, M. L., and Adler, J., J. Bact., 105, 376 (1971).

    CAS  PubMed  Google Scholar 

  17. Klug, A., Symp. Int. Soc. Cell Biol., 6, 1 (1967).

    Google Scholar 

  18. Taylor, G., Proc. R. Soc., A 211, 225 (1952).

    ADS  Google Scholar 

  19. Chwang, A. T., and Wu, T. Y., Proc. R. Soc., B 178, 327 (1971).

    ADS  CAS  Google Scholar 

  20. Schreiner, K. E., Biomechanics, 4, 73 (1971).

    Article  CAS  Google Scholar 

  21. Greenbury, C. L., and Moore, D. H., Immunology, 11, 617 (1966).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. DiPierro, J. M., and Doetsch, R. N., Can. J. Microbiol., 14, 487 (1968).

    Article  CAS  Google Scholar 

  23. Meynell, E. W., J. gen. Microbiol., 25, 253 (1961).

    Article  CAS  Google Scholar 

  24. Raimondo, L. M., Lundh, N. P., and Martinez, R. J., J. Virol., 2, 256 (1968).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Schade, S. Z., Adler, J., and Ris, H., J. Virol., 1, 599 (1967).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Iino, T., and Mitani, M., J. gen. Microbiol., 49, 81 (1967).

    Article  CAS  Google Scholar 

  27. O'Brien, E. J., and Bennett, P. M., J. molec. Biol., 70, 133 (1972).

    Article  CAS  Google Scholar 

  28. Martinez, R. J., Ichiki, A. T., Lundh, N. P., and Tronick, S. R., J. molec. Biol., 34, 559 (1968).

    Article  CAS  Google Scholar 

  29. Shoesmith, J. G., J. gen. Microbiol. 22, 528 (1960).

    Article  Google Scholar 

  30. Berg, H. C., and Brown, D. A., Nature, 239, 500 (1972).

    Article  ADS  CAS  Google Scholar 

  31. Taylor, G., Proc. R. Soc., A 209, 447 (1951).

    ADS  Google Scholar 

  32. Silverman, M. R., and Simon, M. I., J. Bact., 112, 986 (1972).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

BERG, H., ANDERSON, R. Bacteria Swim by Rotating their Flagellar Filaments. Nature 245, 380–382 (1973). https://doi.org/10.1038/245380a0

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1038/245380a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing