Skip to main content
Log in

Unraveling the Photosystem I Reaction Center: A History, or the Sum of Many Efforts

  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

This article describes some aspects of the history of the discovery of the structure and function of Photosystem I (PS I). PS I is the largest and most complex membrane protein for which detailed structural and functional information is now available. This short historical review cannot cover all the work that has been carried out over more than 50 years, nor provide a deep insight into the structure and function of this protein complex. Instead, this review focuses on more personal views of some of the key discoveries, starting in the 1950s with the discovery of the existence of two photoreactions in oxygenic photosynthesis, and ending with the race towards an atomic structure of PS I.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Almog O, Shoham G, Michaeli D and Nechushtai R (1991) Monomeric and trimeric forms of Photosystem I reaction center of Mastigocladus laminosus: crystallization and preliminary characterization. Proc Natl Acad Sci USA 88: 5312–5316

    PubMed  CAS  Google Scholar 

  • Andersen B (1994) Structure and Function of Photosystem I. Thesis. Department of Plant Biology, Royal Veterinary and Agricultural University, Frederiksberg C, Denmark

    Google Scholar 

  • Andersen B and Scheller HV (eds) (1993) Structure, Function and Assembly of Photosystem I. Academic Press

  • Anderson JM and Boardman NK (1966) Fractionation of the photochemical systems of photosynthesis. I. Chlorophyll content and photochemical activities of particles isolated from spinach chloroplasts. Biochim Biophys Acta 112: 403–421

    CAS  Google Scholar 

  • Baszynski T, Brand J, Krogmann DW and Crane FL (1971) Plastocyanin participation in chloroplast Photosystem I. Biochim Biophys Acta 234: 537–540

    PubMed  CAS  Google Scholar 

  • Beinert H, Kok B and Hoch G (1962) The light induced electron paramagnetic resonance signal of photocatalyst P700. Biochem Biophys Res Comm 7: 209–212

    PubMed  CAS  Google Scholar 

  • Bengis C and Nelson N (1975) Purification and properties of the Photosystem I reaction center from chloroplasts. J Biol Chem 250: 2783–2788

    PubMed  CAS  Google Scholar 

  • Bengis C and Nelson N (1977) Subunit structure of chloroplast Photosystem I reaction center. J Biol Chem 252: 4564–4569

    PubMed  CAS  Google Scholar 

  • Ben-Shem A, Frolow F and Nelson N (2003) Crystal structure of plant Photosystem I. Nature 426: 630–635

    PubMed  CAS  Google Scholar 

  • Bibby TS, Nield J, Partensky F and Barber J (2001) Iron deficiency induces the formation of an antenna ring around trimeric Photosystem I in cyanobacteria. Nature 412: 743–745

    PubMed  CAS  Google Scholar 

  • Bittl R, Zech SG, Fromme P, Witt HT and Lubitz W (1997) Pulse EPR structure analysis of Photosystem I single crystals: localization of the phylloquinone acceptor. Biochemistry 36: 12001–12004

    PubMed  CAS  Google Scholar 

  • Blankenship RE (1992) Origin and early evaluation of photosynthesis. Photosynth Res 33: 91–111

    PubMed  CAS  Google Scholar 

  • Boardman NK, Thorne SW and Anderson JM (1966) Fluorescence properties of particles obtained by digitonin fragmentation of spinach chloroplasts. Proc Natl Acad Sci USA 56: 586–593

    PubMed  CAS  Google Scholar 

  • Boekema EJ, Dekker JP, van Heel M, Rögner M, Saenger W, Witt I and Witt H (1987) Evidence for a trimeric organization of the Photosystem I complex from the thermophilic cyanobacterium Synechococcus sp. FEBS Lett 217: 283–286

    CAS  Google Scholar 

  • Boekema EJ, Dekker JP, Rögner M, Saenger W, Witt I, Witt H and van Heel M (1989) Refined analysis of the trimeric structure of the isolated photosystem I complex from the thermophilic cyanobacterium Synechococcus sp. Biochim Biophys Acta 974: 81–87

    CAS  Google Scholar 

  • Boekema EJ, Wynn RM and Malkin R (1990) The structure of spinach Photosystem I studied by electron microscopy. Biochim Biophys Acta 1017: 49–56

    CAS  Google Scholar 

  • Boekema EJ, Hifney A, Yakushevska AE, Piotrowski M, Keegstra W, Berry S, Michel K-P, Pistorius EK and Kruip J (2001) A giant chlorophyll-protein complex induced by iron deficiency in cyanobacteria. Nature 412: 745–748

    PubMed  CAS  Google Scholar 

  • Bohme H and Kunert KJ (1980) Photoreactions of cytochromes in algal chloroplasts. Eur J Biochem 106: 329–336

    Article  PubMed  CAS  Google Scholar 

  • Bonnerjea J and Evans MCW (1982) Identification of multiple components in the intermediary electron carrier complex of Photosystem I. FEBS Lett 148: 313–316

    CAS  Google Scholar 

  • Böttcher B, Gräber P and Boekema EJ (1992) The structure of Photosystem I from the thermophilic cyanobacterium Synechococcus sp. determined by electron microscopy of two-dimensional crystals. Biochim Biophys Acta 1100: 125–136

    PubMed  Google Scholar 

  • Bottin H and Lagoutte B (1992) Ferredoxin and flavodoxin from the cyanobacterium Synechocystis sp. PCC 6803. Biochim Biophys Acta 1101: 48–56

    PubMed  CAS  Google Scholar 

  • Breton J, Roux E and Whitmarsh J (1975) Dichroism of chlorophyll a I absorption change at 700 nm using chloroplasts oriented in a magnetic field. Biochem Biophys Res Comm 64: 1274–1277

    CAS  Google Scholar 

  • Breton J, Nabedryk E and Leibl W(1999) FTIR study of the primary electron donor of Photosystem I (P700) revealing delocalization of the charge in P700+ and localization of the triplet character in 3P700. Biochemistry 38: 11585–11592

    PubMed  CAS  Google Scholar 

  • Brettel K (1997) Electron transfer and arrangement of the redox cofactors in Photosystem I. Biochim Biophys Acta 1318: 322–373

    CAS  Google Scholar 

  • Brettel K and Golbeck JH (1995) Spectral and kinetic characterization of electron acceptor A1 in a Photosystem I core devoid of iron-sulfur centers FX, FB and FA. Photosyn Res 45: 183–193

    CAS  Google Scholar 

  • Brettel K and Leibl W (2001) Electron transfer in Photosystem I. Biochim Biophys Acta 1507: 100–114

    PubMed  CAS  Google Scholar 

  • Cederstrand CN and Govindjee (1966) Some properties of spinach chloroplast fractions obtained by digitonin solubilization. Biochim Biophys Acta 120: 177–180

    PubMed  CAS  Google Scholar 

  • Chitnis PR (1996) Photosystem I. Plant Physiol 111: 661–669

    PubMed  CAS  Google Scholar 

  • Commoner B (1961) Electron spin resonance studies of photosynthetic systems. In: Mc Elroy WD and Glass B (eds) Light and Life, pp 356–377. The John Hopkins Press, Baltimore, Maryland

    Google Scholar 

  • Commoner B, Heise JJ and Townsend J (1956) Light-induced paramagnetism in chloroplasts. Proc Natl Acad Sci USA 42: 710–718

    PubMed  CAS  Google Scholar 

  • Deligiannakis Y, Hanley J and Rutherford AW (1997) Spin-lattice relaxation of the phylloquinone radical of Photosystem I. Biochemistry 37: 3329–3336

    Google Scholar 

  • Diaz-Quintana A, Leibl W, Bottin H and Sétif P (1998) Electron transfer in Photosystem I. Reaction centers follow a linear pathway in which iron-sulfur cluster FB is the immediate electron donor to soluble ferredoxin. Biochemistry 37: 3429–3439

    PubMed  CAS  Google Scholar 

  • Dietrich WE and Thornber JP (1971) The P700-chlorophyll aprotein of a blue-green alga. Biochim Biophys Acta 245: 482–493

    PubMed  CAS  Google Scholar 

  • Döring G, Bailey JL, Weikara J and Witt HT (1968) Some new results in photosynthesis, the action of two chlorophyll aI molecules in light reaction I of photosynthesis. Naturwissenschaften 5: 219–224

    Google Scholar 

  • Duysens LNM (1960) Cytochrome oxidation by a second photochemical system in the red alga Porphyridium cruentum. In: Christensen BC and Buchanan B (eds) Progress in Photobiology. Proceedings of the 3rd International Congress on Photobiology, Copenhagen 1960, pp 135–142. Elsevier, Amsterdam

    Google Scholar 

  • Duysens LNM (1989) The discovery of the two photosynthetic systems: a personal account. Photosynth Res 21: 61–79

    CAS  Google Scholar 

  • Duysens LNM, Amesz J and Kamp BM (1961) Two photochemical systems in photosynthesis. Nature 190: 510–511

    PubMed  CAS  Google Scholar 

  • Dzuba SA, Gast P and Hoff AJ (1997) Electron spin echo of spin polarized radical pairs in the intact quinone reconstituted plant Photosystem I reaction center. Chem Phys Lett 236: 595–602

    Google Scholar 

  • Evans MCW, Reeves SG and Cammack R (1974) Determination of the oxidation-reduction potential of the bound iron-sulphur proteins of the primary electron acceptor complex of Photosystem I in spinach chloroplasts. FEBS Lett 49: 111–114

    PubMed  CAS  Google Scholar 

  • Evans MCW, Sihra CK, Bolton JR and Cammack R (1975) Primary electron acceptor complex of Photosystem I in spinach chloroplasts.Nature 256: 668–670

    CAS  Google Scholar 

  • Farah J, Rappaport F, Choquet Y, Joliot P and Rochaix JD (1995) Isolation of a psaF-deficient mutant of Chlamydomonas reinhardtii: efficient interaction of plastocyanin with the Photosystem I reaction center is mediated by the PsaF subunit. EMBO J 14: 4976–4984

    PubMed  CAS  Google Scholar 

  • Fish L, Kuck U and Bogorad L (1985) Two partially homologous adjacent light-inducible maize chloroplast genes encoding polypeptides of the P700 chlorophyll a protein complex of Photosystem I. J Biol Chem 260: 1413–1421

    PubMed  CAS  Google Scholar 

  • Ford RC (1987) Investigation of highly stable Photosystem I chlorophyll-protein complexes from the thermophilic cyanobacterium Phormidium laminosum. Biochim Biophys Acta 893: 115–125

    CAS  Google Scholar 

  • Ford RC and Holzenburg A (1988) Investigation of the structure of trimeric and monomeric Photosytem I reaction centre complexes.EMBO J 7: 2287–2293

    PubMed  CAS  Google Scholar 

  • Ford R, Paupit R and Holzenburg A (1988) Structural studies on improved crystals of the Photosystem I reaction centre from Phormidium laminosum. FEBS Lett 238: 385–389

    CAS  Google Scholar 

  • Ford RC, Hefti A and Engel A (1990) Ordered arrays of the Photosystem I reaction centre after reconstitution: projections and surface reliefs of the complex at 2 nm resolution. EMBO J 9: 3067–3075

    PubMed  CAS  Google Scholar 

  • Fotiadis D, Muller DJ, Tsiotis G, Hasler L, Tittmann P, Mini T, Jeno P, Gross H and Engel A (1998) Surface analysis of the Photosystem I complex by electron and atomic force microscopy. J Mol Biol 283: 83–94

    PubMed  CAS  Google Scholar 

  • Frank K, McLean MB and Sauer K (1979) Triplet states in Photosystem I of spinach chloroplasts and subchloroplast particles. Proc Natl Acad Sci USA 76: 5124–5128

    PubMed  CAS  Google Scholar 

  • Fromme P (1998) Crystallization of Photosystem I for structural analysis. Habilitation. Technical University Berlin, Berlin

    Google Scholar 

  • Fromme P (2003) Crystallization of Photosystem I. In: Iwata S (ed) Methods and Results in Crystallization of Membrane Proteins.pp 147–173. International University Line, La Jolla, California

    Google Scholar 

  • Fromme P, Jordan P and Krauß N (2001) Structure of Photosystem I. Biochim Biophys Acta 1507: 5–31

    PubMed  CAS  Google Scholar 

  • Fromme P, Bottin H, Krauß N and Sétif P (2002) Crystallization and electron paramagnetic resonance characterization of the complex of Photosystem I with its natural electron acceptor ferredoxin. Biophys J 83: 1760–1773

    PubMed  CAS  Google Scholar 

  • Fujita I, Davis MS and Fajer J (1978) Anion radicals of pheophytin and chlorophyll a: their role in the primary charge separations of plant photosynthesis. J Am Chem Soc 100: 6280–6282

    CAS  Google Scholar 

  • Gast P, Swarthoff T, Ebskamp FCR and Hoff AJ (1983) Evidence for a new early acceptor in Photosystem I of plants. An ESR investigation of reaction center triplet yield and of the reduced intermediary acceptors. Biochim Biophys Acta 722: 163–175

    CAS  Google Scholar 

  • Germano M, Yakushevska AE, Keegstra W, van Gorkom HJ, Dekker JP and Boekema EJ (2002) Supramolecular organization of Photosystem I and light-harvesting complex I in Chlamydomonas reinhardtii. FEBS Lett 525: 121–125

    PubMed  CAS  Google Scholar 

  • Gobets B and van Grondelle R (2001) Energy transfer and trapping in Photosystem I. Biochim Biophys Acta 1507: 80–99

    PubMed  CAS  Google Scholar 

  • Golbeck JH (1996) Photosystem I. Plant Physiol 111: 661–669

    Google Scholar 

  • Golbeck JH and Bryant DA (1991) Photosystem I. Curr Top Bioenerg 16: 83–177

    CAS  Google Scholar 

  • Golbeck JH and Cornelius JM (1986) Photosystem I charge separation in the absence of centers A and B. I. Optical characterization of center ‘A2’ and evidence for its association with a 64-kDa peptide. Biochim Biophys Acta 849: 16–24

    CAS  Google Scholar 

  • Guergova-Kuras M, Boudreaux B, Joliot A, Joliot P and Redding K (2001) Evidence for two active branches for electron transfer in Photosystem I. Proc Natl Acad Sci USA 98: 4437–4442

    PubMed  CAS  Google Scholar 

  • Hastings G and Sivakumar V (2001) A Fourier transform infrared absorption difference spectrum associated with the reduction of A1 in Photosystem I: are both phylloquinones involved in electron transfer? Biochemistry 40: 3681–3689

    PubMed  CAS  Google Scholar 

  • Hatanaka H, Sonoike K, Hirano M and Katoh S (1992) Electron transfer from cytochrome c553 to P700 in cyanobacterial reaction center complexes with and without bound PsaF gene product. In: Murata N (ed) Research in Photosynthesis, Vol I, pp 601–604. Kluwer Academic Publishers, Dordrecht, The Netherlands

    Google Scholar 

  • Hatanaka H, Sonoike K, Hirano M and Katoh S (1993) Small subunits of Photosystem I reaction center complexes from Synechococcus elongatus. I. Is the psaF gene product required for oxidation of cytochrome c-553? Biochim Biophys Acta 1141: 45–51

    PubMed  CAS  Google Scholar 

  • Hayashida N, Matsubayashi T, Shinozaki K, Sugiura M, Inoue K and Hiyama T (1987) The gene for the 9 kD polypeptide, a possible apoprotein for the iron-sulfur centers A and B of the Photosystem I complex, in tobacco chloroplast DNA. Curr Genet 12: 247–250

    PubMed  CAS  Google Scholar 

  • Heathcote P, Rigby SEJ and Evans MC (1995) Electron nuclear double resonance (ENDOR) studies of the phylloquinone electron acceptor (A1) in the Photosystem I reaction centre. In: Mathis P (ed) Photosynthesis: from Light to Biosphere, Vol II, pp 163–166. Kluwer Academic Publishers, Dordrecht, The Netherlands

    Google Scholar 

  • Heathcote P, Moenne-Loccoz P, Rigby SE and Evan MC (1996) Photoaccumulation in Photosystem I does produce a phylloquinone (A1.-) radical. Biochemistry 35: 6644–6650

    PubMed  CAS  Google Scholar 

  • Hecks B, Wulf K, Breton J, Leibl Wand Trissl H-W (1994) Primary charge separation in Photosystem I: a two-step electrogenic charge separation connected with P700+A0 - and P700+A1 - formation. Biochemistry 33: 8619–8625

    PubMed  CAS  Google Scholar 

  • Hefti A, Ford RC, Miller M, Cox RP and Engel A (1992) Analysis of the structure of Photosystem I in cyanobacterial thylakoid membranes. FEBS Lett 296: 29–32

    PubMed  CAS  Google Scholar 

  • Herrmann RG, Oelmueller R, Bichker J, Schneidbauer A, Stepphuhn J, Wedel N, Tyagi AK and Westhoff P (1991) The thylakoid membrane of higher plants: genes, their expression and interaction. In: Herrmann RG and Larkins BA (eds) Plant Molecular Biology, 2. Plenum, New York

  • Hill R and Bendall F (1960) Function of the two cytochrome components in chloroplasts: a working hypothesis. Nature 186: 136–137

    CAS  Google Scholar 

  • Hippler M, Reichert J, Sutter M, Zak E, Altschmied L, Schroer U, Herrmann RG and Haehnel W (1996) The plastocyanin binding domain of Photosystem I. EMBO J 15: 6374–6384

    PubMed  CAS  Google Scholar 

  • Hiyama T and Ke B (1971) A new photosynthetic pigment, 'P430': its possible role as the primary electron acceptor of Photosystem I. Proc Natl Acad Sci USA 68: 1010–1013

    PubMed  CAS  Google Scholar 

  • Høj PB, Svendsen I, Scheller HV and Møller BL (1987) Identification of a chloroplast-encoded 9-kDa polypeptide as a 2[4Fe- 4S] protein carrying centers A and B of Photosystem I. J Biol Chem 262: 12676–12684

    PubMed  Google Scholar 

  • Ikeuchi M, Nyhus KJ, Inoue Y and Pakrasi HB (1991) Identities of four low-molecular-mass subunits of the Photosystem I complex from Anabaena variabilis ATCC 29413. Evidence for the presence of the psaI gene product in a cyanobacterial complex. FEBS Lett 287: 5–9

    PubMed  CAS  Google Scholar 

  • Itoh S, Iwaki M and Ikegami I (1987) Extraction of vitamin K-1from Photosystem I particles by treatment with diethyl ether and its effects on the A-1 EPR signal and System I photochemistry.Biochim Biophys Acta 893: 508–516

    CAS  Google Scholar 

  • Iwaki M, Takahashi M, Shimada K, Takahashi Y and Itoh S (1992) Photoaffinity labeling of the phylloquinone-binding polypeptides by 2-azidoanthraquinone in Photosystem I particles. FEBS Lett 312: 27–30

    PubMed  CAS  Google Scholar 

  • Jansson S, Andersen B and Scheller HV (1996) Nearest-neighbor analysis of higher-plant Photosystem I holocomplex. Plant Physiol 112: 409–420

    PubMed  CAS  Google Scholar 

  • Jekow P, Fromme P, Witt H and Saenger W (1995) Photosystem I from Synechococcus elongatus: preparation and crystallization of monomers with varying subunit compositions. Biochim Biophys Acta 1229: 115–120

    Google Scholar 

  • Jekow P, Fromme P, Witt H and Saenger W (1996) Crystallisation of intact and subunit L-deficient monomers from Synechocystis PCC 6803 Photosystem I. Z Naturforsch 51c: 195–199

    Google Scholar 

  • Jordan P, Fromme P, Witt HT, Klukas O, Saenger W and Krauß N (2001) Three-dimensional structure of cyanobacterial Photosystem I at 2.5A resolution. Nature 411: 909–917

    PubMed  CAS  Google Scholar 

  • Kargul J, Nield J and Barber J (2003) Three-dimensional reconstruction of a light-harvesting complex I-Photosystem I (LHCI-PSI) supercomplex from the green alga Chlamydomonas reinhardtii. Insights into light harvesting for PSI. J Biol Chem 278: 16135–16141

    PubMed  CAS  Google Scholar 

  • Kathoh S (2003) Early research on the role of plastocyanin in photosynthesis. Photosynth Res 76: 255–261

    Google Scholar 

  • Katoh S and San Pietro A (1966) Activities of chloroplast fragments. I. Hill reaction and ascorbate-indophenol photoreductions.J Biol Chem 241: 3575–3581

    PubMed  CAS  Google Scholar 

  • Ke B, Hansen RE and Beinert H (1973) Oxidation-reduction potentials of bound iron-sulfur proteins of Photosystem I. Proc Natl Acad Sci USA 70: 2941–2945

    PubMed  CAS  Google Scholar 

  • Kitmitto A, Holzenburg A and Ford RC (1997) Two-dimensional crystals of Photosystem I in higher plant grana margins. J Biol Chem 272: 19497–19501

    PubMed  CAS  Google Scholar 

  • Kitmitto A, Mustafa AO, Holzenburg A and Ford RC (1998) Threedimensional structure of higher plant Photosystem I determined by electron crystallography. J Biol Chem 273: 29592–29599

    PubMed  CAS  Google Scholar 

  • Klukas O, Schubert WD, Jordan P, Krauß N, Fromme P, Witt HT and Saenger W(1999a) Localization of two phylloquinones, QK and Q K , in an improved electron density map of Photosystem I at 4Å resolution. J Biol Chem 274: 7361–7367

    PubMed  CAS  Google Scholar 

  • Klukas O, Schubert WD, Jordan P, Krauß N, Fromme P, Witt HT and Saenger W (1999b) Photosystem I, an improved model of the stromal subunits PsaC, PsaD, and PsaE. J Biol Chem 274: 7351–7360

    PubMed  CAS  Google Scholar 

  • Knoetzel J, Mant A, Haldrup A, Jensen PE and Scheller HV (2002) PSI-O, a new 10-kDa subunit of eukaryotic Photosystem I. FEBS Lett 510: 145–148

    PubMed  CAS  Google Scholar 

  • Koike K, Ikeuchi M, Hiyama T and Inoue Y (1989) Identification of Photosystem I components from the cyanobacterium Synechococcus vulcanus by N-terminal sequencing. FEBS Lett 253: 257–263

    PubMed  CAS  Google Scholar 

  • Kok B (1956) On the reversible absorption changes at 705 nm in photosynthetic organisms. Biochim Biophys Acta 22: 399–401

    PubMed  CAS  Google Scholar 

  • Krauß N, Hinrichs W, Witt I, Fromme P, Pritzkow W, Dauter Z, Betzel C, Wilson KS, Witt HT and Saenger W (1993) Three-dimensional structure of System I of photosynthesis at 6Å resolution. Nature 361: 326–361

    Google Scholar 

  • Krau#x00DF; N, Schubert WD, Klukas O, Fromme P, Witt HT and Saenger W (1996) Photosystem I at 4Å resolution represents the first structural model of a joint photosynthetic reaction centre and core antenna system. Nat Struct Biol 3: 965–973

    Google Scholar 

  • Kruip J, Boekema EJ, Bald D, Boonstra AF and Rögner M (1993) Isolation and structural characterization of monomeric and trimeric Photosystem I complexes (P700.FA/FB and P700.FX) from the cyanobacterium Synechocystis PCC 6803. J Biol Chem 268: 23353–23360

    PubMed  CAS  Google Scholar 

  • MacMillan F, Hanley J, van der Weerd L, Knupling M, Un S and Rutherford AW (1997) Orientation of the phylloquinone electron acceptor anion radical in Photosystem I. Biochemistry 36: 9297–9303

    PubMed  CAS  Google Scholar 

  • Malkin R and Bearden AJ (1971) Primary reactions of photosynthesis: photoreduction of a bound chloroplast ferredoxin at low temperature as detected by EPR spectroscopy. Proc Natl Acad Sci USA 68: 16–19

    PubMed  CAS  Google Scholar 

  • Mathis P, Sauer K and Rémy R (1978) Rapidly reversible flashinduced electron transfer in a P-700 chlorophyll-protein complex isolated with SDS. FEBS Lett 88: 275–278

    CAS  Google Scholar 

  • Mühlenhoff U, Haehnel W, Witt HT and Herrmann RG (1993) Genes encoding eleven subunits of Photosystem I from the thermophilic cyanobacterium Synechococcus sp. Gene 127: 71–78

    PubMed  Google Scholar 

  • Mullet JE, Burke JJ and Arntzen CJ (1980) Chlorophyll proteins of Photosystem I. Plant Physiol 65: 814–822

    Article  PubMed  CAS  Google Scholar 

  • Nechushtai R, Muster P, Binder A, Liveanu V and Nelson N (1983) Photosystem I reaction center from the thermophilic cyanobacterium Mastigocladus laminosus. Proc Natl Acad Sci USA 80: 1179–1183

    PubMed  CAS  Google Scholar 

  • Nelson N and Ben-Shem A (2002) Photosystem I reaction center: past and future. Photosynth Res 73: 193–206

    PubMed  CAS  Google Scholar 

  • Newman PJ and Sherman LA (1978) Isolation and characterization of Photosystem I and II membrane particles from the blue-green alga, Synechococcus cedorum. Biochim Biophys Acta 503: 343–361

    PubMed  CAS  Google Scholar 

  • Nitschke W and Rutherford AW (1991) Photosynthetic reaction centres: variations on a common structural theme? Trends Biochem Sci 16: 241–245

    PubMed  CAS  Google Scholar 

  • Norris JR, Uphaus RA, Crespi HL and Katz JJ (1971) Electron spin resonance of chlorophyll and the origin of Signal I in photosynthesis. Proc Natl Acad Sci USA 68: 625–628

    PubMed  CAS  Google Scholar 

  • Norris JR, Scheer H, Druyan ME and Katz JJ (1974) An electronnuclear double resonance (Endor) study of the special pair model for the photoreactive chlorophyll in photosynthesis. Proc Natl Acad Sci USA 71: 4897–4900

    PubMed  CAS  Google Scholar 

  • Nuijs AM, Shuvalov VA, van Gorkom HJ, Plijter JJ and Duysens LNM (1986) Biochim Biophys Acta 850: 310–318

    CAS  Google Scholar 

  • Ogawa T, Obata F and Shibata K (1966) Two pigment proteins in spinach chloroplasts. Biochim Biophys Acta 112: 223–234

    PubMed  CAS  Google Scholar 

  • Ogawa T, Vernon LP and Mollenhauer HH (1969) Properties and structure of fractions prepared from Anabaena variabilis by the action of Triton X-100. Biochim Biophys Acta 172: 216–223

    PubMed  CAS  Google Scholar 

  • Oh-oka H, Takahashi Y, Kuriyama K, Saeki K and Matsubara H (1988) The protein responsible for center A/B in spinach Photosystem I: isolation with iron-sulfur cluster(s) and complete sequence analysis. J Biochem (Tokyo) 103: 962–968

    CAS  Google Scholar 

  • Philipson KD, Sato VL and Sauer K (1972) Exciton interaction in the Photosystem I reaction center from spinach chloroplasts. Absorption and circular dichroism difference spectra. Biochemistry 11: 4591–4595

    PubMed  CAS  Google Scholar 

  • Rabinowitch EI (1956) Photosynthesis and related processes, Vol II, Part 2. Interscience Publishers, London

    Google Scholar 

  • Reed D and Clayton RK (1968) Isolation of a reaction center fraction from Rhodopseudomonas sphaeroides. Biochem Biophys Res Comm 30: 471–475

    PubMed  CAS  Google Scholar 

  • Rigby SE, Muhiuddin IP, Evans MC, Purton S and Heathcote P (2002) Photoaccumulation of the PsaB phyllosemiquinone inPhotosystem I of Chlamydomonas reinhardtii. Biochim Biophys Acta 1556: 13–20

    PubMed  CAS  Google Scholar 

  • Rögner M, Mühlenhoff U, Boekema EJ and Witt HT (1990) Mono-, di-, and trimeric PS I reaction center complexes isolated from the thermophilic cyano-bacterium Synechoccus sp. Size, shape and activity. Biochim Biophys Acta 1015: 415–424

    Google Scholar 

  • Rutherford AW and Mullet JE (1981) Reaction center triplet states in Photosystem I and Photosystem II. Biochim Biophys Acta 635: 225–235

    PubMed  CAS  Google Scholar 

  • Rutherford AW and Sétif P (1990) Orientation of P700, the primary electron donor of Photosystem I. Biochim Biophys Acta 1019: 128–132

    CAS  Google Scholar 

  • Sauer K, Mathis P, Acker S and van Best JA (1978) Electron acceptors associated with P-700 in Triton solubilized Photosystem I particles from spinach chloroplasts. Biochim Biophys Acta 503: 120–134

    PubMed  CAS  Google Scholar 

  • Schoeder HU and Lockau W (1986) Phylloquinone copurifies with the large subunit of Photosystem I. FEBS Lett 199: 23–27

    CAS  Google Scholar 

  • Schubert WD, Klukas O, Krauß N, Saenger W, Fromme P and Witt HT (1997) Photosystem I of Synechococcus elongatus at 4Å resolution: comprehensive structure analysis. J Mol Biol 272: 741–769

    PubMed  CAS  Google Scholar 

  • Schubert WD, Klukas O, Saenger W, Witt HT, Fromme P and Krauß N (1998) A common ancestor for oxygenic and anoxygenic photosynthetic systems: a comparison based on the structural model of Photosystem I. J Mol Biol 280: 297–314

    PubMed  CAS  Google Scholar 

  • Sétif P and Brettel K (1990) Photosystem I photochemistry under highly reducing conditions: study of the P700 triplet state formation from the secondary radical pair (P700+-A1 -). Biochim Biophys Acta 1020: 232–238

    Google Scholar 

  • Sétif P, Hervo G and Mathis P (1981) Flash-induced absorption changes in Photosystem I. Radical pair or triplet state formation? Biochim Biophys Acta 638: 257–267

    Google Scholar 

  • Setif P, Fischer N, Lagoutte B, Bottin H and Rochaix JD (2002) The ferredoxin docking site of Photosystem I. Biochim Biophys Acta 1555: 204–209

    PubMed  CAS  Google Scholar 

  • Shin M and Arnon DI (1965) Enzymic mechanisms of pyridine nucleotide reduction in chloroplasts. J Biol Chem 240: 1405–1411

    PubMed  CAS  Google Scholar 

  • Shoham G, Michaeli D and Nechustai R (1990) The Photosystem I reaction center of Mastigolatus laminosus-structural and functional aspects. In: Baltscheffsky M (ed) Current Research in Photosynthesis, Vol 2, pp 755–762. Kluwer Academic Publishers, Dordrecht, The Netherlands

    Google Scholar 

  • Shuvalov VA (1976) The study of the primary photoprocesses in Photosystem I of chloroplasts. Recombination luminescence, chlorophyll triplet state and triplet-triplet annihilation. Biochim Biophys Acta 430: 113–121

    PubMed  CAS  Google Scholar 

  • Takahashi Y and Katoh S (1982) Functional subunit structure of Photosystem I reaction center in Synechococcus sp. Arch Biochem Biophys 219: 219–227

    PubMed  CAS  Google Scholar 

  • Thornber JP, Alberte RS, Hunter FA, Shiozawa JA and Kan KS (1976) The organization of chlorophyll in the plant photosynthetic unit. Brookhaven Symp Biol 28: 132–148

    PubMed  Google Scholar 

  • Tsiotis G, Nitschke W, Haase W and Michel H (1993) Purification and crystallisation of Photosystem I complex from a phycobilisome-less mutant of the cyanobacterial Synechococcus PCC 7002. Photosynth Res 35: 285–297

    CAS  Google Scholar 

  • van der Staay GWM, Boekema EJ, Dekker JP and Matthijs HCP (1993) Characterization of trimeric Photosystem I particles from prochlorophyte Prochlorothrix hollandica by electron microscopy and image analysis. Biochim Biophys Acta 1142: 189–193

    CAS  Google Scholar 

  • Vermaas WFJ (1994) Evolution of heliobacteria: implications for photosynthetic reaction center complexes. Photosynth Res 41: 285–294

    PubMed  CAS  Google Scholar 

  • Vernon LP, Shaw ER and Ke B (1966) A photochemically active particle derived from chloroplasts by the action of the detergent Triton X-100. J Biol Chem 241: 4101–4109

    PubMed  CAS  Google Scholar 

  • Vrieze J, Gast P and Hoff AJ (1996) Structure of the reaction center of Photosystem I of plants. An investigation with lineardichroic absorbance-detected magnetic resonance. J Phys Chem 100: 9960–9967

    CAS  Google Scholar 

  • Watanabe T, Kobayashi M, Hongu A, Nakazato M and Hiyama T (1985) Evidence, that a chlorophyll a′ dimer constitutes the photochemical reaction centre 1 (P700) in photosynthetic apparatus.FEBS Lett 235: 252–256

    Google Scholar 

  • Wessels JSC (1966) Isolation of a chloroplast fragment fraction with NADP+-photoreducing activity dependent on plastocyanin and independent of cytochrome f. Biochim Biophys Acta 126: 581–583

    PubMed  CAS  Google Scholar 

  • Williams JC, Glazer AN and Lundell DJ (1983) Cyanobacterial Photosystem I: morphology and aggregation behavior. Proc Natl Acad Sci USA 80: 5923–5926

    PubMed  CAS  Google Scholar 

  • Witt HT (2004) Steps on the way to building blocks, topologies, crystals and X-ray structural analysis of Photosystems I and II of water-oxidizing photosynthesis. Photosynth Res 80: 85–107 (this issue)

    CAS  Google Scholar 

  • Witt H, Krauß N, Hinrichs W, Witt I, Fromme P and Saenger W (1992) Three-dimensional crystals of Photosystem I from Synechococcus sp. and X-ray structure analysis at 6Å resolution. In: Murata N (ed) Research in Photosynthesis, Vol 1, pp 521–528. Kluwer Academic Publishers, Dordrecht, The Netherlands

    Google Scholar 

  • Witt HT, Müller A and Rumberg B (1961) Experimental evidence for the mechanism of photosynthesis. Nature 191: 194–195

    PubMed  CAS  Google Scholar 

  • Witt I, Witt H, Gerken S, Saenger W, Dekker J and Rögner M(1987) Crystallization of reaction center I of photosynthesis. FEBS Lett 221: 260–264

    CAS  Google Scholar 

  • Witt I, Witt H, DiFiore D, Rögner M, Hinrichs W, Saenger W, Granzin J, Betzel C and Dauter Z (1988) X-ray characterization of single crystals of the reaction center I of water splitting photosynthesis. Ber Bunsenges Phys Chem 92: 1503–1506

    CAS  Google Scholar 

  • Wynn RM, Omaha J and Malkin R (1989) Structural and functional properties of the cyanobacterial Photosystem I complex.Biochemistry 28: 5554–5560

    PubMed  CAS  Google Scholar 

  • Xu W, Chitnis PR, Valieva A, Van Der Est A, Pushkar J, Krzystyniak M, Teutloff C, Zech SG, Bittl R, Stehlik D, Zybailov B, Shen G and Golbeck JH (2003a) Electron transfer in cyanobacterial Photosystem I. Physiological and spectroscopic characterization of site-directed mutants in a putative electron transfer pathway from A0 through A1 to FX. J Biol Chem 278: 27864–27875

    PubMed  CAS  Google Scholar 

  • Xu W, Chitnis PR, Valieva A, Van der Est A, Brettel K, Guergova-Kuras M, Pushkar YN, Zech SG, Stehlik D, Shen G, Zybailov B and Golbeck JH (2003b) Electron transfer in cyanobacterial Photosystem I: II. Determination of the forward electron transfer rates of site-directed mutants in a putative electron transfer pathway from A0 through A1 to FX. J Biol Chem 278: 27876–27887

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fromme, P., Mathis, P. Unraveling the Photosystem I Reaction Center: A History, or the Sum of Many Efforts. Photosynthesis Research 80, 109–124 (2004). https://doi.org/10.1023/B:PRES.0000030657.88242.e1

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:PRES.0000030657.88242.e1

Navigation