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Abstract 

Reactions of neural, psychological, and social systems are rarely, if ever, independent of 

previous inputs and states. The potential for serial order carryover effects from one condition to 

the next in a sequence of experimental trials makes counterbalancing of condition order an 

essential part of experimental design. Here, a method is proposed for generating counterbalanced 

sequences for repeated-measures designs including those with multiple observations of each 

condition on one participant and self-adjacencies of conditions. Condition ordering is reframed 

as a graph theory problem. Experimental conditions are represented as vertices in a graph and 

directed edges between them represent temporal relationships between conditions. A 

counterbalanced trial order results from traversing an Euler circuit through such a graph in which 

each edge is traversed exactly once. This method can be generalized to counterbalance for 

higher-order serial order carryover effects as well as to create intentional serial order biases. 

Modern graph theory provides tools for finding other types of paths through such graph 

representations, providing a tool for generating experimental condition sequences with useful 

properties. 
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Neural systems, human and otherwise, are characterized by a continuous stream of 

behavior in which the current state is dependent not only on current inputs but also on previous 

states and inputs. The history of experimental psychology is replete with examples. The speed 

with which a participant names a picture can depend on the preceding picture (e.g, Bartram, 

1974; Biederman & Cooper, 1991a; 1991b; Goldstein, 1958), a behavioral effect known as 

priming. Prolonged viewing of a visual stimulus can cause adaptation to its color, orientation, or 

other features and lead to subsequent aftereffects (e.g., Blakemore & Campbell, 1969; 

Blakemore & Nachmias, 1971; Bradley, Switkes, & De Valois, 1988). The hemodynamic 

response (during functional magnetic resonance imaging, FMRI) to a stimulus is attenuated 

when it has been preceded by a similar stimulus (Grill-Spector & Malach, 2001; Haushofer, 

Baker, Livingstone, & Kanwisher, 2008; Henson & Rugg, 2003; Vuilleumier, Henson, Driver, & 

Dolan, 2002). The brain’s response to transcranial magnetic stimulation (TMS) also depends on 

previous visual stimulation (e.g., Pasley, Allen, & Freeman, 2009; Silvanto, Muggleton, & 

Walsh, 2008). Similar situations can arise in questionnaire assessments used in social psychology 

and clinical contexts. For instance, survey results can vary depending on the order of the 

questions (e.g., Faulkner & Cogan, 1990; Gama, Correia, & Lunet, 2009) and election results can 

be affected by which candidates precede which on the ballot (e.g. Miller & Krosnick, 1998). All 

of these are examples of serial order carryover effects, i.e. the response in one experimental trial 

in a sequence depends on the preceding trial(s) in that sequence. Because learning and adaptation 

are central to the functioning of living things, carryover effects are ubiquitous within all domains 

of psychology and are a standard topic covered in courses and textbooks on experimental design 

(e.g. see Elmes, Kantowitz, & Roediger, 1999). 
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  In some of the examples given above, serial order carryover effects have been harnessed 

to give insights into the functioning of neural systems. For instance, FMRI adaptation has been 

used as a measure of category specificity of brain regions (e.g., Fang, Boyaci, & Kersten, 2009; 

Gilaie-Dotan, Gelbard-Sagiv, & Malach, 2010) and priming has been widely used to test 

cognitive models (e.g., Baylis & Cale, 2001; Esterman et al., 2002; Làdavas, Paladini, & Cubelli, 

1993). However, serial order carryover effects from one trial to the next can also represent a 

significant nuisance effect and contribute variance to measurements of effects of interest (e.g., 

Finney & Outhwaite, 1955; Williams, 1949; Williams, 1952). For instance, serial order carryover 

effects pose a particular problem in studies concerning taste of food and wine and this issue has 

received significant attention in that domain (e.g., Duriera, Monoda, & Bruetschy, 1997; Muir & 

Hunter, 1992; Schlich, 1993; Wakeling & MacFie, 1995). Such carryover effects may account 

for the common practice of cleansing the palate between courses in fine dining or wine tastings. 

In repeated measures experimental designs (also commonly known as within-subjects or cross-

over designs), in which multiple experimental conditions are presented to each participant in a 

serial order, serial order carryover effects can be particularly problematic. At worst, if serial 

order carryover effects exist within a repeated measures design and are not effectively 

counterbalanced, then they could become confounded with the experimental effects. For 

instance, Tables 1 and 2 show different sequences of conditions A and B with 10 measures of 

each condition presented to a given participant. The score in condition A depends on the 

preceding trial. It is 100 when preceded by another trial of condition A but it is 10 when it is 

preceded by condition B. Table 1 shows an example sequence of trials in which serial order 

carryover effects from the immediately preceding trial have been completely counterbalanced, 

i.e. a serially balanced sequence in which each condition is preceded by the other conditions 
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(including itself) equally often. Notice that there is a small difference between the means for 

conditions A and B as should be the case if serial order effects are to be ignored. In Table 2 

however, condition A is preceded more often by itself than by condition B. In this case, because 

the score for A is larger when preceded by itself than when preceded by B, the average for 

condition A is inflated by the serial order carryover effect. Unless condition A is preceded 

equally often by itself and condition B, the direct effect of A will be confounded with the effect 

of condition order. Serial order effects could be separated from experimental effects post hoc, of 

course. But if care is not taken to counterbalance against them or assess the effects of serial order 

afterwards, carryover effects can potentially affect the internal validity of the experiment. In 

addition to avoiding confounding effects, serially balanced sequences may have applications in 

domains such as optimal designs in event-related FMRI experiments (Aguirre, 2007; Buracas & 

Boynton, 2002). In these domains, such sequences have been used to increase the efficiency of 

estimating the hemodynamic response in FMRI and to increase sensitivity in FMRI adaptation 

experiments (fMRIa). fMRIa assumes that a population of neurons that responds to a particular 

feature will adapt (i.e. respond with lower amplitude) to repeated presentations of that feature 

(Henson & Rugg, 2003; Krekelberg, Boynton, & van Wezel, 2006). For instance, a population of 

neurons that responds selectively based on facial identity responds with lower amplitude to a 

face stimulus that was preceded by the same picture than to a face stimulus preceded by a 

different identity picture (Grill-Spector & Malach, 2001). This adaptation response is useful, for 

example, in identifying the feature tuning characteristics of neurons. The fMRIa method relies 

critically on carefully characterizing carryover effects and some have suggested that this is best 

done with serially balanced sequences (Aguirre, 2007; Buracas & Boynton, 2002). 
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First-order serial order carryover effects, i.e. those which arise from the immediately 

preceding trial in a sequence, are the most obvious. However, serial order carryover effects can 

occur from any number of preceding trials. These higher-order effects can be termed n
th

-order 

serial order carryover effects where n corresponds to the number of preceding trials considered. 

For instance, 2
nd

-order effects would include carryover from the preceding two trials. For each 

occurrence of conditions A and B in Tables 1 and 2, there are four possible preceding pairs: AA, 

AB, BA, and BB. Balancing of second order effects in this experiment would require that the 8 

possible triplets (AAA, ABA, BAA, BBA, AAB, ABB, BAB, BBB) all occur equally often in 

the sequence. Higher-order effects can become combinatorially intractable quite quickly but they 

could theoretically have effects and thus are worth consideration in cases where carryover effects 

are known to be strong (see example in n
th

-order counterbalancing section below).  

 

Counterbalancing Techniques 

 Experiments in cognitive psychology, psychophysics, and cognitive neuroscience 

(including functional imaging experiments) commonly consist of a sequence of short trials. Each 

trial represents a particular condition and each condition is commonly repeated many times on 

different trials. After the experiment, a score is computed for each condition by computing a 

statistic (e.g., mean or median) across all of the trials within a condition for that participant. The 

procedure is then repeated (usually with a different sequence) in other participants. Inferential 

statistics are based on the pattern of scores averaged across all participants.  

 Experimenters routinely vary the order of conditions within these sequences of 

experimental trials such that they are not, on average, confounded with condition effects, a 
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practice called counterbalancing. The most widely used counterbalancing methods are probably 

randomization and Latin square designs (e.g. see Elmes et al., 1999).  

Randomization of trial order is relatively easy to implement and can be done 

independently for each participant. The assumption is that any effects of position in the sequence 

as well as effects due to serial order carryover between adjacent trials will be balanced, on 

average, across the different randomizations used for different participants in the experiment. 

However, the random order for any given participant is not guaranteed to be balanced. In fact, 

first-order serial order carryover effects within a given sequence are guaranteed to be 

unbalanced unless the number of trials in the sequence equals ac
2
 +1 where c conditions appear 

equally often in the sequence (except one additional instance of one condition) and a is an 

integer number of repetitions of each ordered pair in the sequence (which can be used to vary the 

total number of measurements per condition). The effectiveness of randomization at 

counterbalancing serial order carryover effects can be assessed post hoc, of course, but it may be 

difficult or impossible to isolate and remove carryover effects if they are present. Randomization 

is flexible, however, and can be used to generate sequences of arbitrary length with any number 

of repetitions of each condition. 

 Balanced Latin square designs (Bradley, 1958; Edwards, 1951; Elmes et al., 1999) can be 

used to create a set of sequences which when used together in an experiment (across blocks or 

participants) will ensure that first order serial carryover effects are balanced although this 

excludes condition self-adjacencies (e.g. condition A followed by another instance of A). Table 3 

shows an example of a balanced Latin square in which there are four conditions. Each row of the 

Latin square corresponds to the sequence of conditions seen by one participant (or during one 

block). The sequence for any given participant (or block) is not serially ba1anced. But across all 
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of the participants (or blocks), each condition appears in each serial position equally often and is 

preceded by every other condition equally often (although not by itself). However, balanced 

Latin squares do not apply naturally to experiments in which each condition is measured multiple 

times for each participant. It may be possible to overcome this situation by instead treating rows 

of the Latin square as sequential blocks of trials to be tested on one participant, however. Also, 

as mentioned above, balanced Latin squares also do not include any instances of a given 

condition following itself.  

 There are methods for creating serially balanced sequences (Finney & Outhwaite, 1955; 

Nonyane & Theobald, 2007; Sampford, 1957; Williams, 1949; Williams, 1952) which also 

include multiple replications of each condition for a single participant. An example of a type 1, 

index 1 (Finney & Outhwaite, 1955, 1956) sequence is, 1 123456 613254 415263 351462 

243165 536421, where the index refers to the number of repetitions of each ordered pair in the 

sequence. Type 2 sequences, which do not include instances of condition self-adjacencies, are 

also possible. Notice that these sequences have a block structure to them with the entire set of 

conditions, n, repeating every n trials. These sequences thus balance for serial carryover effects 

as well as approximate position in the sequence, ensuring that each condition appears regularly 

throughout the entire length of the sequence. This could be a useful property but it does mean 

that condition self-adjacencies (e.g., 1 1, 6 6) are fixed to appear only at certain positions, e.g. 

every six trials in the example above. If condition self-adjacencies are salient events then this 

could be problematic. Another limitation of these sequences is that, unfortunately, they do not 

exist for designs with certain numbers of conditions although this may only be the case for 3, 4, 

and 5 conditions.  
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M-sequences (Golomb, 1967) have recently been used to generate trial sequences for 

event-related FMRI (Buracas & Boynton, 2002; Fize et al., 2000), electroencephalography 

(Baseler, Sutter, Klein, & Carney, 1994; Fortune, Demirel, & Bui, 2009; Li, Bin, Hong, & Gao, 

2010), and neurophysiology paradigms (Bernadette & Victor, 1994). These sequences have 

shown near optimal efficiency in estimating the hemodynamic response in FMRI experiments 

(Buracas & Boynton, 2002), for instance. M-sequences allow higher-order counterbalancing and 

have no predictable structure (Aguirre, 2007). However, m-sequences are only available for 

designs in which the number of conditions, c, is equal to the integer power of prime numbers 

which in practice are 2, 3, or 5. This means that there are m-sequences for c = 2, 3 ,4, 5, 8, 9, 16, 

25, 27, and so on, but not for 6, 7, 10, 11, etc. More importantly, though, m-sequences are only 

approximately balanced for serial order carryover effects.  

This paper presents a method for generating trial and block orders that are 

counterbalanced for serial order carryover effects. In other words, each condition is preceded 

exactly equally often by every experimental condition including itself. Importantly, unlike some 

of the previous methods described above, this method is appropriate for experimental designs 

involving any number of conditions. Furthermore it can deal with multiple measurements of each 

condition within a single sequence. The method naturally adapts to allow counterbalancing for 

higher order serial carryover effects. The proposed framework also provides a general basis for 

generating other types of sequences that may have useful properties. 

 

Background: Graph Theory 

The problem of generating serially balanced sequences can be reformulated in terms of 

graph theory, the study of mathematical structures used to model pair-wise relations between 
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objects (for an introduction see West, 2001). Graphs are comprised of two types of components, 

vertices and edges. Vertices can represent anything in the world, even abstract notions, and edges 

indicate relationships between them. For example, a graph can be used to represent flights 

between airports. In Figure 1A, each airport is represented by a vertex in the graph and non-stop 

flights between the airports are represented by edges between them. The relationship between 

two vertices can be given a quantitative dimension by assigning the corresponding edge a weight 

which, for example, may correspond to the flight duration between airports (as in Figure 1A) or 

the price of a flight between them. Edges can also have directionality. In the directed-graph 

(digraph) shown in Figure 1A, an edge can only be traversed in the indicated direction. Different 

directions of travel between two airports are shown as separate edges with different weights 

because the flight duration is not symmetric. Flying one direction may be slower than flying the 

opposite direction due to headwinds and tailwinds, for instance. With these simple components 

graphs can be used to represent a wide array of systems. 

The utility of graph representations derives primarily from the large body of knowledge 

about their mathematical properties, allowing one to reach useful conclusions about relationships 

between vertices of the graph and, therefore, the represented items. For instance, determining the 

shortest trip from London to Sydney in Figure 1A requires finding the path between the two 

airports that has the smallest weighted sum of the traversed edges. In this case, there are only two 

paths through the graph from London to Sydney, and one can simply compute, by hand, that the 

shortest path from London to Sydney is via Hong Kong. For more complex graphs with many 

vertices, graph theory provides algorithms for computing various types of paths through graphs 

and thus can solve a large number of complex optimization problems in the represented domain. 

Graph representations have been used previously within the domain of experimental design (see 
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Street & Street, 1987), for instance, to estimate the efficiency of block designs (Paterson, 1983) 

and to generate tone sequences in which all possible sequential four-tone combinations of nine 

tone frequencies occur only once (Brimijoin & O’Neill, 2010). 

 

First-Order Counterbalancing 

 Generating serially balanced sequences for first-order carryover effects can be given a 

straightforward graph representation. Each condition in the experiment can be represented by a 

separate vertex in the graph. Because we are interested in the temporal relationships between 

different conditions (i.e., when in time they are presented), directed edges between vertices will 

represent the relative timing of different conditions. For instance, traversing a directed edge from 

the condition A vertex to the condition B vertex in Figure 1B indicates that condition A directly 

precedes condition B. The ultimate goal is to construct an order of conditions in which each 

condition is preceded by every condition (including itself) equally often. This goal can be 

realized through the connectivity of the graph by connecting, in both directions, each vertex to 

every other vertex in the graph, including a recurrent connection with itself. An example of such 

a fully-connected, directed graph for four conditions is shown in Figure 1B. This graph 

represents a system in which the temporal relationships between conditions are perfectly 

counterbalanced. 

 To generate a serially balanced sequence from a graph like that in Figure 1B one must 

find a continuous path through the graph in which each edge is traversed exactly once, thereby 

representing each temporal relationship equally often in the resulting condition order. Such paths 

through a graph are called Euler paths (or Euler trails) after the mathematician Leonhard Euler 

(Biggs, Lloyd, & Wilson, 1986; Euler, 1736) who first described them. The path is called an 
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Euler circuit if it starts and stops at the same vertex. Euler circuits exist in a directed graph (such 

as the one that we have constructed in Figure 1B) if and only if every vertex has equal in and out 

degree (West, 2001). In other words, the number of edges leaving and entering each vertex must 

be equal. This criterion will always be met for graphs representing our serially balanced 

condition orders because for every edge out to another vertex, there is always one, and only one, 

coming back from that vertex and vice versa. A well-known algorithm for finding Euler circuits 

is Fleury’s algorithm (Fleury, 1883; McHugh, 1989). However, several more efficient and easily-

programmable algorithms are available. Hierholzer’s Algorithm (Fleischner, 1991; Hierholzer, 

1873; McHugh, 1989) is shown in Table 4 and described in the example given below. It is easily 

understandable and efficient. A different algorithm (Kandel, Matias, Unger, & Winkler, 1996) 

has been proven to draw uniformly (i.e. with equal probability) from the set of all possible Euler 

circuits through a graph. Because of this, Kandel’s algorithm is preferable for generating 

sequences in most situations. It is possible that Hierholzer’s algorithm also draws uniformly from 

the set of all circuits but, to my knowledge, this has not been proven. Kandel’s algorithm is 

described in Table 5 and implemented in the computer programs provided in the Supplemental 

Materials.  

 To illustrate how Euler paths can be constructed, Figure 2 shows an example of applying 

Hierholzer’s Algorithm to a graph with 3 vertices. First, in step 1, a starting vertex, A in this 

case, is randomly chosen. Steps 2-3 are then repeated several times. We randomly choose an 

edge leading out of vertex A, from A to A (along the cyclical edge to itself) in this case (edge 

labeled with 1 in the graph for Steps 2-3 in Figure 2). We mark this edge as traversed and then 

choose randomly another edge out of vertex A. This time we traverse the edge to vertex B (edge 

labeled as 2) and mark this edge as traversed so that it cannot be used again. Following the same 
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procedure we go back to A, then to C, and finally back to A. At this point, there are no further 

edges that leave vertex A. This means that we have completed a trail, T. T comprises the 

following sequence: A A B A C A. There are still edges left in the graph and therefore according 

to step 3 we continue on. We now move to step 4 in which we choose a new starting vertex 

which must have been visited in trail T created above. All of the vertices had been visited in T so 

we randomly choose vertex B. We then follow steps 5-6 to randomly traverse an edge out of B 

toward vertex C (edge labeled 1 in graph of Steps 5-6). We continue this process which takes us 

again to C (along the recursive circular edge), and then back to B and finishes with the cycle that 

B has with itself. There are no more edges to exit from vertex B which means we have finished 

this trail. This new trail, T’, is B C C B B. Following Step 7 we now replace an instance of vertex 

B in T with trail T’. This results in the new serially balanced sequence T: A A B C C B B A C A. 

This algorithm was also used to generate the sequence that is shown in Table 1. The alternative 

Kandel algorithm is described in Table 5. 

 For a given number of conditions, there are multiple different trial sequences that can be 

obtained using the algorithms described above. For an Eulerian directed graph (as is used here to 

represent the conditions and their temporal relationships) the total number of Eulerian circuits 

through that graph can be calculated according to the BEST theorem (Aardenne-Ehrenfest & de 

Bruijn, 1951; Creed & Cryan, 2010; Tutte & Smith, 1941). Using this result, the total number of 

sequences can be calculated as described in detail in the Appendix. For c = 2, there are just 4 

possible sequences. This number grows very quickly as the number of conditions, c, increases; 

216 (c=3), 331776 (c=4), 2.48 x 10
10

 (c=5), 1.39 x 10
17

 (c=6), 8.26 x 10
25

 (c=7), and so on. For 

many experiments, the number of possible sequences is very large.  
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Given the large number of possible sequences for most experiments, an important 

question is whether each generated sequence is equally useful in practice. Answering this 

question will, of course, depend on factors particular to each experiment. For instance, some 

experiments may require careful balance of the positions of conditions in the whole sequence, 

e.g. making sure that condition 1 appears just as often near the beginning of the sequence as it 

does near the end. For example, this is important for avoiding a confounding influence of 

practice effects that may arise over the course of the experiment (e.g. Pashler & Baylis, 1991a; 

1991b). Methods have been proposed for assessing the balance of conditions across whole 

sequence (e.g. Sohn, Bricker, Simon, & Hsieh, 1997). If balance of condition positions over the 

entire sequence is important, then such methods can be used to select amongst the 

counterbalanced sequences generated by the algorithm described in this paper. Kandel et al. 

(1996) proved that their algorithm (which is the one used to generate sequences in the programs 

provided in the Supplemental Materials) generates sequences which are selected uniformly from 

the set of all Euler paths through a graph. Thus, a representative sample of sequences can be 

created simply by generating a large number (but substantially smaller than the total number 

available) of sequences. From this sample, the most suitable can be selected using the Sohn et al. 

(1997) criteria. Randomness of the trial sequence is another potential criterion by which to select 

sequences. This could be done in a similar sample-then-select method by selecting sequences on 

the basis of their conditional entropy, a measure that has been used to assess sequence 

randomness (e.g. Liu, 2004; Liu & Frank, 2004). Although the above criteria are relevant for 

some experiments, different criteria may be relevant for other types of experiments. It is 

impossible to consider all of these here. Other criteria will need to be determined by the 

experimenter based on the specific details of their experimental design. Regardless of the details, 
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though, it should be straightforward to generate a representative sample of sequences (using the 

programs provided here) and then select from that sample using the desired criteria.  

 There are a few important characteristics of and constraints on trial orders generated with 

the method proposed here. First, each condition is represented equally often. Thus, experiments 

that involve unequal weighting of conditions cannot be counterbalanced in this way. It may be 

possible to construct graphs that represent such designs by adjusting the number of vertices and 

edges. However, any changes may render the graph non-Eulerian and thus no path through it will 

traverse each edge exactly once. Care will need to be taken to ensure that the graph has edges 

corresponding to the desired carryover balance and that a path can be found through the graph 

that results in the desired properties. In order to maintain serial order carryover counterbalancing, 

additional trials can only be added in multiples of c
2
 such that the total number of trials is ac

2
+1 

where a is the number of repetitions of each ordered pair of conditions and c is the number of 

conditions. In terms of graph structure, additional trials can be represented by inserting 

additional copies of every directed edge in the graph. For instance, to double the number of 

trials, insert exactly one more copy of each edge. The resulting graph will still be Eulerian as 

long as the in/out degree of each vertex remains equal. Finally, Euler circuits always start and 

end with the same condition and that condition is repeated once more than all of the other 

conditions. This extra trial in one condition should likely be excluded from analysis because it 

represents the only trial that is not counterbalanced for first-order carryover (i.e. it had no trial at 

all before it). One may worry that this extra trial could amount to extra practice with its 

condition. With large numbers of repeated measures, however, this effect should be minimal. If 

this issue is a potential source of confound, then the condition with the extra trial could be 

counterbalanced over participants.  
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n
th

-Order Carryover Effects 

 The algorithm described above counterbalances for carryover effects from only the 

immediately preceding condition or trial (first-order carryover effects). However, carryover 

effects may also arise from conditions presented further back in time. For instance, performance 

on a trial t may differ depending on which conditions were presented on trials t-1 and t-2, i.e. a 

2
nd

-order effect. More generally, any effect of the preceding sequence of n trials is an nth-order 

effect. One example of higher order serial carryover effects occurs in absolute identification 

experiments (see recent reviews and discussion in Brown, Marley, & Lacouture, 2007; Matthews 

& Stewart, 2009; Stewart, 2007; Stewart, Brown, & Chater, 2005). In fact, Stewart et al. (2005) 

claimed that they know of no absolute identification experiment in which strong sequence effects 

did not appear. In these experiments a participant is typically presented with a sequence of items 

that vary along some dimension. For instance, various tones may be presented that vary in 

loudness with twenty different levels (e.g. Holland & Lockhead, 1968). The participant’s task on 

each trial in this case would be to label the loudness of the tone with a value of 1 to 20. The 

participant’s response on the present trial tends to be assimilated to the loudness of the stimulus 

on the immediately preceding trial (Garner, 1953; Holland & Lockhead, 1968; Lacouture, 1997; 

Luce, Nosofsky, Green, & Smith, 1982; Staddon, King, & Lockhead, 1980; Ward & Lockhead, 

1970, 1971). That is, the value reported on trial t tends to be closer to the loudness of the 

stimulus on trial t-1 than it actually was. In contrast, stimuli on earlier trials (e.g. t-2, t-3, t-4, 

etc.) exert an opposite contrast effect on judgments of the current stimulus on trial t. That is, 

participants rate the current stimulus as more different than these trials (Holland & Lockhead, 

1968; Lacouture, 1997; Ward & Lockhead, 1970, 1971). Some have found contrast effects from 
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as many as five preceding trials (e.g. Holland & Lockhead, 1968) although there has been 

disagreement about exactly how far back these effects extend (e.g. Jesteadt, Luce, & Green, 

1977). Such effects are well known within this domain and of considerable theoretical interest. 

Such higher-order carryover effects are often not considered in other domains, though. Therefore 

it is not clear the extent to which they occur in other areas of behavior. Should they exist, 

sequences which counterbalance these potential higher-order effects could be useful in 

evaluating them independently of lower-order and direct effects. Without counterbalancing, one 

concern is that such higher-order effects could bias condition averages. For instance, in the 

absolute identification scenario described above, if stimuli of loudness level 10 tend to be 

preceded more often by sequences of softer stimuli on trials t-2, t-3, and t-4 than by louder 

stimuli on those trials, then the contrastive effect may bias the participant’s estimate of loudness 

to be higher than it should be. If counterbalancing was done, then louder and softer trials would 

be equally likely in the range of contrastive effects and thus would be equally reflected in the 

condition mean. This is the main point of counterbalancing and provides an example of how 

known higher-order effects could bias measurements.  

Higher-order carryover effects can be counterbalanced to the n
th

 order by generating a 

sequence in which every condition is preceded equally often by every n-tuple (i.e. ordered set of 

n elements) of conditions. This can be done using a generalization of the first-order solution that 

has been described above. In n
th

-order counterbalancing, each vertex in the graph must represent 

an n-tuple of conditions, i.e. an ordered list of length n containing some combination of the c 

conditions. Each possible n-tuple is represented by one vertex. Thus, for n
th

-order 

counterbalancing of an experiment with c conditions there will be c
n 

vertices in the graph 
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because there are c
n
 possible n-tuples. This is demonstrated, by example, in Table 6 for 2

nd
-order 

counterbalancing. Figure 3 shows an example second-order graph for two conditions.  

Unlike in the first-order solution, second-order graphs are not fully-connected. Rather, 

only vertices which share part of their sequences are linked. Specifically, a vertex sends one 

directed edge to every other vertex with an n-tuple that starts with the same (n-1)-tuple with 

which its own n-tuple ends. This includes a loop on vertices which have an n-tuple of all the 

same condition, e.g. “AA”. For instance, for the second-order counterbalancing graph with two 

conditions in Figure 3, every vertex ending in “A” sends a directed edge to a vertex with an n-

tuple that starts with “A”. This is a necessary constraint on the connectivity of the graph because 

it ensures that one can only traverse edges that are consistent with previously traversed 

conditions. The resulting graph will have equal in and out degree at each vertex. One can see this 

by examining the example in Table 6 which represents the vertices from a graph with three 

conditions.  Every vertex ending in A, of which there are three, will send an edge to every vertex 

starting with A, of which there are also three. Every vertex thus has three outbound edges. Every 

vertex beginning in A, of which there are three, will receive an edge from every vertex ending in 

A, of which there are also three. Thus, every vertex has three inbound edges. This means that for 

every outgoing edge from a vertex, there will be an edge returning, i.e. the vertices will have 

equal in and out degree and therefore the graph is Eulerian. Once this Eulerian graph is 

constructed, a counterbalanced sequence of trials can be constructed by finding an Euler path 

through the directed graph, analogously to 1
st
-order counterbalancing. The first vertex that is 

visited in the graph contributes all of its conditions to the condition order. Each vertex visited 

subsequently contributes only its last condition. For instance, if the trail through the second-order 
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graph in Figure 3 visits, in order, vertices AB, BA, AA, AA, AB…, then the resulting condition 

order will be ABAAAB....  

 Although this generalization of the counterbalancing solution can address arbitrarily high 

order carryover effects, there are practical limitations to this. Higher-order counterbalancing 

involves larger graphs which results in longer trial sequences. Each sequence will be n + c
n+1

 

trials long where c is the number of conditions and n is the order of counterbalancing, e.g. n = 2 

for 2
nd

-order counterbalancing. There are also limitations on increasing the total number of trials. 

If n
th

-order counterbalancing is to be maintained, the overall number of trials can be increased 

only by inserting into the first sequence additional complete Euler paths through the graph. Thus, 

the total number of trials must be n + ac
n+1

 where a is the number of repetitions of each n-tuple 

of conditions. Analogously to first-order counterbalancing, conditions associated with the first 

vertex that is visited in the graph are over-represented. However, when the first n trials are 

excluded, all conditions will appear equally often in the remaining sequence. Furthermore, the 

first n trials are not counterbalanced for n
th

-order effects because they are preceded by fewer than 

n conditions. Thus, these trials should be ignored when scoring the data just as the first trial was 

ignored in first-order counterbalancing.  

It is also worth pointing out that n
th

-order counterbalanced condition orders are 

counterbalanced for all lower-order carryover effects but only when the first n trials are not 

considered during analysis (although these trials must still be run during the experiment). 

Simultaneous lower-order counterbalancing occurs because the vertices of the higher-order graph 

represent all of the possible combinations/n-tuples of the conditions. For instance, Table 6 shows 

the 2-tuples that correspond to vertices in a 2
nd

-order counterbalancing graph with 3 conditions. 

For second-order counterbalancing, each of these 2-tuples will precede condition A once and 
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condition B once. But notice that within each 2-tuple, each condition on trial N-2 precedes each 

condition on trial N-1 (including itself) equally often. This is equivalent to first-order 

counterbalancing within the 2-tuples. Furthermore, because each 2-tuple precedes each condition 

on trial N equally often (as this is required for 2
nd

-order counterbalancing) and trial N-1 

represents each condition equally often, then trial N will be 1
st
-order counterbalanced for the 

influence of the preceding trial. Each of these vertices will be visited equally often in the Euler 

circuit because the graph is fully-connected and thus all vertices have equal degree (both in-

degree and out-degree). Thus, the resulting sequence will be balanced for 2
nd

-order effects as 

well as 1
st
-order effects. Each 1

st
-order combination will be seen twice in the sequence. An 

example for 4
th

-order counterbalancing is shown in Tables S1-S3 in the Supplemental Materials. 

The sequence is balanced for 4
th

-order effects. Tables S1-S3 show that 3
rd

, 2
nd

, and 1
st
-order 

effects are also balanced because each condition is preceded by every 3, 2, and 1-tuple equally 

often. Again though, this depends on removing the first n trials from consideration during 

analysis. 

 

Purposefully Unbalanced Orders 

 If serial order carryover effects are of particular interest in an experiment, it is also 

possible to build condition orders that purposefully include carryover biases. This can be done 

within the method presented above by adjusting the relative number of edges between the 

vertices representing the conditions of interest. For instance, if the experiment involves A 

preceding B twice as often as C precedes D then there should be twice as many edges between A 

and B as between C and D. However, the changes to the graph must maintain equal in and out 

degree of each vertex in order for there to be an Eulerian circuit through the graph. If an Eulerian 
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circuit is not available, it may be possible to find an Eulerian trail (which does not start and stop 

at the same place but still traverses every edge exactly once). In this case the graph is sometimes 

called semi-Eulerian. An Eulerian trail exists if exactly one vertex has an out-degree one greater 

than its in-degree, exactly one vertex has in-degree one greater than its out-degree, and all other 

vertices have equal in and out degree. The trail must start at the vertex with out-degree greater 

than in-degree. In general, there are many potential graphs that could be constructed to represent 

trial sequences. For some applications, graphs may not need to be Eulerian. Other experimental 

requirements may be satisfied by other types of paths through the graph. Graph theory provides a 

large set of tools for finding these. 

 

Practical Implementation 

 Practical implementation of this method for generating sequences of trials involves: (1) 

Construct a directed graph representation of the conditions and their temporal relationships. 

Graphs are often represented in software by their adjacency matrix, i.e. a c × c (where c is the 

number of vertices) matrix with a positive integer in cell cij representing the number of directed 

edges from vertex i to vertex j. (2) Verify that this graph is Eulerian (or semi-Eulerian). (3) Find 

an Euler Circuit or trail through the graph. This can be done in any programming language using 

the algorithms described in Tables 4 or 5 and may be easiest in high-level languages such as 

Matlab (Mathworks, Inc., Natick, Massachusetts, http://www.mathworks.com), Octave 

(http://www.gnu.org/software/octave/), R (http:// http://www.r-project.org/), or Mathematica 

(Wolfram Research, Inc., Mathematica, Version 8.0, Champaign, IL., 

http://www.mathematica.com). In fact, Mathematica has built in functions for determining 

http://www.mathworks.com/
http://www.gnu.org/software/octave/
http://www.r-project.org/
http://www.mathematica.com/
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whether a graph is Eulerian (function name: EulerianGraphQ) and for finding an Euler path 

through a graph (function name: FindEulerianCycle).  

The Supplemental Material section contains a Matlab/Octave function which can 

generate counterbalanced trial sequences for any number of conditions less than 100. It can 

counterbalance for any order of counterbalancing (e.g. 1
st
-order, 2

nd
-order, n

th
-order) although 

very high orders of counterbalancing may lead to very long sequences and exceed the memory of 

the system. It can also handle repetitions which can be used to extend the length of the sequences 

while maintaining counterbalancing. There is also an option for omitting condition self-

adjacencies thus providing an analog for the Balanced Latin-Square and Finney & Outhwaite 

Type 2 sequences which do not contain self-adjacencies (Finney & Outhwaite, 1955, 1956). 

Instructions for use are included in the Supplemental Materials. The Supplemental Materials also 

includes a link to an executable version of this function. Both of these programs implement the 

Kandel et al. (1996) method for finding Euler paths.  

 

Discussion 

All psychology and neuroscience experiments that involve more than one condition seen 

by each participant have the potential for serial order carryover effects. Partial counterbalancing 

procedures have long provided a way to reduce potential serial order carryover effects as well as 

the effects of position in the sequence. Poor carryover counterbalancing on the individual 

participant level may add noise to experiments and, at worst, may be an unknown confound. 

Here, I have presented a method for fully counterbalancing trial and condition orders against 

carryover effects in repeated-measures designs with multiple measurements of each condition. 

This method relies on representing conditions as vertices in a graph and representing the 
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temporal relationships between them as directed edges. Serially balanced sequences can be found 

as Euler circuits through the graph in which each edge (i.e. temporal relationship) is traversed 

once (or equally often when more measurements are desirable). There are existing algorithms for 

finding Euler circuits. Importantly, this method can also be generalized to address higher-order 

carryover effects. There is also potential to create condition orders with other properties, such as 

intentionally unbalanced orders. Reframing the condition ordering problem in terms of graph 

theory makes it possible to use the known properties of graphs to generate sequences with any 

property for which there exists a graph theory solution. Beyond this, the method presented in this 

paper suggests a general framework for imposing constraints of any type on condition orders. 

Once conditions are represented as vertices in a graph, edges can represent any relationship 

between those conditions. By varying the connectivity of the graph representation and the type of 

path taken through it, researchers can select condition sequences with a wide array of properties. 

Graph theory provides a toolkit for exploring the possibilities.  

Other methods of serial balancing such as balanced Latin squares, m-sequences, and the 

sequences of Finney and Outhwaite (1955) also exist. In some cases, the serially balanced 

sequences generated as proposed here may be preferable. Latin squares are better suited for 

relatively short sequences with no repetitions of a condition within each sequence. With longer 

sequences, many participants or blocks will be needed. The method proposed in this paper can be 

used to generate sequences containing multiple measurements of the same condition within the 

same participant or block. Finney and Outhwaite sequences have a block pattern to them in 

which the positions of condition self-adjacencies are fixed. The sequences proposed here do not 

have this constraint and are not predictable (although they do start and end with the same 

condition). Both m-sequences and Finney and Outhwaite sequences are unavailable for a few 
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numbers of conditions. The sequences proposed here are available for any number of conditions. 

m-sequences are also only approximately serially balanced whereas the sequences proposed here 

are exactly balanced. Finally, the graph model proposed here can be extended to include higher-

order serial balancing.  

Of course, there are potential drawbacks of using the sequences proposed here. Repeated 

measurements can only be added in certain multiples which may lead to longer or shorter 

experiments than desired. Each sequence contains an extra trial of one condition (for first-order 

sequences) which may lead to extra practice in that condition. Unlike the Finney and Outhwaite 

sequences, the sequences proposed here do not appear in blocks which also balance the 

approximate position of conditions across the whole sequence. Balancing of approximate 

position in the sequence may be particularly desirable in memory experiments, for instance, in 

which serial position is known to have a dramatic effect on later memory of items (e.g., Deese & 

Kaufman, 1957). Some of these drawbacks may be overcome, however. For instance, the extra 

trial for one condition can be neutralized by counterbalancing which condition is over-

represented across subjects. Approximate position may be counterbalanced by using different 

sequences across participants or by selecting the most balanced sequences from amongst a 

random sample of sequences that was produced. The sequences proposed in this paper are not 

meant to solve all problems simultaneously but they do present sometimes preferable alternative 

to previous proposals for generating serially balanced sequences. 

Serially-balanced sequences like those created by the method here (as well as some of the 

alternatives mentioned above) ensure that every condition is preceded by every other condition 

(including itself) equally often. For nth-order counterbalancing, every condition is preceded by 

every n-tuple of conditions equally often. This can be achieved from a single run through the 
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sequence in one participant. Recall from comparing Tables 1 and 2, that if serial-order carryover 

effects are present and they are unbalanced then the resulting condition averages (when collapsed 

over which trial(s) preceded it) can be biased if the condition is preceded by some conditions 

more often than others (e.g. Table 2). Counterbalancing does not remove any serial carryover 

effects that are present, it just ensures that all of the possible different carryover effects (arising 

from any of the preceding n-tuples of conditions) are equally represented when contributing to 

the average for each condition. If the carryover effects are of further interest, then given a 

counterbalanced design, a factor representing the previous trial/n-tuples could be added to the 

analysis and these effects could be examined independently of the direct effects of each 

condition.  

In Tables 1 and 2, the carryover effects were represented as constant across the course of 

the experiment. That is, although the effect in condition A differed depending on the preceding 

trial, this carryover effect was consistent across time. This is probably not realistic as in many 

experiments practice effects will occur over the course of the experiment. Nonetheless, the 

sequence will still be balanced such that each condition average will comprise instances 

preceded equally often by each condition. However, for sequences without repetitions of the n-

tuples, some of the n-tuples (a condition preceded by one or set of other conditions) will only 

occur at the beginning of the sequence whereas others will only occur in the later half. If a 

carryover effect changes over time and the n-tuples that detect that carryover effect are not 

evenly distributed across the sequence, then the carryover effect could be mischaracterized even 

with a serially-counterbalanced sequence. This effect could be ameliorated by using different 

sequences across different participants and then averaging across them making it more likely that 

each n-tuple is represented equally often in each serial position in the sequence. Alternatively, 
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one may use sequences containing repetitions of each n-tuple and then selecting those in which 

the instances of the n-tuples are best distributed. This later solution would ensure that each 

possible carryover effect is assessed equally-often across the sequence. This could be done 

within the sequence for a single participant. The method for assessing sequence serial balance 

proposed by Sohn et al. (1997) could be used here. 

Another possible problem is that the presentation of one condition may change a 

participant’s strategy and thus have long-lasting effects across the experiment. For instance, 

imagine a visual perception experiment with ten conditions and a within-subjects design. In nine 

of the conditions, participants see an array of blocks with letters depicted in the space between 

the blocks as shown in Figure 4A (stimuli, but not the task, derived from Davis, Schiffman, & 

Greist-Bousquet, 1990). Sometimes these hidden letters depict words and sometimes they depict 

non-words. Participants then name a subsequent picture of an object which is either related or 

unrelated to the previously seen word or letter string. These conditions could test for subliminal 

semantic priming from the hidden words. The tenth condition contains clearly discernable block 

letters in the prime (Figure 4B) and this is meant to test for non-subliminal effects. Inclusion of 

this tenth condition, however, may alert participants to the potential presence of letters in the 

other conditions. Even after just one presentation of this tenth condition, the participant’s 

strategy may change. They may begin looking for letters and words in the stimuli. This is likely 

to affect performance on all subsequent instances of the other conditions. This type of carryover 

effect or asymmetric transfer effect (Poulton, 1982) has potential to affect the internal and 

external validity of the experiment. That is, some conditions may function differently in the 

context of one set of conditions than when presented alone or in the context of different 

conditions. Counterbalancing, whether with the sequences proposed here or with other methods, 
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will not be able to remove this effect. It may be possible to model the effects as very high-order 

carryover effects but this is unlikely to be practical in long sequences. Depending on the goals of 

the experiment, it may be better to use a between-subjects or mixed design. The use of 

counterbalancing, of any type, does not absolve the experimenter from carefully considering 

their experimental design and how any likely carryover effects may impact the interpretation of 

their results. The sequences suggested here do allow one, however, to be sure that every 

condition mean is computed from equal numbers of trials preceded by every n-tuple of 

conditions (for an nth-order counterbalanced sequence) equally often. Any inference about a 

different type of carryover effect will likely require a different experimental design aimed 

specifically at addressing that issue. 

When giving examples, I have mostly discussed applications within cognitive psychology 

or cognitive neuroscience. However, the sequences generated here can be used in domains in 

which a within-subjects design with multiple repetitions of each condition will be presented. It 

may not be suitable for some domains though. For instance, in questionnaire design, each item 

may appear only once in the questionnaire. In this case, it is not possible to counterbalance 

carryover effects from one question to the next within a single questionnaire. This occurs 

because if question A appears only once then it can only precede one other condition and not the 

others which would be necessary for serial carryover counterbalance. In this case, 

counterbalancing will need to be achieved between-subjects. However, if a questionnaire 

involves several different items that assess the same underlying target/condition (e.g. self 

esteem) then it may be possible to use the current method to generate sequences of questions that 

are serially counterbalanced. It is important to note though, that in any such sequence, any 

differences due to different questions will be confounded with the carryover effects. That is, 
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although the different questions are meant to assess the same underlying construct, they may do 

this to different extents or measure slightly different aspects of it. This could be counterbalanced 

between-subjects by using different sequences in different participants. More generally, it will be 

important to determine which effects are of interest and then to ensure that they are evaluated 

independently of any carryover effects that are counterbalanced. 

The serially balanced sequences generated from the graph representations proposed in 

this paper cannot eliminate serial order carryover effects. However, they can reduce the influence 

of these effects on comparisons of interest or allow the carryover effects to be assessed 

orthogonally to the other manipulations. In order to completely remove serial order carryover 

effects, other changes will need to be made to the experimental design. For instance, washout 

periods can be introduced between experimental conditions to remove lingering effects from the 

preceding condition. Where this is not possible, counterbalancing can be used. The serially 

balanced sequences described here provide a tool for achieving this goal and open up a general 

approach based on graph representations for generating sequences with useful properties for 

psychological and neuroscience research. 
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Appendix 

Counting the number of all possible unique condition sequences 

This Appendix presents a method for calculating the number of all possible unique 

condition sequences that can be generated using the graph method described in the main text of 

this paper. Using this method, an Eulerian directed graph serves to represent experimental 

conditions and the temporal relationships between them. Because an Eulerian path through the 

graph represents a counterbalanced condition sequence, counting the number of possible 

condition sequences is related to the number of unique Eulerian paths through the graph. This 

number can then be used to calculate the number of possible unique condition sequences as 

described below. 

For an Eulerian directed graph, G = (V,E), where V is the set of all vertices (representing 

conditions in an experiment) in G and E is the set of all directed edges (representing temporal 

relationships between conditions) in G, the total number of Eulerian circuits through G, denoted 

ec(G), can be calculated according to the BEST theorem (Aardenne-Ehrenfest & de Bruijn, 

1951; Creed & Cryan, 2010; Tutte & Smith, 1941) as:  

Equation A1:  (deg ( ) 1)!w out

v V

ec G t G v

 

The first term in Equation A1, twG, is the number of arborescences in G rooted at any 

vertex w. An arborescence is a directed graph in which, from a given root vertex, there is exactly 

one directed path to each other vertex, v. The number of arborescences can be calculated as a 

determinant, det(L*), where L is the Laplacian matrix (also called admittance or Kirchhoff 

matrix) of G. The Laplacian matrix, L, is calculated as L = D-A where D and A are, respectively, 

the degree matrix and the adjacency matrix of the graph, G. The matrix L* is a minor of the 

Laplacian matrix, L, formed by removing any row and any column from L. The degree matrix is 
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a c × c (c is the number of conditions/vertices) matrix that represents, as positive integers along 

the diagonal of the matrix, the out-degree, degout, (number of outgoing edges) for each vertex, v, 

in V. The adjacency matrix is a c × c matrix that represents the connectivity of the graph using a 

positive integer at position c(i,j) to represent the number of directed edges going from vertex vi to 

vertex vj. Below is a worked example of this calculation for the graph in Figure 1B. 

Calculation 1: 

3 1 1 1 4 0 0 0 1 1 1 1

1 3 1 1 0 4 0 0 1 1 1 1

1 1 3 1 0 0 4 0 1 1 1 1

1 1 1 3 0 0 0 4 1 1 1 1

3 1 1

1 3 1

1 1 3

det 16wt G

*

*

L D A

L

L

 

 The determinant can be easily calculated using software such as Matlab (Mathworks; 

Natick, MA, USA; http://www.mathworks.com/), Octave (http://www.gnu.org/software/octave/), 

or Mathematica (Wolfram Research; Champaign, IL, USA; 

http://www.wolfram.com/mathematica/). Any Linear Algebra textbook will have a description of 

how to compute a determinant. 

 The second term in Equation A1 is the product across all vertices, of the out-degree, 

degout, of each vertex minus 1, factorial. For the graph in Figure 1B, all four vertices have an out-

degree of 4 and therefore the calculation is:  

Calculation 2: 

deg 1 ! 4 1 ! 4 1 ! 4 1 ! 4 1 ! 1296out

v V

v  

http://www.mathworks.com/
http://www.gnu.org/software/octave/
http://www.wolfram.com/mathematica/
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Therefore, taking the product of the results from Calculations 1 & 2 above, the total 

number of Eulerian circuits through the graph, ec(G), in Figure 1B is 16 × 1296 = 20736. This 

quantity, ec(G), however, does not represent the total number of trial sequences, seq(G), that can 

be generated from graph G.  Each Euler circuit counted in ec(G) is an ordered, cyclically 

continuous set of transitions around the edges of G. For example, consider the Eulerian graph in 

Figure A1-A with 3 vertices and 6 edges. One possible Eulerian circuit through this graph is 

represented by the continuous cycle in Figures A1-B and A1-C. Notice that different trial 

sequences can be derived from the same Eulerian circuit depending on which vertex is used as 

the starting/ending point. Thus, because Eulerian circuits are cyclic and the start/end point is not 

considered when enumerating them, ec(G) undercounts the number of possible sequences, 

seq(G). Equation A2 multiplies Equation A1 by a third term to account for these additional 

variations on the Eulerian circuits. This term is equivalent to the number of edge traversals in the 

circuit counted as the sum of the out-degrees of all of the vertices. 

Equation A2:  ( ) deg 1 ! degw out out

v Vv V

seq G t G v v  

 

Counting the number of unique sequences in graphs with multiplicities of edges 

Equation A2 applies in situations where each edge, evw, in E (the set of edges of graph G) 

occurs at most once. In some cases one may want to introduce multiple instances of edges in 

order to increase the total number of trials. For instance, duplicating each edge will double the 

number of trials while maintaining counterbalancing. Duplicate edges are psychologically 

equivalent to one another. Traversing an edge, e11,2, from vertex v1 to v2 is psychologically 

equivalent to traversing its duplicate, e21,2. However, Equation A2 counts these as different for 

purposes of counting the number of Euler circuits through the graph. For instance, consider the 
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subsequence BBB. This could correspond to the ordered set of edges {e1B,B, e2B,B} or {e2B,B, 

e1B,B} and these would be counted as different paths by Equation A2 despite being 

psychologically equivalent. Specifically, equivalent sequences are produced by permuting the 

repeated out-edges of a particular vertex. This is corrected in Equation A3 with an additional 

term. For each edge, e in E, repse is the number of instances of that edge in E.  

Equation A3: 
1

( ) (deg ( ) 1)! deg ( )
!

w out out

v Vv V e

e E

seq G t G v v
reps
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Table 1 

Serial order carryover effects counterbalanced in trial order 

Trial 

Number 

Condition Trial N = Condition A  Trial N = Condition B 

Trial N-1 

A 

Trial N-1 

B 

Trial N-1 

A 

Trial N-1 

B 

1
 

A -
a 

-
a 

 -
a 

-
a 

2 B    50  

3 B     50 

4 A  10    

5 A 100     

6 A 100     

7 B    50  

8 B     50 

9 A  10    

10 A 100     

11 B    50  

12 B     50 

13 A  10    

14 B    50  

15 B     50 

16 A  10    

17 B    50  

18 B     50 

19 A  10    

20 A 100     

21 A 100     

  ──────────────  ────────────── 

Average Condition A 

55 

 Condition B 

50 

 

Note: The score for condition A depends on the preceding condition: condition A preceded by A 

(Trial N = A and Trial N-1 = A, 4
th

 column from right) has a score of 100 whereas A preceded 

by B (Trial N = A and Trial N-1 = B, 3
rd

 column from right) has a score of 10. The condition B 

score is independent of the preceding condition (always 50). Scores are assigned in the 4 right 

columns on the basis of the condition and the one that preceded it. At the bottom of the table the 

scores are given for condition A and condition B collapsed over the serial order. Because first-
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order serial order effects are counterbalanced in this trial sequence the mean for condition A is 

55. This reflects the average score in condition A collapsed over any effects of serial order 

carryover from the preceding condition. On average condition A is greater than condition B but 

this cannot be attributed to an unbalanced carryover effect. 

a
 The first trial can be omitted from the calculation of the means because it is not preceded by 

any other stimulus. It is present to serve as preceding stimulus for the following condition. 

Including it would unbalance the number of measurements in conditions A and B 
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Table 2 

Unbalanced serial order carryover effects 

Trial 

Number 

Condition Trial N = Condition A  Trial N = Condition B 

Trial N-1 

A 

Trial N-1 

B 

Trial N-1 

A 

Trial N-1 

B 

1 A -
a 

-
a 

 -
a 

-
a 

2 A 100     

3 A 100     

4 A 100     

5 A 100     

6 B    50  

7 A  10    

8 B    50  

9 A  10    

10 A 100     

11 A 100     

12 A 100     

13 B    50  

14 B     50 

15 B     50 

16 B     50 

17 B     50 

18 A  10    

19 B    50  

20 B     50 

21 B     50 

  ──────────────  ────────────── 

Average Condition A 

73 

 Condition B 

50 

 

Note: The format and size of serial order effects are the same as in Table 1. Unlike Table 1, first-

order serial order effects are unbalanced in this trial sequence. The average score for condition A 

is inflated due to over-representation of A trials preceded by other A trials (Trial N = A and Trial 

N-1 = A, 4
th

 column from right). These AA trials have a higher score and thus inflate the mean 

when collapsed with condition A trials which were preceded by condition B (Trial N = A and 
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Trial N-1 = B, 3
rd

 column from right). The mean in each condition is computed across all 10 

scores. 

a
 The first trial was omitted from mean calculations. See Table 1 notes for explanation. 
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Table 3 

A balanced Latin square with four conditions 

Participant Trial > 1 2 3 4 

1
 

 A B D C 

2  B C A D 

3  C D B A 

4  D A C B 

    

 

  



45 

 

Table 4 

Hierholzer’s Algorithm for finding Euler circuits 

Step Number Description 

1 Randomly choose a starting vertex v in a Eulerian directed graph, G = 

(V,E). Add v to the ordered set of vertices, T. 

2 Choose randomly an untraversed edge, evw, exiting v to vertex w. 

Traverse the edge. Mark this edge as traversed and do not use again. 

Add w to the ordered set of vertices T. 

3 Starting at vertex w, repeat step 2 until there are no directed edges 

exiting from the current vertex. This is the end of trail T. If T contains 

all the edges of G then T is an Euler circuit of G thus go to Step 9. 

Otherwise go to Step 4. 

4 Randomly chose a new starting vertex, T(v), visited in previously-

created trail, T, which also has previously-untraveled edges exiting the 

vertex. 

5 Choose randomly an untraversed edge, evw, exiting v to vertex w. 

Traverse the edge. Mark this edge as traversed and do not use again. 

Add w to the ordered set of vertices T’. 

6 Repeat step 5 until no exiting edges 

7 Replace vertex T(v) in the trail T with the trail T’. 

8 Repeat (4-8) until all edges in G have been traversed. 

9 The final trial T is an Euler path through G 

 

Note: V and E are the set of vertices and set of edges of G, respectively. The algorithm described 

here was first described by Hierholzer (1873) and the version here is based on the English 

descriptions by Fleischner (1991) and McHugh (1989).  
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Table 5 

Kandel et al.’s (1996) algorithm for finding Euler circuits 

Step Number Description 

1 Randomly choose a starting vertex v in a Eulerian directed graph, G = 

(V,E) 

2 Perform a backward random walk starting at v.  

 (a) Choose randomly an edge, ewv, entering v from some other vertex w. 

If this is the first time that w has been visited add this edge to set A. 

(b) Repeat step (a) until every vertex has been visited at least once. 

(c) The resulting set of edges, A, form an arborescence of G. 

3 At each vertex, v in V, label each outgoing edge, evw, with a random 

number with the exception that any edge amongst these that is in A 

should be given the highest value number. 

4 For v being any randomly-selected vertex in V, start at origin vertex v and 

add v to the ordered set of vertices, T. 

5 Choose the untraversed edge, evw, from origin vertex, v, to target vertex, 

w, with the lowest number (assigned in step 3) amongst the untraversed 

edges exiting v. Traverse this edge. Add the target vertex w to T. Mark 

edge evw as traversed and do not traverse this edge again.  

6 Set the origin vertex v in step 5 as w which was the target vertex in step 5. 

Repeat Step 5 to choose a new edge evw with new target w. Repeat until 

all edges in E have been traversed. 

7 T is an Euler path through G 

 

Note: V and E are the set of vertices and set of edges of G, respectively. The algorithm described 

here is derived from Section 5 of Kandel, et al. (1996). 
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Table 6 

Vertices for second-order graph with three conditions 

 Trial N-1 

Trial N-2 A B C 

A AA AB AC 

B BA BB BC 

C CA CB CC 

 

Note: Vertices for the second-order graph comprise all of the ordered pairs of the three 

conditions.  
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Figure Captions 

 

Figure 1. (A) Directional graph representing flights between airports. Each vertex 

represents an airport and edges between the vertices represent non-stop flights between them. 

Arrows indicate the direction of the flight. Weights on the edges represent flight durations. 

Recurrent edges (starting and ending at the same vertex) represent layover times. (B) A fully-

connected, directional graph representing four experimental conditions, A-D, and the temporal 

relationships between them.  

Figure 2. Demonstration of Hierholzer’s algorithm to generate an Eulerian circuit 

through a graph with three vertices representing three conditions: A, B, C. The steps in the 

algorithm are shown separately. Gray dotted edges indicate edges in the graph which have been 

traversed in those steps and the accompanying numbers adjacent to each edge indicate the order 

in which the edges were traversed. The sequences, T and T’, are shown at each stage. 

 Figure 3. An example of a second-order counterbalancing graph representing two 

conditions.  

 Figure 4. An example of how seeing one condition may change a participant’s strategy. 

(A) The sequence of letters “ANHUM” is hidden in the space between the black blocks. This 

makes it less likely to be noticed. (B) The sequence of letters “APEPL” is depicted in block 

letters and the letters are clearly noticeable. Once this stimulus is seen participants may change 

their strategy and look for letters in the other conditions.  

 Figure A1. Demonstration of how the number of Euler circuits of a graph is not 

equivalent to the number of condition sequences. (A) A graph with three vertices and edges 

between them. (B) Cyclic representation of an Euler circuit through the graph in panel A. The 

condition sequence generated from the Euler path depends on the starting vertex chosen. In this 
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case, A in the upper left side is chosen and the condition sequence is shown below. (C) A 

different starting point from the same Euler circuit as in panel B results in a different sequence. 
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