Skip to main content
Log in

NMR solution structure and dynamics of motilin in isotropic phospholipid bicellar solution

  • Published:
Journal of Biomolecular NMR Aims and scope Submit manuscript

Abstract

The structure and dynamics of the gastrointestinal peptide hormone motilin, consisting of 22 amino acid residues, have been studied in the presence of isotropic q=0.5 phospholipid bicelles. The NMR solution structure of the peptide in acidic bicelle solution was determined from 203 NOE-derived distance constraints and six backbone torsion angle constraints. Dynamic properties for the 13Cα-1H vector in Leu10 were determined for motilin specifically labeled with 13C at this position by analysis of multiple-field relaxation data. The structure reveals an ordered α-helical conformation between Glu9 and Lys20. The N-terminus is also well structured with a turn resembling that of a classical β-turn. The 13C dynamics clearly show that motilin tumbles slowly in solution, with a correlation time characteristic of a large object. It was also found that motilin has a large degree of local flexibility as compared with what has previously been reported in SDS micelles. The results show that motilin interacts with the bicelle, displaying motional properties of a peptide bound to a membrane. In comparison, motilin in neutral bicelles seems less structured and more flexible. This study shows that the small isotropic bicelles are well suited for use as membrane-mimetic for structural as well as dynamical investigations of membrane-bound peptides by high-resolution NMR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allard, P., Jarvet, J., Ehrenberg, A. and Gräslund, A. (1995) J. Biomol. NMR, 5, 133–146.

    Google Scholar 

  • Backlund, B.-M., Wikander, G., Peeters, T.L. and Gräslund, A. (1994) Biochim. Biophys. Acta, 1190, 337–344.

    Google Scholar 

  • Boulanger, Y., Khiat, A., Chen, Y., Gagnon, D., Poitras, P. and St-Pierre, S. (1995) Int. J. Pept. Protein Res., 46, 527–534.

    Google Scholar 

  • Braunschweiler, L. and Ernst, R.R. (1983) J. Magn. Reson., 53, 521–528.

    Google Scholar 

  • Cavanagh, J., Fairbrother, W.J., Palmer, A.G. and Skelton, N.J. (1996) Protein NMR Spectroscopy, Academic Press, San Diego.

    Google Scholar 

  • Chou, J.J., Kaufman, J.D., Stahl, S.J., Wingfield, P.T. and Bax, A. (2002) J. Am. Chem. Soc., 124, 2450–2451.

    Google Scholar 

  • Clore, G.M., Szabo, A., Bax, A., Kay, L.E., Driscoll, P.C. and Gronenborn, A.M. (1990) J. Am. Chem. Soc., 112, 4989–4991.

    Google Scholar 

  • Dayie, K.T. and Wagner, G. (1994) J. Magn. Reson. Ser., A111, 121–126.

    Google Scholar 

  • Edmondson, S., Khan, N., Shriver, J., Zdunek, J. and Gräslund, A. (1991) Biochemistry, 30, 11271–11279.

    Google Scholar 

  • Gaemers, S. and Bax, A. (2001) J. Am. Chem. Soc., 123, 12343–12352.

    Google Scholar 

  • Gippert, G. (1995) New Computational Methods for 3DNMR Data Analysis and Protein Structure Determination in High-Dimensional Internal Coordinate Space, PhD Thesis. The Scripps Institute, La Jolla.

    Google Scholar 

  • Glover, K.J., Whiles, J.A., Wu, G., Yu, N.-J., Deems, R., Struppe, J.O., Stark, R.E., Komives, E.A. and Vold, R.R. (2001) Biophys. J., 81, 2163–2171.

    Google Scholar 

  • Güntert, P. and Wüthrich, K. (1991) J.Biomol. NMR, 1, 447–456.

    Google Scholar 

  • Güntert, P., Braun, W. and Wüthrich, K. (1991) J. Mol. Biol., 217, 517–530.

    Google Scholar 

  • Itoh, Z. (1997) Peptides, 18, 593–608.

    Google Scholar 

  • Jarvet, J., Zdunek, J., Damberg, P. and Gräslund, A. (1997)Biochemistry, 36, 8153–8163.

    Google Scholar 

  • Jeener, J., Meier, B.H., Bachmann, P. and Ernst, R.R. (1979) J. Chem. Phys.,71, 4546–4553.

    Google Scholar 

  • Khan, N., Gräslund, A., Ehrenberg, A. and Shriver, J. (1990) Biochemistry, 29, 5743–5751.

    Google Scholar 

  • Laskowski, R.A., MacArthur, M.W., Moss, D.S. and Thornton, J.M. (1993) J. Appl. Crystallogr., 26, 283–291.

    Google Scholar 

  • Lindberg, M. and Gräslund, A. (2001) FEBS Lett., 497, 39–44.

    Google Scholar 

  • Lipari, G. and Szabo, A. (1982a) J. Am.Chem. Soc., 104, 4546–4559.

    Google Scholar 

  • Lipari, G. and Szabo, A. (1982b) J. Am. Chem. Soc., 104, 4559–4570.

    Google Scholar 

  • Luchette, P.A., Vetman, T.N., Prosser, R.S., Hancock, R.E.W., Nieh, M.-P., Glinka, C.J., Krueger, S. and Katsaras, J. (2001) Biochim. Biophys. Acta, 1513, 83–94.

    Google Scholar 

  • Magzoub, M., Kilk, K., Eriksson, L.E.G. and Gräslund, A. (2001)Biochim. Biophys. Acta, 1512, 77–89.

    Google Scholar 

  • Mäler, L., Potts, B.C.M. and Chazin, W.J. (1999) J. Biomol. NMR,13, 233–247.

    Google Scholar 

  • Mandel, A.M., Akke, M. and Palmer, A.G. (1995) J. Mol. Biol., 246, 144–163.

    Google Scholar 

  • Neuhaus, D. and Williamson, M.P. (1989) The Nuclear Overhauser Effect in Structure and Conformational Analysis, VCH, New York, NY.

    Google Scholar 

  • Palmer, A.G., Kroenke, C.D. and Loria, P.J. (2001) Meth. Enzymol., 339, 204–238.

    Google Scholar 

  • Palmer, A.G., Rance, M. and Wright, P.E. (1991) J. Am. Chem. Soc., 113, 4371–4380.

    Google Scholar 

  • Papavoine, C.H.M., Remerowski, M.L., Horstink, L.M., Konings, R.N.H., Hilbers, C.W. and van de Ven, F.J.M. (1997) Biochemistry, 36, 4015–4026.

    Google Scholar 

  • Pearlmann, D.A., Case, D.A., Caldwell, J.W., Ross, W.S., Cheatham III, T.E., Ferguson, D.M., Seibel, G.L., Singh, U.C., Weiner, P.K. and Kollman, P.A. (1995) AMBER 4.1. University of California, San Fransisco, CA.

    Google Scholar 

  • Sanders, C.R. and Landis, G.C. (1995) Biochemistry, 34, 4030–4040.

    Google Scholar 

  • Sanders, C.R. and Prosser, R.S.(1998) Structure, 6, 1227–1234.

    Google Scholar 

  • Shaka, A.J., Barker, P.B. and Freeman, R. (1985) J. Magn. Reson., 64,547–552.

    Google Scholar 

  • Smith, J.A., Gomez-Paloma, L., Case, D.A. and Chazin, W.J. (1996) Magn. Reson. Chem., 34, 147–155.

    Google Scholar 

  • States, D.J., Haberkorn, R.A. and Ruben, D.J. (1982) J. Magn. Reson., 48, 286–292.

    Google Scholar 

  • Struppe, J. and Vold, R.R. (1998) J. Magn. Reson., 135, 541–546.

    Google Scholar 

  • Struppe, J., Whiles, J.A. and Vold, R.R. (2000) Biophys. J.,78, 281–289.

    Google Scholar 

  • Tjandra, N. and Bax, A. (1997) Science, 278, 1111–1114.

    Google Scholar 

  • Vold, R.R., Prosser, R.S. and Deese, A.J. (1997) J. Biomol. NMR, 9, 329–335.

    Google Scholar 

  • Wei, Y., Lee, D.-K. and Ramamoorthy, A. (2001) J. Am.Chem. Soc., 123, 6118–6126.

    Google Scholar 

  • Whiles, J.A., Brasseur, R., Glover, K.J., Melacini, G., Komives, E.A. and Vold, R.R.(2001) Biophys. J., 80, 280–293.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lena Mäler.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Andersson, A., Mäler, L. NMR solution structure and dynamics of motilin in isotropic phospholipid bicellar solution. J Biomol NMR 24, 103–112 (2002). https://doi.org/10.1023/A:1020902915969

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1020902915969

Navigation