Skip to main content
Log in

Topology and Chemistry

  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

The determinants of chemical bonding are the chemical properties of the atoms and the constraints of three-dimensional (3-D) space into which the atoms must fit, but topology provides a convenient way of describing the resultant structure. This paper explores the topologies of various scalar fields associated with atoms in molecules and crystals and what they can tell us about chemical bonding. The scalar fields examined are the electron density, the electrostatic potential, and two simplified electrostatic potentials in which the contributions of the electron cores have been removed, namely the Madelung and the covalent field. Not all of the information contained in these fields is present in the topology but, since the topology is insensitive to the details of the field, it can often be determined using simplified calculations. Although the same topological model is used to explore all four fields, each field has its own distinctive topology and each provides different information about the nature of chemical bonding and structure. The analysis of these topologies, when combined with simple electrostatic theory and a few empirical observations, leads to a quantitative model of localized chemical bonding. In the process, the analysis provides insights into the nature of chemical bonding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  1. Brown, I. D. Acta Crystallogr. 1997, B53, 381.

    Google Scholar 

  2. Pauling, L. The Nature of the Chemical Bond, 3rd Ed.; Cornell University Press: Ithaca, 1960.

    Google Scholar 

  3. Allred, A. L.; Rochow, E. G. J. Nucl. Inorg. Chem. 1958, 5, 264.

    Google Scholar 

  4. Boyd, R. J.; Edgecombe J. Amer. Chem. Soc. 1988, 110, 4182.

    Google Scholar 

  5. Allen, L. C. J. Amer. Chem. Soc. 1989, 111, 9003.

    Google Scholar 

  6. Brown, I. D.; Skowron, A. J. Amer. Chem. Soc. 1990, 112, 3401.

    Google Scholar 

  7. Brown, I. D. Can. J. Phys. 1995, 73, 676.

    Google Scholar 

  8. Bader, R. W. F. Atoms in Molecules, A Quantum Theory; OUP: Oxford, 1990; (a) Chap. 4; (b) Chap. 7.

    Google Scholar 

  9. Downs, R. T.; Gibbs, B. V.; Boisen, M. B.; Rosso, K. M. 2001, in press.

  10. Knop, O.; Boyd, R. J.; Choi, S. C. J. Amer. Chem. Soc. 1988, 110, 7299.

    Google Scholar 

  11. Alcorta, I.; Barrios, L.; Rozas, I.; Elguero, J. J. Mol. Struct. (Theochem.) 2000, 496, 131.

    Google Scholar 

  12. Tsirelson, V. G.; Avilov, A. S.; Lepeshov, G. G.; Kolyagin, A. K.; Stahn; J. Pietsch, U.; Spence, J. C. H. J. Phys. Chem. B 2001, in press.

  13. Brown, I. D. The Chemical Bond in Inorganic Chemistry, The Bond Valence Model; OUP: Oxford, 2002.

    Google Scholar 

  14. Brown, I. D. Z. Kristallogr. 1992, 199, 255.

    Google Scholar 

  15. Preiser, C.; Lösel, J.; Brown, I. D.; Kunz, M.; Skowron, A. Acta Crystallogr. 1999, B55, 698.

    Google Scholar 

  16. Brown, I. D.; Altermatt, D. Acta Crystallogr. 1985, B41, 244.

    Google Scholar 

  17. Brown, I. D.; Shannon, R. D. Acta Crystallogr. 1973, A29, 266.

    Google Scholar 

  18. Brown, I. D. J. Chem. Soc. Dalton Trans. 1980, p. 1118.

  19. Boison, M. B.; Gibbs, G. V.; Zhang, Z. G. Phys. Chem. Mineral 1988, 15, 409.

    Google Scholar 

  20. Kunz, M.; Brown, I. D. J. Solid State Chem. 1995, 115, 395.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brown, I.D. Topology and Chemistry. Structural Chemistry 13, 339–355 (2002). https://doi.org/10.1023/A:1015872125545

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1015872125545

Navigation