Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Timing of cochlear feedback: spatial and temporal representation of a tone across the basilar membrane

An Erratum to this article was published on 01 September 1999

Abstract

Electromotile outer hair cell (OHC) feedback provides the sensitivity and sharp frequency tuning of the cochlea. Basilar membrane displacements in response to characteristic frequency (CF) tones were measured with an interferometer at up to 15 locations across the basilar membrane width in the basal turn of the guinea pig cochlea. For CF tones, basilar membrane vibrations were largest beneath the OHCs; these phase-led vibrations beneath outer pillar cells and adjacent to the spiral ligament by ~90°. Post mortem, responses measured beneath the OHCs were reduced by up to 65 dB, and the basilar membrane moved with similar phase across its entire width. We suggest OHCs amplify basilar membrane responses to CF tones when the basilar membrane moves at maximum velocity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Cochlear structure and function.
Figure 2: Relationship of sound pressure level to basilar membrane displacement and frequency.
Figure 3: Preparation 1.
Figure 4: Preparation 2.
Figure 5: Preparation 3.
Figure 6: Basilar membrane displacement as a function of phase and position.

Similar content being viewed by others

Notes

  1. Editorial correction The printed version of this article contained an error introduced during editing. The first sentence of the results section should read "Tone-evoked basilar membrane displacements were measured with a laser diode interferometer focused to a 5 μm spot with a depth of field of less than 2.3 μ m, at up to 15 different locations across the width of the basilar membrane (Fig. 1c)." We regret the error.

References

  1. von Békésy, G. in Experiments in Hearing 403–634 (McGraw-Hill, New York, 1960).

    Google Scholar 

  2. Hudspeth, A. J. How the ear's works work. Nature 341, 397 –404 (1989).

    Article  CAS  Google Scholar 

  3. Sellick, P. M., Patuzzi, R. & Johnstone, B. M. Measurement of basilar membrane motion in the guinea pig using the Mössbauer technique. J. Acoust. Soc. Am. 72, 131–141 (1982).

    Article  CAS  Google Scholar 

  4. Robles, L., Ruggero, M. A. & Rich, N. C. Basilar-membrane mechanics at the base of the chinchilla cochlea. 1. Input-output functions, tuning curves, and response phases. J. Acoust. Soc. Am. 80, 1364–1374 (1986).

    Article  CAS  Google Scholar 

  5. Nuttall, A. L., Dolan, D. F. & Avinash, G. Laser Doppler velocitometry of basilar membrane vibration. Hear. Res. 51, 203–214 (1991).

    Article  CAS  Google Scholar 

  6. Cooper, N. P. & Rhode, W. S. Basilar-membrane mechanics in the hook region of cat and guinea-pig cochleae—sharp tuning and nonlinearity in the absence of base-line position shifts. Hear. Res. 63, 163–190 (1992).

    Article  CAS  Google Scholar 

  7. Brownell, W. E., Bader, C. R., Bertrand, D. & de Ribaupierre, Y. Evoked mechanical responses of isolated cochlear outer hair-cells. Science 227, 194–196 (1985).

    Article  CAS  Google Scholar 

  8. Ashmore, J. F. A fast motile response in guinea-pig outer hair-cells - the cellular basis of the cochlear amplifier. J. Physiol. (Lond.) 388, 323–347 (1987).

    Article  CAS  Google Scholar 

  9. Dallos, P., Evans, B. N. & Hallworth, R. Nature of the motor element in electrokinetic shape changes of cochlear outer hair-cells. Nature 350, 155–157 (1991).

    Article  CAS  Google Scholar 

  10. Santos-Sacchi, J. On the frequency limit and phase of outer hair cell motility: Effects of the membrane filter. J. Neurosci. 12, 1906– 1916 (1992).

    Article  CAS  Google Scholar 

  11. Ruggero, M. A. & Rich, N. C. Furosemide alters organ of Corti mechanics - evidence for feedback of outer hair-cells upon the basilar-membrane. J. Neurosci. 11, 1057 –1067 (1991).

    Article  CAS  Google Scholar 

  12. Murugasu, E. & Russell, I. J. The effect of efferent stimulation on basilar membrane displacement in the basal turn of the guinea pig cochlea. J. Neurosci. 16, 325–332 (1996).

    Article  CAS  Google Scholar 

  13. Kolston, P. J. A faster transduction mechanism for the cochlear amplifier? Trends Neurosci. 18, 427–429 ( 1995).

    Article  CAS  Google Scholar 

  14. Russell, I. J., Kössl, M. & Murugasu, E. in Advances in Hearing Research (eds. Manley, G. A., Klump, G. M., Köppl, C., Fastl, H., Oeckinghaus, H.) 125 –135 (World Scientific, Singapore, 1995).

    Google Scholar 

  15. Santos-Sacchi, J. & Dilger, J. P. Whole cell currents and mechanical responses of isolated outer hair cells. Hear. Res. 35, 143–150 ( 1988).

    Article  CAS  Google Scholar 

  16. Allen, J. B. & Fahey, P. F. Using acoustic distortion products to measure the cochlear amplifier gain on the BM. J. Acoust. Soc. Am. 92, 178–188 ( 1993).

    Article  Google Scholar 

  17. Mills, D. M. & Rubel E. W. Development of the base of the cochlea: place code shift in the gerbil. Hear. Res. 122, 82–96 (1998).

    Article  CAS  Google Scholar 

  18. Cody, A. R. Acoustic lesions in the mammalian cochlea: Implications for the spatial distribution of the 'active process'. Hear. Res. 62, 166–172 (1992).

    Article  CAS  Google Scholar 

  19. Russell, I. J. & Nilsen, K. E. The location of the cochlear amplifier: Spatial representation of a single tone on the guinea pig basilar membrane. Proc. Natl. Acad. Sci. USA 94, 2660–2664 (1997).

    Article  CAS  Google Scholar 

  20. Davis, H. Transmission and transduction in the cochlea. Laryngoscope 68, 359–382 (1958).

    Article  CAS  Google Scholar 

  21. Mammano, F. & Ashmore, J. F. Reverse transduction measured in the isolated cochlea by laser Michelson interferometry. Nature 365, 838–841 ( 1993).

    Article  CAS  Google Scholar 

  22. Mammano, F., Kros, C. J. & Ashmore, J. F. Patch clamped responses from outer hair cells in the intact adult organ of Corti. Pflügers Arch. 430, 745–750 (1995).

    Article  CAS  Google Scholar 

  23. Geisler, C. D. & Sang, C. N. A cochlear model using feedforward outer-hair-cell forces. Hear. Res. 86, 132–146 (1995).

    Article  CAS  Google Scholar 

  24. Markin, V. S. & Hudspeth, A. J. Modelling the active process of the cochlea - phase-relations, amplification, and spontaneous oscillation. Biophys. J. 69, 138–147 (1995).

    Article  CAS  Google Scholar 

  25. Cooper, N. P. & Rhode, W. S. Basilar membrane tonotopicity in the hook region of the cat cochlea. Hear. Res. 63, 191–196 (1992).

    Article  CAS  Google Scholar 

  26. Nuttall, A. L. & Dolan, D. F. Steady-state sinusoidal velocity responses of the basilar membrane in guinea pig. J. Acoust. Soc. Am. 99, 1556–1565 (1996).

    Article  CAS  Google Scholar 

  27. Ruggero, M. A., Rich, N. C., Recio, A., Narayan, S. S. & Robles, L. Basilar membrane responses to tones at the base of the chinchilla cochlea. J. Acoust. Soc. Am. 101, 2151–2163 (1997).

    Article  CAS  Google Scholar 

  28. Allen, J. B. in Diversity in Auditory Mechanics (eds. Lewis, E. R. et al. ) 167–175 (World Scientific, Singapore, 1996).

    Google Scholar 

  29. Russell, I. J. & Schauz, C. Salycilate ototoxicity: effects on the stiffness and electromotility of outer hair cells isolated from the guinea pig cochlea. Aud. Neurosci. 1, 309–319 (1995).

    CAS  Google Scholar 

  30. Murugasu, E. & Russell, I. J. Salycilate ototoxicity: the effects on basilar membrane displacement, cochlear microphonics, and neural responses in the basal turn of the guinea pig cochlea. Aud. Neurosci. 1, 139–150 (1995).

    CAS  Google Scholar 

  31. Russell, I. J. & Sellick, P. M. Low-frequency characteristics of intracellularly recorded receptor-potentials of hair cells in the guinea pig cochlea hair cells. J. Physiol. (Lond.) 338, 179–206 (1983).

    Article  CAS  Google Scholar 

  32. Hallworth, R. Passive compliance and active force generation in the guinea pig outer hair cell. J. Neurophysiol. 74, 2319– 2328 (1995).

    Article  CAS  Google Scholar 

  33. Frank, G., Hemmert, W. & Gummer, A. W. Limiting dynamics of high-frequency electromechanical transduction of outer hair cells. Proc. Natl. Acad. Sci. USA 96, 4420–4425 (1999).

    Article  CAS  Google Scholar 

  34. Russell, I. J. & Murugasu, E. Medial efferent inhibition of basilar membrane displacement is greatest at moderate to high levels for near CF tones. J. Acoust. Soc. Am. 102, 1734–1738 (1997).

    Article  CAS  Google Scholar 

  35. Dallos, P. & Evans, B. N. High-frequency motility of outer hair cells and the cochlear amplifier. Science 267, 2006–2009 (1995).

    Article  CAS  Google Scholar 

  36. Allen, J. B. Cochlear micromechanics—A physical model of transduction. J. Acoust. Soc. Am. 68, 1660–1670 (1980).

    Article  CAS  Google Scholar 

  37. Brown, A. M., Gaskill, S. A. & Williams, D. M. Mechanical filtering of sound in the inner ear. Proc. R. Soc. Lond. B Biol. Sci. 250, 29– 34 (1992).

    Article  CAS  Google Scholar 

  38. Gummer, A. W., Hemmert, W. & Zenner, H. P. Resonant tectorial membrane motion in the inner ear: its crucial role in frequency tuning. Proc. Natl. Acad. Sci. USA 93, 8727–8732 ( 1996).

    Article  CAS  Google Scholar 

  39. Kolston, P. J. Comparing in vitro, in situ, and in vivo experimental data in a three-dimensional model of mammalian cochlear mechanics. Proc. Natl. Acad. Sci. USA 96, 3676– 3681 (1999).

    Article  CAS  Google Scholar 

  40. Tolomeo, J. A. & Holley, M. C. Mechanics of microtubule bundles in pillar cells from the inner ear. Biophys. J. 73, 2241–2247( 1997).

    Article  CAS  Google Scholar 

  41. Mogensen, M. M. et al. Keratin filament deployment and cytoskeletal networking in a sensory epithelium that vibrates during hearing. Cell Motil. Cytoskeleton 41, 138–153 (1998).

    Article  CAS  Google Scholar 

  42. Greenwood, D. D. A cochlear frequency-position function for several species—29 years later. J. Acoust. Soc. Am. 87, 2592– 2605 (1990).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank James Hartley for designing and constructing electronic apparatus, Richard Goodyear for help and advice with histology and Thomas Collett, Manfred Kössl, Andrei Lukashkin and Guy Richardson for comments on early drafts of the manuscript. This research was supported by the MRC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. J. Russell.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nilsen, K., Russell, I. Timing of cochlear feedback: spatial and temporal representation of a tone across the basilar membrane. Nat Neurosci 2, 642–648 (1999). https://doi.org/10.1038/10197

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/10197

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing