Skip to main content
Log in

Relationships of Endemic African Mammals and Their Fossil Relatives Based on Morphological and Molecular Evidence

  • Published:
Journal of Mammalian Evolution Aims and scope Submit manuscript

Abstract

Analyses of anatomical and DNA sequence data run on a parallel supercomputer that include fossil taxa support the inclusion of tenrecs and golden moles in the Afrotheria, an endemic African clade of placental mammals. According to weighting schemes of morphological and molecular data that maximize congruence, extinct members of the afrotherian crown group include embrithopods, Plesiorycteropus, desmostylians, and the “condylarths” Hyopsodus, Meniscotherium, and possibly Phenacodus. By influencing the optimization of anatomical characters, molecular data have a large influence on the relationships of several extinct taxa. The inclusion of fossils and morphological data increases support for an elephant-sea cow clade within Paenungulata and identifies ancient, northern elements of a clade whose living members in contrast suggest an historically Gondwanan distribution. In addition, maximally congruent topologies support the position of Afrotheria as well-nested, not basal, within Placentalia. This pattern does not accord with the recent hypothesis that the divergence of placental mammals co-occurred with the tectonic separation of Africa and South America.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Literature Cited

  • Adkins, R. M., Walton, A. H., and Honeycutt, R. L. (2003). Higher-level systematics of rodents and divergence time estimates based on two congruent nuclear genes. Mol. Phylogenet. Evol. 26: 409–420.

    Google Scholar 

  • Agur, A. M. R., and Lee, M. J. (1991). Grant's Atlas of Anatomy, 9th edn. Williams and Wilkins, Baltimore.

    Google Scholar 

  • Amrine, H. M., and Springer, M. S. (1999). Maximum likelihood analysis of the tethythere hypothesis. J. Mammal. Evol. 6: 161–176.

    Google Scholar 

  • Andrews, C. W. (1906). A Descriptive Catalogue of the Tertiary Vertebrata of the Fayum, Egypt, British Museum of Natural History, London.

  • Arnason, U., Addegoke, J. A., Bodin, K., Born, E. W., Esa, Y. B., Gullberg, A., Nilsson, M., Short, R., Xu, X., and Janke, A. (2002). Mammalian mitogenomic relationships and the root of the eutherian tree. Proc. Natl. Acad. Sci. U.S.A. 99: 8151–8156.

    Google Scholar 

  • Asher, R. J. (1999). A morphological basis for assessing the phylogeny of the “Tenrecoidea” (Mammalia, Lipotyphla). Cladistics 15: 231–252.

    Google Scholar 

  • Asher, R. J. (2000). Phylogenetic History of Tenrecs and Other Insectivoran Mammals. Ph.D. Dissertation, State University of New York, Stony Brook.

  • Asher, R. J. (2001). Cranial anatomy in tenrecid insectivorans: Character evolution across competing phylogenies. Amer. Mus. Novit. 3352: 1–54.

    Google Scholar 

  • Asher, R. J. (2003). Phylogenetics of the Tenrecidae (Mammalia): A response to Douady et al., 2002. Mol. Phylogenet. Evol. 26: 328–330.

    Google Scholar 

  • Barnes, L. G. (1990). The fossil record and evolutionary relationships of the genus Tursiops. In: The Bottlenosed Dolphin, S. Leatherwood and R. R. Reeves, eds., pp. 3–26, Academic Press, New York.

    Google Scholar 

  • Beard, K. C., and MacPhee, R. D. E. (1994). Cranial anatomy of Shoshonius and the antiquity of the Anthropoidea. In: Anthropoid Origins, J. G. Fleagle and R. F. Kay, eds., pp. 55–97, Plenum, New York.

    Google Scholar 

  • Butler, P. M. (1956). The skull of Ictops and the classification of the Insectivora. Proc. Zool. Soc. Lond. 126: 453–481.

    Google Scholar 

  • Butler, P. M. (1988). Phylogeny of the insectivores. In: Phylogeny and Classification of the Tetrapods, Vol. 2, M. J. Benton, ed., pp. 117–141, Clarendon Press, Oxford.

    Google Scholar 

  • Carter, A. M. (2001). Evolution of the placenta and fetal membranes seen in the light of molecular phylogenetics. Placenta 22: 800–807.

    Google Scholar 

  • Cartmill, M. (1978). The orbital mosaic in prosimians and the use of variable traits in systematics. Folia Primatol. 30(2): 89–114.

    Google Scholar 

  • Cartmill, M. (1980). Morphology, function, and evolution of the anthropoid postorbital septum. In: Evolutionary Biology of the New World Monkeys and Continental Drift. R. L. Ciochon and A. B. Chiarelli, eds., pp. 243–274, Plenum, New York.

    Google Scholar 

  • Cartmill, M., and MacPhee, R. D. E. (1980). Tupaiid affinities: The evidence of the carotid arteries and cranial skeleton. In: Comparative Biology and Evolutionary Relationships of Tree Shrews, P. Luckett, ed., pp. 95–132, Plenum, New York.

    Google Scholar 

  • Cifelli, R. (1982). The petrosal structure of Hyopsodus with respect to that of some other ungulates, and its phylogenetic implications. J. Paleontol. 56: 796–805.

    Google Scholar 

  • Clark, J. M. (1991). A new early Miocene species of Paleoparadoxia (Mammalia: Desmostylia) from California. J. Vertebr. Paleontol. 11: 490–508.

    Google Scholar 

  • Colless, D. H. (1980). Congruence between morphometric and allozyme data for Menidia species: A reappraisal. Syst. Zool. 29: 288–299.

    Google Scholar 

  • Court, N. (1990). Periotic anatomy of Arsinoitherium (Mammalia, Embrithopoda) and its phylogenetic implications. J. Vertebr. Paleontol. 10: 170–182.

    Google Scholar 

  • Court, N. (1992). The skull of Arsinoitherium (Mammalia, Embrithopoda) and the higher order phylogenetic relationships of ungulate mammals. Palaeovertebrata (Montpelier) 22: 1–43.

    Google Scholar 

  • Court, N. (1993). Morphology and functional anatomy of the postcranial skeleton in Arsinoitherium (Mammalia, Embrithopoda). Palaeontographica (Stuttgart) A 226: 125–169.

    Google Scholar 

  • Court, N. (1994). The periotic of Moeritherium (Mammalia, Proboscidea): Homology or homoplasy in the ear region of Tethytheria McKenna, 1975. Zool. J. Linn. Soc. 112: 13–28.

    Google Scholar 

  • Court, N. (1995). A new species of Numidotherium (Mammalia, Proboscidea) from the Eocene of Libya and the early phylogeny of the Proboscidea. J. Vertebr. Paleontol. 15: 650–671.

    Google Scholar 

  • Dathe, F. (1982). Megaptera hubachi n. sp., ein fossiler Bartenwahl aus marinen Sandsteinschichten des tieferen Pliozäns Chiles. Z. Geol. Wiss. 11: 813–848.

    Google Scholar 

  • Domning, D., Ray, C. E., and McKenna, M. C. (1986). Two new OIigocene desmostylians and a discussion of tethytherian systematics. Smithson. Contrib. Paleobiol. 59: 1–56.

    Google Scholar 

  • Douady, C. J., Catzeflis, F., Kao, D. J., Springer, M. S., and Stanhope, M. J. (2002a). Molecular evidence for the monophyly of tenrecidae (Mammalia) and the timing of the colonization of Madagascar by Malagasy tenrecs. Mol. Phylogenet. Evol. 22: 357–363.

    Google Scholar 

  • Douady, C. J., Chatelier, P. I., Madsen, O., de Jong, W. W., Catzeflis, F., Springer, M. S., and Stanhope, M. J. (2002b). Molecular phylogenetic evidence confirming the Eulipotyphla concept and in support of hedgehogs as the sister group to shrews. Mol. Phylogenet. Evol. 25: 200–209.

    Google Scholar 

  • Douady, C. J., Catzeflis, F., Springer, M. S., and Stanhope, M. J. (2003). Phylogenetics of the Tenrecidae (Mammalia): A reply to Asher. Mol. Phylogenet. Evol. 26: 331–332.

    Google Scholar 

  • Downton, M., and Austin, A. D. (2002). Increased congruence does not necessarily indicate increased phylogenetic accuracy. Syst. Biol. 51: 19–31.

    Google Scholar 

  • Emerson, G. L., Kilpatrick, C. W., McNiff, B. E., Ottenwalder, J., and Allard, M. W. (1999). Phylogenetic relationships of the order Insectivora based on complete 12s rRNA sequences from mitochondria. Cladistics 15: 221–230.

    Google Scholar 

  • Felsenstein, J. (1978). Cases in which parsimony or compatibility methods will be positively misleading. Syst. Zool. 27: 401–410.

    Google Scholar 

  • Felsenstein, J. (1988). Phylogenies from molecular sequences: Inference and reliability. Annu. Rev. Genet. 22: 521–565.

    Google Scholar 

  • Fischer, M. S. (1986). Die Stellung der Schliefer (Hyracoidea) im phylogenetischen System der Eutheria. Cour. Forsch. Inst. Senckenberg. 84: 1–132.

    Google Scholar 

  • Fischer, M. S. (1998). Die Lokomotion von Procavia capensis (Mammalia: Hyracoidea): zur Evolution des Bewegungssystems bei Saugetieren. Abhandlungen des Naturwissenschaftlichen Vereins in Hamburg. 33: 1–188.

    Google Scholar 

  • Fischer, M., and P. Tassy. (1993). The interrelation between Proboscidea, Sirenia, Hyracoidea, and Mesaxonia: The morphological evidence. In: Mammal Phylogeny, Vol. 2: Placentals, F. S. Szalay, M. J. Novacek, and M. C. McKenna, eds., pp. 217–234, Springer-Verlag, New York.

    Google Scholar 

  • Fleagle, J. G. (1999). Primate Adaptation and Evolution, 2nd edn. Academic Press, San Diego.

    Google Scholar 

  • Frost, D. R., Rodrigues, M. T., Grant, T., and Titus, T. (2001). Phylogenetics of the lizard genus Tropidurus (Squamata: Tropiduridae). Mol. Phylogenet. Evol. 21: 352–371.

    Google Scholar 

  • Frost, D. R., Wozencraft, C., and Hoffman, R. S. (1991). Phylogenetic relationships of hedgehogs and gymnures (Mammalia: Insectivora: Erinaceidae). Smithson. Contrib. Zool. 518: 1–69.

    Google Scholar 

  • Gatesy, J., DeSalle, R., and Wheeler, W. (1993). Alignment ambiguous nucleotide sites and the exclusion of systematic data. Mol. Phylogenet. Evol. 2: 152–157.

    Google Scholar 

  • Gatesy, J., Mathee, C., DeSalle, R., Hayashi, C. (2002). Resolution of a Supertree/Supermatrix Paradox. Syst. Biol. 51: 652–664.

    Google Scholar 

  • Gaudin, T. J., Wible, J. R., Hopson, J. A., and Turnbull, W. D. (1996). Reexamination of the morphological evidence for the cohort Epitheria (Mammlia, Eutheria) J. Mammal. Evol. 3: 31–79.

    Google Scholar 

  • Gazin, C. L. (1956). A study of the Eocene condylarthran mammal Hyopsodus. Smithson. Misc. Collect. 131: 1–57.

    Google Scholar 

  • Gazin, C. L. (1965). A study of the early Tertiary condylarthran mammal Meniscotherium. Smithson. Misc. Collect. 149: 1–98.

    Google Scholar 

  • Gazin, C. L. (1968). A study of the Eocene condylarthran mammal Hyopsodus. Smithson. Misc. Collect. 153: 1–90.

    Google Scholar 

  • Geisler, J. H. (2001). New morphological evidence for the phylogeny of Artiodactyla, Cetacea, and Mesonychidae. Amer. Mus. Novit. 3344: 1–53.

    Google Scholar 

  • Geisler, J. H., and Luo, Z. (1998). Relationships of Cetacea to terrestrial ungulates and the evolution of ranial vasculature in Cete. In: The Emergence of Whales, J. G. M. Thewissen, ed., pp. 163–212, Plenum, New York.

    Google Scholar 

  • Gheerbrandt, E., Sudre, J., Iarochene, M., and Moumni, A. (2001). First ascertained African “condylarth” mammals from the earliest Ypresian of the Ouled Abdoun Basin, Morocco. J. Vertebr. Paleontol. 21: 107–118.

    Google Scholar 

  • Giere, P. (2002). Grundplan rekonstruktion und Ontogenese der Orbitalregion der “Eulipotyphla” (Mammalia). PhD Thesis, Humboldt Univ. Wissenschaft und Technik Verlag, Berlin.

  • Giribet, G., Edgecomb, G. D., and Wheeler, W.C. (2001). Arthropod phylogeny based on eight molecular loci and morphology. Nature 413: 157–161.

    Google Scholar 

  • Goloboff, P. A. (1999). NONA, Version 2.0. Fundación e Instituto Miguel Lillo, Tucumán, Argentina. Download at www.cladistics.org.

    Google Scholar 

  • Gregory, W. K. (1910). The orders of mammals. Bull. Amer. Mus. Nat. Hist. 27: 1–524.

    Google Scholar 

  • Grzimek, B. (1975). Grzimek's Animal Life Encyclopedia, I–IV, Van Nostrand Rheinhold, New York.

    Google Scholar 

  • Hermanson, J. W., and MacFadden, B. J. (1996). Evolutionary and functional morphology of the knee in fossil and extant horses (Equidae). J. Vertebr. Paleontol. 16: 349–357.

    Google Scholar 

  • Horovitz, I. (1999). A phylogenetic study of living and fossil platyrrhines. Amer. Mus. Novit. 3269: 1–40.

    Google Scholar 

  • Horovitz, I. (2000). The tarsus of Ukhaatherium nessovi (Eutheria, Mammalia) from the Late Cretaceous of Mongolia: An appraisal of the evolution of the ankle in basal therians. J. Vertebr. Paleontol. 20: 547–560.

    Google Scholar 

  • Ijiri, S., and Kamei, T. (1961). On the skulls of Desmostylus mirabilis Nagao from South Sakhalin and of Palaeoparadoxia tabatai Tokunaga from Gifu prefecture, Japan [in Japanese]. Earth Sci. 53: 1–27.

    Google Scholar 

  • Janies, D. A., and Wheeler, W.C. (2001). Efficiency of parallel direct optimization. Cladistics 17: S71-S82.

    Google Scholar 

  • Johnson, P. A., and Fox, R. C. (1984). Paleocene and Late Cretaceous mammals from Saskatchewan, Canada. Palaeontographica Abt. A. 186: 163–222.

    Google Scholar 

  • Kamei, T., and Okazaki, Y. (1975). Neogene desmostylid and proboscidean fossils from Japan. Atlas and Jpn. Fossils 34(199 and 201): 1–4.

    Google Scholar 

  • Kielan-Jaworowska, Z. (1979). Evolution of the therian mammals in the Late Cretaceous of Asia. Part III. Postcranial skeleton in Zalambdalestidae. Palaeontol. Pol. 38: 3–41.

    Google Scholar 

  • Kielan Jaworowska, Z. (1984). Evolution of the therian mammals in the Late Cretaceous of Asia. Part V. Skull structure in Zalambdalestidae Palaeontol. Pol. 46: 107–117.

    Google Scholar 

  • Krause, D. W., Rodgers, R. R., Forster, C. A., Hartman, J. H., Buckley, G. A., and Sampson, S. D. (1999). Late Cretaceous vertebrate fauna of Madagascar: Implications for Gondwanan paleobiogeography. GSA Today 9: 1–7.

    Google Scholar 

  • Lee, M. S. Y. (2001). Unalignable sequences and molecular evolution. Trends Ecol. Evol. 16: 681–685.

    Google Scholar 

  • Lin, Y.-H., McLeanachan, P. A., Gore, A. R., Phillips, M. J., Ota, R., Hendy, M. D., and Penny, D. (2002a). Four new mitochondrial genomes and the increased stability of evolutionary trees of mammals from improved taxon sampling. Mol. Biol. Evol. 19: 2060–2070.

    Google Scholar 

  • Lin, Y.-H., Waddell, P., and Penny, D. (2002b). Pika and vole mitochondrial genomes increase support for both rodent monophyly and Glires. Gene 294: 119–129.

    Google Scholar 

  • Lillegraven, J. A. (1969). Latest Cretaceous mammals of upper part of Edmonton Formation of Alberta, Canada, and review of marsupial-placental dichotomy in mammalian evolution. Univ. Kansas Paleontol. Contrib. 50(vertebrata 12): 1–122.

    Google Scholar 

  • Lillegraven, J. A. (1984). Why was there a marsupial-placental dichotomy? In: Mammals: Notes from a Short Course, Vol. 8: Studies in Geology, P. D. Gingerich and C. E. Badgley, eds., pp. 72–86, University of Tennessee, Department of Geological Science, Knoxville.

    Google Scholar 

  • Lillegraven, J. A. (1985). Use of the term “trophoblast” for tissues in therian mammals. J. Morphol. 183: 293–299.

    Google Scholar 

  • Luckett, W. P. (1977). Ontogeny of amniote fetal membrances and their application to phylogeny. In: Major Patterns in Vertebrate Evolution, M. K. Hecht, P. C. Goody, and B. M. Hecht, eds., pp. 439–516, Plenum, New York.

    Google Scholar 

  • Luckett, W. P. (1985). Superordinal and intraordinal affinities of rodents: Developmental evidence from the dentition and placentation. In: Evolutionary Relationships Among Rodents, W. P. Luckett and J.-L. Hartenberger, eds., pp. 227–276, Plenum, New York.

    Google Scholar 

  • Luckett, W. P. (1993). Uses and limitations of mammalian fetal membrances and placenta for phylogenetic reconstruction. J. Exp. Zool. 266: 514–527.

    Google Scholar 

  • Luo, Z. (1998). Homology and transformation of cetacean ectotympanic structures. In: The Emergence of Whales, J. G. M. Thewissen, ed., pp. 269–301, Plenum, New York.

    Google Scholar 

  • Luo, Z., and Gingerich, P. D. (1999). Terrestrial Mesonychia to aquatic Cetacea: Transformation of the basicranium and evolution of hearing in whales. Univ. Mich. Pap. Paleontol. 31: 1–98.

    Google Scholar 

  • MacPhee, R. D. E. (1979.) Entotympanics, ontogeny, and primates. Folia Primatol. 31: 23–47.

    Google Scholar 

  • MacPhee, R. D. E. (1994). Morphology, adaptations, and relationships of Plesiorycteropus, and a diagnosis of a new order of eutherian mammals. Bull. Amer. Mus. Nat. Hist. 220: 1–214.

    Google Scholar 

  • MacPhee, R. D. E., and Novacek, M. J. (1993). Definition and relationships of Lipotyphla. In: Mammal Phylogeny, Vol. 2: Placentals, F. S. Szalay, M. J. Novacek, and M. C. McKenna, eds., pp. 13–31, Springer-Verlag, New York.

    Google Scholar 

  • MacPhee, R. D. E., Novacek, M. J., and Storch, G. (1988). Basicranial morphology of Early Tertiary erinaceomorphs and the origin of primates. Amer. Mus. Novit. 2921: 1–42.

    Google Scholar 

  • Madsen, O., Scally, M., Douady, C. J., Kao, D. J., DeBry, R. W., Adkins, R., Amrine, H. M., Stanhope, M. J., de Jong, W. W., and Springer, M. S. (2001). Parallel adaptive radiations in two major clades of placental mammals. Nature 409: 610–614.

    Google Scholar 

  • Mahboubi, M., Ameur, J. Y, Crochet, Y., and Jaeger, J. J. (1986). El Kohol (Saharan Atlas, Algeria), a new Eocene mammal locality in northwestern Africa. Palaeontographica Abt. A 192: 15–49.

    Google Scholar 

  • Malia, M. J., Adkins, R. M., and Allard, M. W. (2002). Molecular support for Afrotheria and the polyphyly of Lipotyphla based on analyses of the growth hormone receptor gene. Mol. Phylogenet. Evol. 24: 91–101.

    Google Scholar 

  • Matsumoto, H. (1923). A contribution to the knowledge of Moeritherium. Bull. Amer. Mus. Nat. Hist. 48: 97–139.

    Google Scholar 

  • McDowell, S. B., Jr. (1958). The Greater Antillean insectivores. Bull. Amer. Mus. Nat. Hist. 115: 113–214.

    Google Scholar 

  • McKenna, M. C. (1963). New evidence against tupaioid affinities of the mammlian family Anagalidae. Amer. Mus. Novit. 2158: 1–16.

    Google Scholar 

  • McKenna, M. C., and BellS. K. (1997). Classification of Mammals Above the Species Level, Columbia University Press, New York.

    Google Scholar 

  • McKenna, M. C., and Manning, R. (1977). Affinities and palaeobiogeographic significance of the Mongolian Paleogene genus Phenacolophus. Geobios Mem. Spec. 1: 61–85.

    Google Scholar 

  • Meng, J., Hu, Y., and Li, C. (2003). The osteology of Rhombomylus (Mammalia: Glires): Implications for the phylogeny and evolution of Glires. Bull. Amer. Mus. Nat. Hist. 275: 1–247.

    Google Scholar 

  • Meng, J., and Wyss, A. (2001). The morphology of Tribosphenomys (Rodentiaformes, Mammalia): Phylogenetic implications for basal Glires.J. Mammal. Evol. 8: 1–72.

    Google Scholar 

  • Millar, J. S. (1981). Pre-partum reproductive characteristics of eutherian mammals. Evolution. 35: 1149–1163.

    Google Scholar 

  • Mossman, H. W. (1987). Vertebrate Fetal Membranes, Rutgers University Press, New Brunswick.

    Google Scholar 

  • Mouchaty, S. K., Gullberg, A., Janke, A., and Arnason, U. (2000). Phylogenetic position of the tenrecs (Mammalia: Tenrecidae) of Madagascar based on analysis of the complete mitochondrial genome sequence of Echinops telfairi. Zoologica Scripta 29: 307–317.

    Google Scholar 

  • Murphy, W. J., Elzirik, E., Johnson, W. E., Zhang, Y. P., Ryder, O. A., and O'Brien, S. J. (2001a). Molecular phylogenetics and the origin of placental mammals. Nature 409: 614–618.

    Google Scholar 

  • Murphy, W. J., Eizirik, E., O'Brien, S. J., Madsen, O., Scally, M., Douady, C. J., Teeling, E., Ryder, O. A., Stanhope, M. J., deJong, W. W., and Springer, M. S. (2001b). Resolution of the early placental mammal radiation using Baysian phylogenetics. Science 294: 2348–2351.

    Google Scholar 

  • Novacek, M. J. (1977). Aspects of the problem of variation, origin, and evolution of the eutherian auditory bulla. Mammal. Rev. 7: 131–149.

    Google Scholar 

  • Novacek, M. J. (1986). The skull of leptictid insectivorans and the higher-level classification of eutherian mammals. Bull. Amer. Mus. Nat. Hist. 183: 1–111.

    Google Scholar 

  • Novacek, M. J. (1989). Higher mammal phylogeny: The morphological-molecular synthesis. In: The Hierarchy of Life, B. Fernholm, K. Bremer, and H. Jörnvall, H., eds., pp. 421–435, Elsevier, Amsterdam.

    Google Scholar 

  • Novacek, M. J. (1991). “All tree histograms” and the evaluation of cladistic evidence: Some ambiguities. Cladistics 7: 345–349.

    Google Scholar 

  • Novacek, M. J. (1992). Mammal phylogeny: Shaking the tree. Nature 356: 121–125.

    Google Scholar 

  • Novacek, M. J., Rougier, G. W., Wible, J. R., McKenna, M. C., Dashzeveg, D., and Horovitz, I. (1997). Epipubic bones in eutherian mammals from the late Cretaceous of Mongolia. Nature 389: 483–486.

    Google Scholar 

  • Novacek, M. J., and Wyss, A. R. (1986). Higher level relationships of the recent eutherian orders: The morphological evidence. Cladistics 2: 257–287.

    Google Scholar 

  • O'Leary, M. O., and J. H. Geisler. (1999). The position of Cetace' within Mammlia: Phylogenetic analysis of morphological data from extinct and extant taxa. Syst. Biol. 48: 455–490.

    Google Scholar 

  • Pol, D., and Siddall, M. E. (2001). Biases in maximum likelihood and parsimony: A simulation approach to a 10-taxon case. Cladistics 17: 266–281.

    Google Scholar 

  • Radinsky, L. B. (1969). The early evolution of the Perissodactyla. Evolution 23: 308–328.

    Google Scholar 

  • Reinhart, R. H. (1959). A review of the Sirenia and Desmostylia. Univ. Calif. Pub. Geol. Sci. 36: 1–146.

    Google Scholar 

  • Renfree, M. B. (1993). Ontogeny, fenetic control, and phylogeny of female reproduction in monotreme and therian mammals. In: Mammal Phylogeny, Vol. 1: Mes. Diff, Multi, Mono, Early Therians, and Mammals, F. S. Szalay, M. J. Novacek, and M. C. McKenna, eds., pp. 4–20, Springer-Verlag, New York.

    Google Scholar 

  • Rose, K. D., and Emry, R. J. (1993). Relationships of Xenarthra, Pholidota and fossil “edentates”: The morphological evidence. In: Mammal Phylogeny, Vol. 2: Placentals, F. S. Szalay, M. J. Novacek, and M. C. McKenna, eds., pp. 81–102, Springer-Verlag, New York.

    Google Scholar 

  • Ross, C. F. (1995). Muscular and osseous anatomy of the primate anterior temporal fossa and the functions of the postorbital septum. Amer. J. Phys. Anthropol. 98: 275–306.

    Google Scholar 

  • Ross, C. F., Williams, B., and Kay, R. F. (1998). Phylogenetic analysis of anthropoid relationships. J. Hum. Evol. 35: 221–306.

    Google Scholar 

  • Schulmeister, S., Wheeler, W. C., and Carpenter, J. M. (2002). Simultaneous analysis of the basal lineages of Hymenoptera (Insecta) using sensitivity analysis. Cladistics 18: 455–484.

    Google Scholar 

  • Schutt, W. A., and Simmons, N. B. (1998). Morphology and homology of the chiropteran calcar, with comments on the phylogenetic relationships of Archaeopteropus. J. Mammal. Evol. 5: 1–32.

    Google Scholar 

  • Shikama, T. (1966). Postcranial skeletons of Japanese demostylians. Paleontol. Soc. Jpn. Sp. Paper 12: 1–202.

    Google Scholar 

  • Shoshani, J., and McKenna, M. C. (1998). Higher taxonomic relationships among extant mammals based on morphology, with selected comparisons of results from molecular data. Mol. Phylogenet. Evol. 9: 572–584.

    Google Scholar 

  • Shoshani, J., West, R. M., Court, N., Savage, R. J. G., and Harris, J. M. (1996). The earliest proboscideans: General plan, taxonomy, and palaeoecology. In: The Proboscidea: Evolution and Paleoecology of Elephants and Their Relatives, J., Shoshani and P. Tassy, eds., pp. 57–75, Oxford University Press, Oxford.

    Google Scholar 

  • Siddall, M. E. (1998). Success of parsimony in the four-taxon case: Long-branch repulsion by likelihood in the Farris zone. Cladistics 14: 209–220.

    Google Scholar 

  • Siddall, M. E., and Whiting, M. F. (1999). Long branch abstractions. Cladistics 15: 9–24.

    Google Scholar 

  • Simmons, N. B. (1994). The case for chiropteran monophyly. Amer. Mus. Novit. 3103: 1–54.

    Google Scholar 

  • Simmons, N. B. (1995). Bat reltionships and the origin of flight. Symp. Zool. Soc. Lond. 67: 27–43.

    Google Scholar 

  • Simmons, N. B., and Geisler, J. H. (1998). Phylogenetic relationships of Icaronycteris, Archaeonycteris, Hassianycteris, and Palaeochiropteryx to extant bat lineages, with comments of the evolution of echolocation and foraging strategies in Microchiroptera. Bull. Amer. Mus. Nat. Hist. 235: 1–182.

    Google Scholar 

  • Simons., E. L., and Rasmussen, D. T. (1989). Cranial morphology of Aegyptopithecus and Tarsius and the question of the tarsier-anthropoidean clade. Amer. J. Phys. Anthropol., 79: 1–23.

    Google Scholar 

  • Simpson, G. G. (1931). A new insectivore from the Oligocene, Ulan Gochu horizon of Mongolia. Amer. Mus. Novit. 505: 1.

    Google Scholar 

  • Simpson, G. G. (1945). The principles of classification and a classification of mammals. Bull. Amer. Mus. Nat. Hist. 85: 1–350.

    Google Scholar 

  • Smith, A. B. (1998). What does paleontology contribute to systematics in a molecular world? Mol. Phylogenet. Evol. 9: 437–447.

    Google Scholar 

  • Springer, M. S., Murphy, W. J., Eizirik, E., and O'Brien, S. J. (2003). Placental mammal diversification and the Cretaceous Tertiary boundary. Proc. Natl. Acad. Sci. U.S.A. 100: 1056–1061.

    Google Scholar 

  • Stanhope, M. J., Waddell, V. G., Madsen, O., de Jong, W. W., Hedges, S. B., Cleven, G. C., Kao, D., and Springer, M.S. (1998). Molecular evidence for multiple origins of the Insectivora and for a new order of endemic African mammals. Proc. Natl. Acad. Sci. U.S.A. 95: 9967–9972.

    Google Scholar 

  • Starck, D. (1995). Lehrbuch der Speziellen Zoologie; Band II: Wirbeltiere; Teile 1–2, Saeugetiere, Gustav Fischer Verlag, Jena.

    Google Scholar 

  • Swofford, D. L. (2000). Phylogenetic Analysis Using Parsimony (*and Other Methods), Version 4.0b10, Sinauer Associates, Sunderland, MA.

  • Swofford, D. L., Waddell, P. J., Huelsenbeck, J. P., Foster, P. G., Lewis, P. O., and Rogers, J. S. (2001). Bias in phylogenetic estimation and its relevance to the choice between parsimony and likelihood methods. Syst. Biol. 50: 525–539.

    Google Scholar 

  • Szalay, F. S., and Lucas, S. (1993). Cranioskeletal morphology of archontans, and diagnoses of Chiroptera, Volitantia, and Archonta. In: Primates and Their Relatives in Phylogenetic Perspective, R. D. E. MacPhee, ed., pp. 187–226, Plenum, New York.

    Google Scholar 

  • Tabuce, R., Coiffait, B., Coiffait, P.-E., Mahboubi, M., and Jaeger, J.-J. (2001). A new genus of Macroscelidea (Mammalia) from the Eocene of Algeria: A possible origin of elephant shrews. J. Vertebr. Paleontol. 21: 535–546.

    Google Scholar 

  • Tassy, P. (1981). Le crane de Moeritherium (Proboscidea, Mammalia) de l'Eocene de Dor el Talha (Libye) et le probleme de la classification phylogenetique du genre dans les Tethytheria. Bull. Mus Natn. Hist. Nat. 3: 87–147.

    Google Scholar 

  • Thewissen, J. G. M. (1989). Mammlian frontal diploic vein and the human foramen caecum. Anat. Rec. 223: 242–244.

    Google Scholar 

  • Thewissen, J. G. M. (1990). Evolution of Paleocene and Eocene Phenacodontidae (Mammalia, Condylarthra). Univ. Mich. Pap. Paleontol. 29: 1–107.

    Google Scholar 

  • Thewissen, J. G. M. (1994). Phylogenetic aspects of cetacean origins: A morpholoical perspective. J. Mammal. Evol. 2: 157–184.

    Google Scholar 

  • Thewissen, J. G. M., and Domning, D. (1992). The role of phenacodontids in the origin of the modern orders of ungulate mammals. J. Vertebr. Paleontol. 12: 494.

    Google Scholar 

  • Thompson, J. D., Gibson, T. J., Plewniak, F., Jeanmougin, F., and Higgins, D. G. (1997). The CLUSTAL-X windows interface: Flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleie. Acids Res. 25: 4876–4882.

    Google Scholar 

  • True, F. W. (1904). The whalebone whales of the western North Atlantic. Smithson. Contrib. Knowledge 33: 1–332.

    Google Scholar 

  • Vanderhoof, V. L. (1937). A study of the Miocene sirenian Desmostylus. Univ. Calif. Pubs. Geol. Sci. 24: 119–262.

    Google Scholar 

  • Van der Klaauw, C. J. (1931). The auditory bulla in some fossil mammals, with a general introduction to this region of the skull. Bull. Amer. Mus. Nat. Hist. 62: 1–352.

    Google Scholar 

  • van Dijk, M. A. M, Paradis, E., Catzeflis, F., and de Jong, W. W. (1999). The virtues of gaps: Xenarthran (edentate) monophyly supported by a unique deletion in A-crystallin. Syst. Biol. 48: 94–106.

    Google Scholar 

  • Webb, S. D., and Taylor, B. E. (1980). The phylogeny of hornless ruminants and a description of the cranium of Archaeomeryx. Bull. Amer. Mus. Nat. Hist. 167: 121–157.

    Google Scholar 

  • Werdelin, L., and Nilsonne, A. (1999). The evolution of the scrotum and testicular descent in mammals: A phylogenetic view. J. Theor. Biol. 196: 61–72.

    Google Scholar 

  • Wheeler, W. C. (1995). Sequence alignment, parameter sensitivity, and the phylogenetic analysis of molecular data. Syst. Biol. 44: 321–331.

    Google Scholar 

  • Wheeler, W. C. (1996). Optimization alignment: The end of multiple sequence alignment in phylogenetics? Cladistics 12: 1–9.

    Google Scholar 

  • Wheeler, W. C. (1999). Measuring topological congruence by extending character techniques Cladistics 15: 131–136.

    Google Scholar 

  • Wheeler, W. C. (2001). Homology and the optimization of DNA sequence data. Cladistics 17: S3-S11.

    Google Scholar 

  • Wheeler, W. C., Gladstein, D., and DeLaet, J. (2002). POY direct optimzation computer program, Versions test_5 through 3.0.5. Available at ftp.amnh.org/pub/molecular/poy.

  • Wible, J. R., and Novacek, M. J. (1988). Cranial evidence for the monophyletic origin of bats. Amer. Mus. Novit. 2911: 1–19.

    Google Scholar 

  • Wible, J. R., Novacek, M. J., and Rougier, G. W. (in press). New data on the skull structure in the Mongolian Late Cretaceous eutherian mammal Zalambdalestes. Bull. Amer. Mus. Nat. Hist.

  • Wible, J. R., and Rougier, G. W. (2000). Cranial anatomy of Kryptobataar dashzevegi (Mammlia, Multituberculata) and its bearing on the evolution of mammalian characters. Bull. Amer. Mus. Nat. Hist. 247: 1–124.

    Google Scholar 

  • Wible, J. R., Rougier, G. W., Novacek, M. J., and McKenna, M. C. (2001). Earliest eutherian ear region: A petrosal referred to Prokennalestes from the Early Cretaceous of Mongolia. Amer. Mus. Novit. 3322: 1–44.

    Google Scholar 

  • Williamson, T. E., and Lucas, S. G. (1992). Meniscotherium (Mammalia, “Condylarthra”) from the Paleocene–Eocene of western North America. New Mex. Mus. Nat. Hist. Bull. 1: 1–75.

    Google Scholar 

  • Wyss, A. D. (1987). Notes on Proteutheria, Insectivora, and Thomas Huxley's contribution to mammalian systematics. J. Mammal. 68: 135–138.

    Google Scholar 

  • Wyss, A. R., and J. J. Flynn. (1993). A phylogenetic analysis and definition of the Carnivora. In: Mammal Phylogeny, Vol. 2: Placentals, F. S. Szalay, M. J. Novacek, and M. C. McKenna, eds., pp. 32–52, Springer-Verlag, New York.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Asher, R.J., Novacek, M.J. & Geisler, J.H. Relationships of Endemic African Mammals and Their Fossil Relatives Based on Morphological and Molecular Evidence. Journal of Mammalian Evolution 10, 131–194 (2003). https://doi.org/10.1023/A:1025504124129

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1025504124129

Navigation