Skip to main content
Log in

The Gaia Hypothesis: Fact, Theory, and Wishful Thinking

  • Published:
Climatic Change Aims and scope Submit manuscript

Abstract

Organisms can greatly affect their environments, and the feedback coupling between organisms and their environments can shape the evolution of both. Beyond these generally accepted facts, the Gaia hypothesis advances three central propositions: (1) that biologically mediated feedbacks contribute to environmental homeostasis, (2) that they make the environment more suitable for life, and (3) that such feedbacks should arise by Darwinian natural selection. These three propositions do not fare well under close scrutiny. (1) Biologically mediated feedbacks are not intrinsically homeostatic. Many of the biological mechanisms that affect global climate are destabilizing, and it is likely that the net effect of biological feedbacks will be to amplify, not dampen, global warming. (2) Nor do biologically mediated feedbacks necessarily enhance the environment, although it will often appear as if this were the case, simply because natural selection will favor organisms that do well in their environments – which means doing wellunder the conditions that they and their co-occurring species have created. (3) Finally, Gaian feedbacks can evolve by natural selection, but so can anti-Gaian feedbacks. Daisyworld models evolve Gaian feedback because they assume that any trait that improves the environment will also give a reproductive advantage to its carriers (over other organisms that share the same environment). In the real world, by contrast, natural selection favors any trait that gives its carriers a reproductive advantage over its non-carriers, whether it improves or degrades the environment (and thereby benefits or hinders its carriers and non-carriers alike). Thus Gaian and anti-Gaian feedbacks are both likely to evolve.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Charlson, R. J., Lovelock, J. E., Andreae, M. O., and Warren, S. G.: 1987, ‘Oceanic Phytoplankton, Atmospheric Sulphur, Cloud Albedo and Climate’, Nature 326, 655–661.

    Google Scholar 

  • Ciais, P., Tans, P. P., Trolier, M., White, J. W. C., and Francey, R. J.: 1995, ‘A Large Northern Hemisphere Terrestrial CO2 Sink Indicated by the 13C/12C ratio of atmospheric CO2’, Science 269, 1098–1102.

    Google Scholar 

  • Falkowski, P., Scholes, R. J., Boyle, E., Canadell, J., Canfield, D., Elser, J., Gruber, N., Hibbard, K., Hogberg, P., Linder, S., Mackenzie, F. T., Moore, B., Pedersen, T., Rosenthal, Y., Seitzinger, S., Smetacek, V., and Steffen, W.: 2000, ‘The Global Carbon Cycle: A Test of Our Knowledge of Earth as a System’, Science 290, 291–296.

    Google Scholar 

  • Gillon, J.: 2000, ‘Feedback on Gaia’, Nature 406, 685–686.

    Google Scholar 

  • Hamilton, W. D.: 1995, ‘Ecology in the Large: Gaia and Ghengis Khan’, J. Appl. Ecol. 32, 451–453.

    Google Scholar 

  • Harvey, H. W.: 1957, The Chemistry and Fertility of Sea Waters, Cambridge University Press, New York.

    Google Scholar 

  • Henderson, L. J.: 1913, The Fitness of the Environment, MacMillan, New York.

    Google Scholar 

  • Holland, H. D.: 1964, ‘The Chemical Evolution of the Terrestrial and Cytherian Atmospheres’, in Brancazio, P. J. and Cameron, A. G. W. (eds.), The Origin and Evolution of Atmospheres and Oceans, Wiley, New York.

    Google Scholar 

  • Holland, H. D.: 1984, The Chemical Evolution of the Atmosphere and Oceans, Princeton University Press, Princeton, N. J.

    Google Scholar 

  • Hutchinson, G. E.: 1954, ‘The Biogeochemistry of the Terrestrial Atmosphere’, in Kuiper, G. P. (ed.), The Earth as a Planet, University of Chicago Press, Chicago, pp. 371–433.

    Google Scholar 

  • Huxley, T. H.: 1877, Physiography, MacMillan and Co., London.

    Google Scholar 

  • Keeling, C. D., Chin, J. F. S., and Whorf, T. P.: 1996a, ‘Increased Activity of Northern Vegetation Inferred from Atmospheric CO2 Measurements’, Nature 382, 146–149.

    Google Scholar 

  • Keeling, R. F., Piper, S. C., and Heimann, M.: 1996b, ‘Global and Hemispheric CO2 Sinks Deduced from Changes in Atmospheric O2 Concentration’, Nature 381, 218–221.

    Google Scholar 

  • Kerr, R. A.: 1988, ‘No Longer Willful, Gaia Becomes Respectable’, Science 240, 393–395.

    Google Scholar 

  • Kirchner, J. W.: 1989, ‘The Gaia Hypothesis: Can It Be Tested?’, Rev. Geophys. 27, 223–235.

    Google Scholar 

  • Kirchner, J. W.: 1990, ‘Gaia Metaphor Unfalsifiable’, Nature 345, 470.

    Google Scholar 

  • Kirchner, J. W.: 1991, ‘The Gaia Hypotheses: Are They Testable? Are They Useful?’, in Schneider, S. H. and Boston, P. J. (ed.), Scientists on Gaia, MIT Press, Cambridge, Massachusetts, pp. 38–46.

    Google Scholar 

  • Kirchner, J.W. and Roy, B. A.: 1999, ‘The Evolutionary Advantages of Dying Young: Epidemiological Implications of Longevity in Metapopulations’, Amer. Naturalist 154, 140–159.

    Google Scholar 

  • Kleidon, A.: 2002, ‘Testing the Effect of Life on Earth's Functioning: How Gaian Is the Earth System?’, Clim. Change, this issue.

  • Lashof, D. A.: 1989, ‘The Dynamic Greenhouse: Feedback Processes That May Influence Future Concentrations of Atmospheric Trace Gases in Climatic Change’, Clim. Change 14, 213–242.

    Google Scholar 

  • Lashof, D. A., DeAngelo, B. J., Saleska, S. R., and Harte, J.: 1997, ‘Terrestrial Ecosystem Feedbacks to Global Climate Change’, Ann. Rev. Energy Environ. 22, 75–118.

    Google Scholar 

  • Legrand, M., Feniet-Saigne, C., Saltzman, E. S., Germain, C., Barkov, N. I., and Petrov, V. N.: 1991, ‘Ice-Core Record of Oceanic Emissions of Dimethylsulphide during the Last Climate Cycle’, Nature 350, 144–146.

    Google Scholar 

  • Legrand, M. R., Delmas, R. J., and Charlson, R. J.: 1988, ‘Climate Forcing Implications from Vostok Ice-Core Sulphate Data’, Nature 334, 418–420.

    Google Scholar 

  • Lenton, T. M.: 1998, ‘Gaia and Natural Selection’, Nature 394, 439–447.

    Google Scholar 

  • Lovelock, J. E.: 1986, ‘Geophysiology: A New Look at Earth Science’, in Dickinson, R. E. (ed.), The Geophysiology of Amazonia: Vegetation and Climate Interactions, Wiley, New York, pp. 11–23.

    Google Scholar 

  • Lovelock, J. E. and Kump, L. R.: 1994, ‘Failure of Climate Regulation in a Geophysiological Model’, Nature 369, 732–734.

    Google Scholar 

  • Lovelock, J. E. and Margulis, L.: 1974a, ‘Homeostatic Tendencies of the Earth's Atmosphere’, Origins Life 5, 93–103.

    Google Scholar 

  • Lovelock, J. E. and Margulis, L.: 1974b, ‘Atmospheric Homeostasis by and for the Biosphere: The Gaia Hypothesis’, Tellus 26, 2–9.

    Google Scholar 

  • Myneni, R. B., Keeling, C. D., Tucker, C. J., Asrar, G., and Nemani, R. R.: 1997, ‘Increased Plant Growth in the Northern High Latitudes from 1981 to 1991’, Nature 386, 698–702.

    Google Scholar 

  • Petit, J. R., Jouzel, J., Raynaud, D., Barkov, N. I., Barnola, J.-M., Basile, I., Bender, M., Chappellaz, J., Davisk, M., Delaygue, G., Delmotte, M., Kotlyakov, V. M., Legrand, M., Lipenkov, V. Y., Lorius, C., Pepin, L., Ritz, C., Saltzmank, E., and Stievenard, M.: 1999, ‘Climate and Atmospheric History of the Past 420,000 Years from the Vostok Ice Core, Antarctica’, Nature 399, 429–436.

    Google Scholar 

  • Redfield, A. C.: 1958, ‘The Biological Control of Chemical Factors in the Environment’, Amer. J. Sci. 46, 205–221.

    Google Scholar 

  • Saleska, S. R., Harte, J., and Torn, M. S.: 1999, ‘The Effect of Experimental Ecosystem Warming on CO2 Fluxes in a Montane Meadow’, Global Change Biol. 5, 125–141.

    Google Scholar 

  • Schneider, S. H.: 2001, ‘A Goddess of Earth or the Imagination of a Man?’, Science 291, 1906–1907.

    Google Scholar 

  • Schneider, S. H. and Londer, R.: 1984, The Coevolution of Climate and Life, San Francisco, Sierra Club Books.

    Google Scholar 

  • Schwartzmann, D. W. and Volk, T.: 1989, ‘Biotic Enhancement of Weathering and the Habitability of Earth’, Nature 340, 457–460.

    Google Scholar 

  • Sillen, L. G.: 1966, ‘Regulation of O2, N2, and CO2 in the Atmosphere; Thoughts of a Laboratory Chemist’, Tellus 18, 198–206.

    Google Scholar 

  • Spencer, H.: 1844, ‘Remarks upon the Theory of Reciprocal Dependence in the Animal and Vegetable Creations, as Regards its Bearing upon Paleontology’, London Edinburgh Dublin Phil. Magazine and J. Science 24, 90–94.

    Google Scholar 

  • Tans, P. P., Fung, I. Y., and Takahashi, T.: 1990, ‘Observational Constraints on the Global Atmospheric CO2 Budget’, Science 247, 1431–1438.

    Google Scholar 

  • Volk, T.: 1998, Gaia's Body: Toward a Physiology of Earth, Copernicus, New York.

    Google Scholar 

  • Watson, A. J., Bakker, D. C. E., Ridgwell, A. J., Boyd, P. W., and Law, C. S.: 2000, ‘Effect of Iron Supply on Southern Ocean CO2 Uptake and Implications for Glacial Atmospheric CO2’, Nature 407, 730–733.

    Google Scholar 

  • Watson, A. J. and Liss, P. S.: 1998, ‘Marine Biological Controls on Climate via the Carbon and Sulphur Geochemical Cycles’, Phil. Trans. Roy. Soc. London, Series B 353, 41–51.

    Google Scholar 

  • Watson, A. J. and Lovelock, J. E.: 1983, ‘Biological Homeostasis of the Global Environment: The Parable of Daisyworld’, Tellus, Series B: Chem. Phys. Meterol. 35, 284–289.

    Google Scholar 

  • Woodward, F. I., Lomas, M. R., and Betts, R. A.: 1998, ‘Vegetation-Climate Feedbacks in a Greenhouse World’, Phil. Trans. Roy. Soc. London, Series B 353, 29–39.

    Google Scholar 

  • Woodwell, G. M., Mackenzie, F. T., Houghton, R. A., Apps, M., Gorham, E., and Davidson, E.: 1998, ‘Biotic Feedbacks in the Warming of the Earth’, Clim. Change 40, 495–518. (Received 16 May 2001; in revised form 9 July 2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kirchner, J.W. The Gaia Hypothesis: Fact, Theory, and Wishful Thinking. Climatic Change 52, 391–408 (2002). https://doi.org/10.1023/A:1014237331082

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1014237331082

Keywords

Navigation