
1.  Introduction
Incoherent scatter (IS) radars are high-power, large-aperture radars that detect radio wave scattering from 
thermal fluctuations in the ionospheric plasma. Power spectral density of the scattered signal is a function 
of number density, temperature, bulk velocity, and ion-neutral collision frequency of a number of ion spe-
cies and electrons (for example Swartz & Farley, 1979, and references therein). All these parameters cannot 
be fitted to the spectrum, and a commonly used approximation is the four-parameter fit of Ne, Te, Ti and Vi. 
Equal temperatures and bulk velocities are assumed for all ion species, and the ion-neutral collision fre-
quency and ion composition are taken from ionospheric models.

In the F1 region the four-parameter fit often produces incorrect temperatures (for example Blelly et al., 2010), 
because ion composition models are unreliable in the transition region from the E region molecular NO+ 
and 

2O  ions to the F2 region atomic O+. Incorrect compositions bias the temperatures, because the IS spec-
trum is sensitive to the ratio Ti/mi, where mi is the mean ion mass. This is known as the “temperature-ion 
composition ambiguity” (TICA; Martínez-Ledesma et al., 2019). Several authors have addressed the TICA 
problem by means of modeling the F1 region temperature and ion composition profiles (Blelly et al., 2010; 
Cabrit & Kofman, 1996; Häggström & Collis, 1990; Kelly & Wickwar, 1981; Zettergren et al., 2011), by means 
of ion chemistry modeling (Richards & Voglozin, 2011), and using plasma line data (Aponte et al., 2007). 
Also direct estimation of both ion composition and temperature from ion line data has been reported by 
Lathuillere et  al.  (1983), but coarse resolutions were used, since such fits require extremely accurate IS 
spectra (Martínez-Ledesma et al., 2019).

Even the four-parameter fits are extremely challenging with a few second and a few hundred meter reso-
lutions that are needed in observations of auroral electron precipitation. In high-resolution observations 
one may replace the fitted Ne with the raw electron density (scaled back-scattered power) Nr. For example 
Dahlgren et al. (2011), Semeter and Kamalabadi (2005), and Virtanen et al. (2018) used Nr in estimation of 
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primary energy spectra of precipitating electrons. However, Nr equals Ne only if Te = Ti, which may be an 
unjustified assumption when the precipitation heats the electron gas.

We propose an IS analysis technique that combines Bayesian filtering (for example Särkkä, 2013) in time 
and correlation priors (Roininen et al., 2011) in range. The combination allows us to extend the idea of 
full-profile IS analysis (Holt et al., 1992; Hysell et al., 2008; Lehtinen et al., 1996), which assumes smooth-
ness in range, to an assumption of smoothness in both time and range. With this approach we can fit ion 
compositions if both ion temperature and composition are assumed to vary smoothly with time and alti-
tude, and we can include temperature fits in high-resolution electron density fits.

In Section 2 we give introduction to IS plasma parameter fits, Bayesian filtering and correlation priors. In 
Section 3 we explain how the prior models and Bayesian filtering are used in IS analysis and implemented 
as a “Bayesian Filtering Module” (BAFIM) in Grand Unified Incoherent Scatter Design and Analysis Pack-
age (GUISDAP; Lehtinen & Huuskonen, 1996). In Section 4 we demonstrate BAFIM fits of Ne, Te, Ti, Vi, and 
ion composition p = [O+]/Ne in the F1 region, and high-resolution fits of Ne, Te, Ti, and Vi in the E region.

2.  Theoretical Background
Incoherent scatter signal from a small plasma volume is a zero-mean random process with autocorrelation 
function R(τ), where τ is time lag. IS radar data are discrete samples of the autocorrelation function at 
discrete ranges ri, times tj, and lags τk. Power spectral density of the scattered signal, which is the Fourier 
transform of the autocorrelation function, is a known function of plasma parameters (for example Swartz 
& Farley, 1979, and references therein).

Typically, plasma parameters are extracted from the autocorrelation function samples by nonlinear least 
squares methods with optimization techniques such as Levenberg-Marquardt algorithm. Alternatively, 
Markov chain Monte Carlo methods can be used for parameter extraction (for example Virtanen et al., 2014), 
although optimization has remained as academic standard in IS analysis.

2.1.  Gated Analysis and Full Profile Analysis

IS analysis techniques can be roughly divided into “gated” and “full-profile” techniques. In gated analysis 
one runs the fitting process for each range ri and time tj independently from the analysis of neighboring 
observational volumes. The EISCAT IS analysis tool GUISDAP (Lehtinen & Huuskonen, 1996) makes gated 
analysis. In full-profile analysis one fits range profiles of plasma parameters. Main benefit of the full-profile 
analysis is the possibility to include prior information of plasma parameter altitude profiles.

In its most general form the full-profile analysis performs also deconvolution of lag profiles (Holt et al., 1992; 
Hysell et al., 2008). A simpler approach is to use phase-coding, for example alternating codes (Lehtinen & 
Häggström, 1987), and to decode the autocorrelation function samples into high resolution before the plas-
ma parameter fit (Lehtinen et al., 1996). The two-stepped approach can be accomplished with arbitrary 
transmission modulations if the deconvolution is performed by statistical inversion (Virtanen et al., 2008, 
2009). It is technically possible to add prior information already in the lag profile inversion step, but express-
ing the prior in terms of the actual plasma parameters is difficult in this approach.

2.2.  Bayesian filtering and Smoothing

Bayesian filtering (for example Särkkä, 2013) is a class of methods for estimating the state of a system from 
noisy indirect measurements. In IS analysis the state of the system reduces to point estimates of plasma 
parameter values and their standard deviations, while the indirect measurements are the observed autocor-
relation function samples R.

The filtering consists of a sequence of prediction and update steps. The sequence starts from an initial 

set of parameters 
1x  and its covariance matrix 

1P , which form our prior understanding of the unknown 
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parameters at time t1. Autocorrelation function samples R1 are then used to update the prior model into our 
best estimates of the parameters and their covariance at time t1, x1 and P1. The update step is accomplished 
using a measurement model M,

  1 1 1 1, , .Mx x P R� (1)

The update step is followed by a prediction step, in which x1 and P1 are combined with our best understand-
ing of dynamics of the system to create our best prediction of the parameters and their covariance at time 

t2, 
2x  and 

2P . The prediction step is accomplished using a dynamic model D,

  2 1 1, .Dx x P� (2)

Measurements from time t2 are then used to update the prediction into the final estimates x2 and P2, etc.

The simplest “dynamic” model is to assume that the parameter values at subsequent time steps are close to 
each other, which reduces the prediction step into


 1,j jx x� (3)


 1 ,j jP P Q� (4)

where Q is the system noise covariance matrix. The larger values Q has in its diagonal, the smaller is the 
correlation between subsequent state estimates and the larger is the filter gain.

Bayesian filtering allows one to recursively estimate unknowns using the whole time history of measure-
ments. In Bayesian smoothing the idea is extended to use of also “future” measurements. Bayesian smooth-
ing reduces variances of the unknown parameters and guarantees that equal amount of information from 
“past” and “future” measurements is included in each estimate of the unknowns. This removes a time shift 
that may be produced by a low-gain filter.

If the dynamic and measurement models are linear functions, Bayesian smoothing can be implemented 
as a recursive smoothing step called Rauch-Tung-Striebel (RTS) smoother (Rauch, 1963). The smoothing 
recursion runs backwards in time using equations

 


1
1 ,T

j j j jG P D P� (5)

 
   1 1 ,s s

j j j j jx x G x x� (6)

 
   1 1 ,s s T

j j j j j jP P G P P G� (7)

where Dj is the theory matrix of the linear dynamic model D and the superscript T denotes matrix transpose. 
s
jx  and s

jP  form the Bayesian smoothing solution of the problem.

2.3.  Correlation Priors

Correlation priors (Roininen et al., 2011) allow one to model mutual covariances of the unknowns of an 
inverse problem in a well controlled way. Assuming that our prior belief of the unknowns x is xp, the prior 
can be expressed as a linear inverse problem

     
     

         
     
     

,0 ,0

,1 ,1

,2 ,2

0 ,
0

p p p

p p p p p

p p

x A
m A x A x

A

ε
ε ε

ε
� (8)

VIRTANEN ET AL.

10.1029/2020JA028700

3 of 13



Journal of Geophysical Research: Space Physics

where xp are prior values of the unknown parameters and ɛp are discrete white noise with variances given in 
(18), (19), and (20). The theory matrix Ap is constructed from zeroth, first and second order differences Ap,0, 
Ap,1, and Ap,2, as explained below. Covariance and mean of the prior can be solved from (8) as

     
11 1 ,T

p p p p pΣ Ω A Σ A� (9)

   1 ,T
p p p p px Σ A Σ m� (10)

where Σp is the error covariance of ɛp, Ωp is the precision matrix, xp′ is the final prior mean, and Σp′ is its 
error covariance matrix. It is important to notice that the initial profile is smoothed by the correlations and 
xp′≠xp. In high-dimensional problems it is important that Ωp is a sparse matrix (Norberg et al., 2018).

The zeroth order part of the prior is

,0 ,pA I� (11)

    2 2 2
,0 ,0,1 ,0,2 ,0,, , , ,p p p p NdiagΣ� (12)

where the diagonal error covariance matrix Σp,0 contains the prior variances of xp. The first order terms are

A
p, ,1

1 1 0 0 0

0 1 1 0 0

0 0 1 0 0

0 0 0 1 1



 
 



 























     
� (13)

     2 2 2
,1 ,1,1 ,1,2 ,1, 1, , , ,p p p p NdiagΣ� (14)

And the second order terms are

  
 

  
  
 
 
   

       
,2

1 2 1 0 0 0 0
0 1 2 1 0 0 0
0 0 1 2 0 0 0 ,

0 0 0 0 1 2 1

pA� (15)

     2 2 2
,2 ,2,1 ,2,2 ,2, 2, , , .p p p p NdiagΣ� (16)

The full prior covariance matrix Σp is 

 
 

  
 
 

,0

,1

,2

.
p

p p

p

Σ 0 0
Σ 0 Σ 0

0 0 Σ
� (17)

Variances of the zeroth, first and second order terms are (Roininen et al., 2011),

  2 1
,0, 0 / Δ ,p i i i ic h� (18)
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    2 1 2 2
,1, 1 0 1 ,0,Δ / / (Δ / ) ,p i i i i p i i ic h c c h� (19)

    2 1 3 2 4
,2, 2 0 2 ,0,(Δ / ) / (Δ / ) ,p i i i i p i i ic h c c h� (20)

where αi is correlation power in the i(th) range gate, Δhi is width of the i(th) range gate, and ℓi is the correspond-
ing correlation length. The correlation lengths define how smooth the profile is, and the correlation power 
defines width of the prior distribution. The constants c0, c1, c2 define shape of the final covariance structure. 
For example, c0 = 1, c1 = 1/2, c2 = 1/8 produces a Gaussian covariance. The model variances depend on the 
discretization and correlation length in a way that makes the model essentially grid-independent.

3.  BAFIM Implementation
We have implemented an IS analysis tool based on Bayesian filtering in time and correlation priors in range 
as an additional Bayesian Filtering Module (BAFIM) to the GUISDAP IS analysis tool (Lehtinen & Huusko-
nen, 1996). We assume a five parameter fit of electron number density N, ion temperature T, ion-to-electron 
temperature ratio E, line-of-sight plasma velocity V and ion composition O = [O+]/N, where [O+] is the O+ 
ion number density. We use the alternative notation (N = Ne, T = Ti, E = Tr, V = Vi, O = p) in this section to 
simplify the equations. The vector of plasma parameters at time step j is

  , , , , ,
T

j j j j j jx N T E V O� (21)

where Nj is the electron density profile in range gates i = 1, …, M, and the vectors of the other parameters 
are defined similarly.

  1, 2, ,, , , ,j j j M jN N NN� (22)

The analysis starts from an initial guess of the plasma parameters at time t1, 
1x , and their covariance 

1P . The 
parameters 

1x  are from the International Reference Ionosphere (IRI) model (Bilitza et al., 2017), and 
1P  is 

a diagonal matrix with variances equal to the process noise variances, defined in (35), in its diagonal. The 

parameters 
1x  and their variances  2

1 1( )diagσ P  are used as a prior in a normal GUISDAP fit to measure-
ments R1. The GUISDAP fit is the update step of the Bayesian filter. The gated GUISDAP analysis does not 
produce a full error covariance matrix of x1, but the error covariance matrix P1 contains mutual correlations 
of plasma parameters in each range gate.

After the first time step, priors for the following GUISDAP fits are not taken from the IRI model, but the 
fit results from t1 are used to predict the parameters and their covariance at t2. The predicted values 

2x  and 
diagonal of 

2P  are used as prior mean and variance to fit x2 and P2 to measurements R2, x2 and P2 are used 
to calculate the predicted 

3x  and 
3P , etc. The analysis steps are illustrated in Figure 1, whose first row shows 

predicted altitude profiles of N = Ne, T = Ti, E = Te, V = Vi, and O = p at time tj. The predicted values and 
variances form a Gaussian prior distribution in a GUISDAP fit, which produces the updated profiles on the 
second row. The profiles on the second row are used to predict the parameter profiles at time tj+1 (third row), 
the prediction is used as a prior when fitting the parameters at time tj+1 (fourth row), etc. Correlations in 
range are lost and reintroduced in each update and prediction step, correspondingly. This allows us to use 
the computationally light-weight gated analysis, and the approach is acceptable if the plasma parameters 
do not change much during a time step.

In the prediction step, a correlation prior is used to create smooth plasma parameter profiles. The measure-
ments x1 and their covariance P1 are used as the zeroth order terms in (8),

 1,px x� (23)
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,0 1.pΣ P� (24)

The first and second order differences in (8) are then formed for each plasma parameter separately. Vari-

ances of the plasma parameters  1 1 1 1 1 1, , , , Tx N T E V O  are

     p N T E V O

T

diag, , , , , ,, , , , .0

2

0

2

0

2

0

2

0

2

0

2

1     P� (25)

The first order difference matrices (13) for each parameter are identical M × M − 1 matrices, AN,1 = AT,1 = 
AE,1 = AV,1 = AO,1, and the full first order difference matrix is the block diagonal matrix

 
 
 
 
 
 
 
 

,1

,1

,1,1

,1

,1

.

N

T

Ep

V

O

A 0 0 0 0
0 A 0 0 0
0 0 A 0 0A
0 0 0 A 0
0 0 0 0 A

� (26)

Variances of the first order terms are calculated from (19). First order variances for electron density are

  2 2 2
,1, 0 1 ,0, ,/ (Δ / ) ,N i N i i N ic c h� (27)

and variances of the other parameters are calculated in a similar manner. The first order covariance matrix 
is the diagonal matrix

  2 2 2 2 2
,1 ,1 ,1 ,1 ,1 ,1, , , , .p N T E V OdiagΣ σ σ σ σ σ� (28)
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Figure 1.  Prediction and update steps of BAFIM. Predicted altitude profiles of Ne, Ti, Tr, Vi, and p at time tj (first row), updated profiles at tj (second row), 
predicted profiles at tj+1 (third row), and updated profiles at tj+1. BAFIM, Bayesian filtering module.
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The second order differences and their variances are formed in a similar manner. As a result, we have a 
matrix equation of the from (8), from which parameter profiles smoothed in range, x′, and their covariance, 
Σ′, can be solved using (9) and (10).

The smoothed parameter profiles x′ are used as the prediction for time step t2,

 2 ,x x� (29)

and the predicted covariance is the sum of the covariance of x′ and a process noise covariance Q,

  2 .P Σ Q� (30)

The process noise covariance is a diagonal 5M × 5M matrix with a different variance for each plasma pa-
rameter (35) in its diagonal,

      , , , , , , , , , , , , , , .N N T T E E V V O Odiag q q q q q q q q q qQ� (31)

The RTS smoother is implemented in BAFIM as a postprocessing step. Since only the first 5M elements 
of the vector mp are nonzero in (8) and (10), the matrix D in (5) consists of the first 5M columns of the 
5M × (15M − 3) matrix

  .T
s p pD Σ A Ω� (32)

The RTS smoother is only a linear approximation, but the approximation is reasonable if the time steps are 
short enough to keep changes in plasma parameters small in between subsequent time steps.

The correlation lengths ℓi are proportional to the plasma scale height




(1 ) / 2 ,B i i
i

i i

k T EH
m g� (33)

calculated from the IRI model parameters. Here kB is the Boltzmann constant, mi is the mean ion mass, 
gi is the acceleration of gravity, and the subscript i refers to the i(th) range gate. The correlation lengths 
of N are

 , ,h
N i N is H� (34)

where h
Ns  is a constant, and the correlation lengths of the other parameters are defined in a similar 

manner.

In the correlation prior, covariance of the zeroth order terms is the posterior covariance Σp,0 = P1, and var-
iances of the first and second order terms are proportional to  2

i  and  4
i , respectively. Thus, at the limit of 

small correlation lengths ℓi, the smoothed profile x′ approaches the fitted profile x1, and the covariance 
Σ′ approaches P1. BAFIM can thus be run without the smoothing in range if the correlation lengths ℓi are 
small, i.e. the constants sh are small.

The process noise variances qN, qT, qE, qV, qO are proportional to the time step duration,

 
2

Δ ,t
N Nq s t� (35)

etc. Each parameter is fitted within an altitude interval [hmin, hmax], below hmin and above hmax the parameter 
is fixed to the IRI model value with a small variance. The heights hmin,N, hmax,N, hmin,T, hmax,T, …, the constants 

h
Ns , h

Ts , h
Es , h

Vs , h
Os , and the constants t

Ns , t
Ts , t

Es , t
Vs , t

Os  are user inputs and may vary from one analysis run to 
another.
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4.  Plasma Parameter Fits with BAFIM
In this section we demonstrate plasma parameter fits with BAFIM in two use cases, ion composition fits 
in the F1 region and high-resolution E region analysis during auroral electron precipitation. We use field-
aligned observations from the EISCAT Svalbard radar (ESR) and the EISCAT ultra high frequency (UHF) 
radar. We consider fits of electron density (Ne), ion temperature (Ti), ion-to-electron temperature ratio (Tr), 
line-of-sight plasma bulk velocity (Vi), and ion composition (p = [O+]/Ne). In the results we show the elec-
tron temperature Te = Ti ⋅ Tr instead of Tr. While the assumption of smoothness in range is necessary in the 
selected demonstrations, we emphasize that BAFIM can be used also without this assumption, for exam-
ple to improve time resolution of four-parameter fits in low-elevation or bistatic observations. In this sec-
tion, standard GUISDAP fits and GUISDAP fits with BAFIM are referred to as “GUISDAP” and “BAFIM”, 
correspondingly.

Both ESR and UHF data are from experiments that use alternating codes (Lehtinen & Häggström, 1987). 
The ESR “ipy” experiment uses a 30-bit code sequence with 30 μs bit length and the data are decoded to 
2.25 km resolution. The UHF “arc1” experiment uses a 64-bit code sequence with 6 μs bit length and the 
data are decoded to 900  m resolution. In high signal-to-noise conditions GUISDAP may underestimate 
plasma parameter variances because it neglects correlations between autocorrelation function samples 
(Huuskonen & Lehtinen, 1996). Both experiments use randomized (Lehtinen et al., 1997) codes to reduce 
the correlations. If highly correlated data were analyzed with BAFIM, smoothing in time and range would 
be reduced due to the underestimation of errors in the GUISDAP fits.

4.1.  Ion Composition Fits

Ion frictional heating occurs when an electric field drives the ionospheric plasma through the neutral at-
mosphere and the ion gas is heated in collisions with neutral particles. The heating may affect F1 region ion 
composition, because reaction rates of some important charge-exchange reactions depend on temperature, 
and expansion of the neutral atmosphere may increase neutral N2 concentration in the F region (Kelly & 
Wickwar, 1981). Deviations from the IRI ion composition may bias F1 region ion temperature estimates in 
four-parameter GUISDAP fits of Ne, Te, Ti and Vi. An example of such an event is shown on the left in Fig-
ure 2, where four-parameter GUISDAP fit results with 60 s resolution are shown for 24 h of ESR data. Ion 
temperature (third panel on the left) has an artificial local maximum around 200 km altitude, where IRI 
predicts too much molecular ions (fourth panel).

In five-parameter BAFIM fit of the same data (Figure 2, middle panels), also the ion composition p is fit-
ted, and the analysis proceeds with 6 s time steps. Other BAFIM settings are listed in Table 1. The artificial 
ion temperature maximum, which is visible in the GUISDAP fit, is not produced in the BAFIM fit. The 
transition altitude, where number density of molecular ions is equal to O+ density (p = 50%, black lines in 
the fourth panels), is generally lower than in the IRI model. Difference of the two fit results (GUISDAP - 
BAFIM) is shown on the right in Figure 2, where one can see how the difference in p affects also Ti, Te and 
even Ne profiles. While the artifact around 200 km altitude was removed by BAFIM, the true ion frictional 
heating events between 4 and 7 UT, as well as the weaker Ti enhancements after 15 UT, are reproduced by 
BAFIM, demonstrating its ability to maintain true ion temperature maxima. We note that our results are 
very similar with those of Blelly et al. (2010), who used the same data to demonstrate a full-profile analysis 
technique based on ion energy equations.

4.2.  High-Resolution Observations of Auroral Electron Precipitation

IS radars can detect impact ionization and electron heating caused by auroral electron precipitation. While 
existing high-latitude IS radars can typically reach a time resolution of some tens of seconds in the four-pa-
rameter fits of Ne, Ti, Tr, and Vi, optical observations show that the precipitation may change substantially 
in a few seconds and even below (for example Dahlgren et al., 2016). High-resolution E region observations 
often rely on raw electron densities (for example Dahlgren et al., 2011; Semeter & Kamalabadi, 2005; Vir-
tanen et al., 2018), which are calculated assuming Te = Ti. However, this assumption may not be justified, 
since the precipitation heats the electron gas.
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Figure 3 shows plasma parameter fit results from three different analysis runs of an EISCAT UHF radar 
measurement on 12 December 2012 (a) a four-parameter GUISDAP fit with 60 s time resolution and range 
resolution varying from 3   to 13 km (b) a BAFIM fit with 4 s/900 m steps, and (d) a GUISDAP fit with 
4 s/900 m resolution. BAFIM settings are listed in Table 1. While plasma parameters from the GUISDAP 
fit are extremely noisy with the 4 s/900 m resolution, the BAFIM fit produces temperatures and velocities 
that match well with the standard coarse-resolution fit (for example, compare Ti and Vi in panels (a), (b), 
and (d)).

Importance of the temperature fit is demonstrated in Figure   3(c) which shows raw electron density Nr, 
BAFIM-fitted Ne, relative difference (Ne − Nr)/Nr, and the temperature ratio Te/Ti. The raw densities are 
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Figure 2.  Ion composition analysis. GUISDAP four-parameter fit with 60 s resolution (left), five-parameter BAFIM fit with 6 s time steps (middle), and 
difference of these two (GUISDAP - BAFIM) (right). In the default GUISDAP fit the ion composition is from the IRI model. BAFIM, Bayesian filtering module; 
GUISDAP, Grand Unified Incoherent Scatter Design and Analysis Package; IRI, International Reference Ionosphere.

ESR June 27, 2007 UHF December 12, 2012

sh st

hmin hmax

sh st

hmin hmax

(km) (km) (km) (km)

Ne 0.1 2.5 ⋅ 1010 m−3s−1/2 0 - 1.0 2.5 ⋅ 1011 m−3s−1/2 0 -

Ti 0.3 10 Ks−1/2 80 - 0.2 30 Ks−1/2 80 -

Tr 0.3 0.05 s−1/2 103 - 0.4 0.1 s−1/2 103 -

Vi 0.2 2.5 ms−3/2 80 - 0.1 5 ms−3/2 80 -

p 0.2 0.003 s−1/2 150 320 - - 0 0

BAFIM, Bayesian filtering module; ESR, EISCAT Svalbard radar; UHF, EISCAT ultra high frequency radar.
Ne, Ti, Tr, and Vi are fitted at all altitudes above hmin. p is not fitted at all in the E region analysis of the UHF data. The constants sh and st are scaling factors 
that control smoothness of the solutions in range and time, respectively, as explained in Section 3.

Table 1 
BAFIM Settings Used in the Data analysis
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clear underestimates after 22:50 UT, when electron precipitation heats the electron gas and Te > Ti. This 
effect was neglected for example in Virtanen et al. (2018), because the high-resolution four-parameter fits 
were practically impossible.

5.  Discussion
BAFIM is the first implementation of Bayesian filtering to IS plasma parameter fits. In this section we dis-
cuss some important properties of BAFIM and potential future improvements.

5.1.  Resolutions of BAFIM Fit Results

While the BAFIM analysis proceeds with short steps in range and time, each fit of plasma parameters (21) 
contains information from longer intervals because the steps are correlated. Exact “effective” resolutions 
cannot be easily calculated, since the correlation prior Equation 8 is nonstationary, the resolutions depend 
on measurement noise, and neglecting the error correlations in the GUISDAP implementation distorts 
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Figure 3.  High-resolution E region analysis (a) GUISDAP fit with 60 s time resolution and range resolution varying from 3  to 13 km (b) BAFIM fit with 
4 s/900 m steps (c) Nr, BAFIM-fitted Ne, relative difference ΔNe = (Ne − Nr)/Nr, and BAFIM Te/Ti (d) GUISDAP fit with 4 s/900 m resolutions.
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second moments of the posterior distribution. However, the correlation lengths in range (34) are known, 
and we can estimate the physical correlations in time from the fit itself. For example, in the ion composition 
fit in Section 3, the correlation lengths vary from 0.5 km (Ne in the E region) to 30 km (Ti in the F region), 
and random fluctuations in fitted Ne, Ti, Te, Vi, and p are uncorrelated in time scales longer than, 6 s, 12 s, 
24 s, 24 s, and 5 min, correspondingly.

5.2.  Tuning and Validating BAFIM

Tuning the process noise variances and correlation lengths of BAFIM may be nontrivial, since the correla-
tions in time allow part of the prior information introduced with the correlation priors to be passed from 
one time step to another. Any change in process noise variance must thus be compensated with a corre-
sponding change in correlation length to keep the effective smoothing in range unchanged. In addition, 
changing the process noise and correlation length of one plasma parameter may affect the others due to 
error correlations.

In this paper, BAFIM was tuned to produce practically uncorrelated electron densities, while correlation 
lengths and process noise variances of the other parameters were selected in such a way that noise level of 
the fitted parameters roughly matched with the default GUISDAP fits with 60 s resolution. The only phys-
ics-based part of the model are the correlation lengths, which are proportional to the plasma scale heights. 
Physics-based, automatic ways to tune the filter will be topics of future works. Alternative ways to tune the 
filter would be to derive theoretical limits for gradients in space and time, or to extract information on the 
correlation structures from existing measurements. Correlation structures of mesospheric winds have been 
extracted from meteor radar observations by Vierinen et al. (2019), and a similar work for incoherent scatter 
radars could be possible.

Validation of BAFIM results, the ion composition fits in particular, is a challenging task due to lack of meas-
urements from other instruments. Observations of F1 region ion composition are mainly from rockets, and 
the rocket observation would need to be from vicinity of the radar beam to enable reasonable comparisons. 
Alternatively, one could analyze simulated radar data corresponding a realistic model ionosphere. Such 
simulations would be possible for example with the simISR tool (Swoboda et al., 2017).

5.3.  Ion Composition Fits

In the ion composition fits a small process noise variance qO was used for the ion composition and a rela-
tively large variance qT was used for the ion temperature, which is equivalent with the assumption that ion 
temperature varies much more rapidly than ion composition. Only slow variations in composition were 
allowed, because allowing rapid variations in both ion composition and temperature may lead to unrealistic 
oscillations due to the temperature-ion composition ambiguity. With the selected tuning BAFIM can follow 
the relatively slow ion composition variations associated with the large scale convection electric field, but 
rapid variations caused, for example, by small scale electric fields around auroral arcs are challenging.

Time resolution of the composition fits could be improved if physics-based models were included in the 
prediction step. One could either model the temperature profiles or include a chemistry model that solves 
temperature-dependent compositions. The temperature profiles could be modeled, for example, with the 
techniques of Blelly et al. (2010) and Zettergren et al. (2011) while chemistry modeling could be adopted 
for example from Richards and Voglozin (2011). Also D region ion composition and temperatures could be 
observed if a sufficient model, for example the Sodankylä Ion and Neutral Chemistry (SIC) model (Turunen 
et al., 2016) was used.

5.4.  EISCAT_3D

EISCAT_3D (McCrea et  al.,  2015) is the next-generation geospace radar system currently being built in 
northern Norway, Sweden, and Finland. The radar will provide an order-of-magnitude improvement in 
measurement speed, and it will be the first multistatic, multibeam incoherent scatter radar system. EI-
SCAT_3D will be able to conduct volumetric observations, including three dimensional observations of 
plasma flows.
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If BAFIM-like analysis was applied to field-aligned EISCAT_3D measurements, the order-of-magnitude 
improvement would mean subsecond time steps in four-parameter fits, and resolutions sufficient for rapidly 
varying conditions in association with aurora in ion composition fits. The volumetric observations would 
allow one to implement three dimensional models of the ionosphere in the prediction step. An EISCAT_3D 
analysis tool could be designed for the volumetric observations and could make optimal use of the multi-
static, multibeam data, following the idea of Virtanen et al. (2014).

6.  Conclusions
We have introduced an incoherent scatter analysis technique that allows us to control plasma parameter 
gradients in both time and space using Bayesian filtering and correlation priors. The technique is imple-
mented as a Bayesian Filtering Moculde (BAFIM) in the GUISDAP analysis package. BAFIM allows us to 
to fit F1 region ion compositions and transition altitudes, and to include ion and electron temperatures in 
high resolution plasma parameter fits, in field-aligned incoherent scatter measurements. Improvements 
provided by the new analysis tool were demonstrated with EISCAT radar data, including fits of F1 region 
ion composition and high-resolution E region plasma parameter fits during short-lived auroral precipitation 
events. The technique could be extended to volumetric, multistatic observations of the EISCAT_3D radar 
and supplemented with ion chemistry models.

Data Availability Statement
The EISCAT data and the GUISDAP software are available for download from the EISCAT web page (http://
www.eiscat.se). BAFIM is available at https://doi.org/10.5281/zenodo.4033904.
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