Skip to main content
Log in

Etoposide phosphate, the water soluble prodrug of etoposide

  • Published:
Pharmacy World and Science Aims and scope Submit manuscript

Abstract

An elevated plasma homocysteine level may result from various enviromental and genetic factors. Hereditary causes of severe hyperhomo-cysteinaemia are very rare and usually lead to disease in childhood or adolescence. Common pathology consists of early atherosclerotic vascular changes, arterioocclusive complications and venous thrombosis. Mildly elevated genetically determined plasma homocysteine levels are observed in 5% of the general population. In the last two decades research has shown mild hyperhomocysteinaemia to be linked to an increased risk of premature atherosclerosis, pregnancies complicated by neural tube defects and early pregnancy loss, and venous thrombosis. Homozygosity for thermolabile MTHFR deficiency has been identified as one important genetic factor, which expression is modified by dietary folate intake. Although mild hyperhomocysteinaemia can easily be treated by vitamin supplementation the beneficial effects of such treatment remains to be shown.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. DeVigneaud VE. Trail of research in sulfur chemistry and metabolism, and related fields. Ithaca, N.Y.: Cornell University Press, 1952.

    Google Scholar 

  2. Carson NAJ, Neill DW. Metabolic abnormalities detected in a survey of mentally backward individuals in Northern Ireland. Arch Dis Child 1962;37:505-13.

    Google Scholar 

  3. Gerritsen T, Waisman HA. Homocystinuria, an error in the metabolism of methionine. Pedriatrics 1964;33413-20.

  4. Mudd SH, Finkelstein JD, Irreverre F, Laster L. Homocystinuria: an enzymatic defect. Science 1964;143:1443-5.

    Google Scholar 

  5. Skovby F. Homocystinuria. Clinical, biochemical and genetic aspects of cystathionine ß-synthase and its deficiency in man. Acta Paediatr Scand 1985;321:1-21.

    Google Scholar 

  6. Perry TL, Hansen S, MacDougall L, Warrington PD. Sulfur-containing amino acids in the plasma and urine of homocystinurics. Clin Chim Acta 1967;15:409-420.

    Google Scholar 

  7. Wannmacker CMD, Wajner M, Giugliani R, Filho CSD. An improved specific laboratory test for homocystinuria. Clin Chim Act 1982;125:367-69.

    Google Scholar 

  8. Mudd SH, Uhlendorf BW, Freeman JM, Finkelstein JD, Shih VE. Homocystinuria associated with decreased methylenete-trahydrofolate reductase activity. Biochem Biophys Res Commun 1972;46:905-12.

    Google Scholar 

  9. Rosenblatt DS. Inherited disorders of folate transport and metabolism. In: Scriver CR, Beaudet AL, Sly WS, Valle D, eds. The metabolic basis of inherited disease. 6th ed. New York: McGraw-Hill, 1989:2049-64.

    Google Scholar 

  10. Ueland PM, Refsum H, Brattström L. Plasma homocysteine and cardiovascular disease. In: Francis RB JR, ed. Atherosclerotic cardiovascular disease, hemostasis, and endothelial function. New York: Marcel Dekker, 1992;183-286.

    Google Scholar 

  11. Engbersen ATM, Franken DG, Boers GHJ, Stevens EMB, Trijbels FJM, Blom HJ. Thermolabile 5,10-methylenetetrahydrofolate reductase as a cause of mild hyperhomocysteine-mia. Am J Hum Gen 1995;56:142-50.

    Google Scholar 

  12. Boers GHJ. Hyperhomocysteinaemia: a newly recognized risk factor for vascular disease. Neth J Med 1994;45:34-41.

    Google Scholar 

  13. Boushey CJ, Beresford SA, Omenn GS, Motulsky AG. A quantitative assessment of plasma homocysteine as a risk factor for vascular disease. Probable benefits of increasing folic acid intakes. JAMA 1995;274:1049-57.

    Google Scholar 

  14. Steegers-Theunissen RP, Boers GH, Trijbels FJ, Eskes TK. Hyperhomocysteinaemia and recurrent spontaneous abortion or abruptio placentae. Lancet 1992;339:1122-3.

    Google Scholar 

  15. Wouters MG, Boers GH, Blom HJ, Trijbels FJ, Thomas CM, Borm GF, et al. Hyperhomocysteinemia: a risk factor in women with unexplained recurrent early pregnancy loss. Fertil Steril 1993;60(5):820-5.

    Google Scholar 

  16. Steegers-Theunissen RP, Boers GH, Trijbels FJ, Eskes TK. Neural-tube defects and derangement of homocysteine metabolism. N Eng J Med 1991;324(3):199-200.

    Google Scholar 

  17. Steegers-Theunissen RP, Boers GH, Trijbels FJ, Finkelstein JD, Blom HJ, Thomas CM, et al. Maternal hyperhomocysteinemia: a risk factor for neural-tube defects? Metabolism 1994;43(12):1475-80.

    Google Scholar 

  18. Bienvenu T, Ankri A, Chadefaux B, Montalescot G, Kamoun P. Elevated total plasma homocysteine, a risk factor for thrombosis. Relation to coagulation and fibrinolytic parameters. Thromb Res 1993;70:123-9.

    Google Scholar 

  19. Falcon CR, Cattaneo M, Panzeri D, Martinelli I, Mannucci PM. High prevalence of hyperhomocysteinemia in patients with juvenile venous thrombosis. Arterioscler Thromb 1994;14:1080-3.

    Google Scholar 

  20. Fermo I, D'Angelo V, Paroni R, Mazzola G, Calori G, D'Angelo A. Prevalence of moderate hyperhomocysteinemia in patients with early-onset venous and arterial occlusive disease. Ann Intern Med 1995;123:747-53.

    Google Scholar 

  21. den Heijer M, Blom HJ, Gerrits WBJ, Rosendaal FR, Haak HL, Wijermans PW, et al. Is hyperhomocysteinaemia a risk factor for recurrent venous thrombosis? Lancet 1995;345:882-85.

    Google Scholar 

  22. den Heijer M, Koster T, Blom HJ, Bos GMJ, Briët E, Reitsma PH, et al. Hyperhomocysteinemia as a risk factor for deep-vein thrombosis. N Eng J Med;334:759-62.

  23. Wenzler EM, Rademakers AJ, Boers GH, Cruysberg JR, Webers CA, Deutman AF. Hyperhomocysteinemia in retinal vein occlusion. Am J Ophthalmol 1993;115:162-7.

    Google Scholar 

  24. Finkelstein JD. Methionine metabolism in mammals. J NutrBiochem 1990;1:228-37.

    Google Scholar 

  25. Refsum H, Helland S, Ueland PM. Radioenzymic determination of homocysteine in plasma and urine. Clin Chem 1985;31:624-28.

    Google Scholar 

  26. Araki A, Sako Y. Determination of free and total homocysteine in human plasma by high-performance liquid chromography with fluorescence detection. J Chromatogr 1987;422:43-52.

    Google Scholar 

  27. Malinow MR. Homocyst(e)ine and arterial occlusive diseases. J Int Med 1994;236:603-17.

    Google Scholar 

  28. Ueland PM, Refsum H. Plasma homocysteine, a risk factor for vascular disease: plasma levels in health, disease, and drug therapy. J Lab Clin Med 1989;114:473-501.

    Google Scholar 

  29. Wouters MG, Moorrees MT, van der Mooren MJ, Blom HJ, Boers GH, Schellekens LA, Thomas CM, Eskes TK. Plasma homocysteine and menopausal status. Eur J Clin Invest 1995;25:801-5.

    Google Scholar 

  30. Bostom AG, Jacques PF, Nadeau MR, Williams RR, Ellison RC, Selhub J. Post-methionine load hyperhomocysteinemia in persons with normal fasting total plasma homocysteine: initial results from the NHLBI Family Heart Study. Atherosclerosis 1995;116:147-51

    Google Scholar 

  31. Kluijtmans LA, Blom HJ, Boers GH, van Oost BA, Trijbels FJ, van den Heuvel LP. Two novel missense mutations in the cystathionine beta-synthase gene in homocystinuric patients. Human Genetics 1995;96:249-50.

    Google Scholar 

  32. Kozich V, Kraus E, de Franchis R, Fowler B, Boers GH, Graham I, et al. Hyperhomocysteinemia in premature arterial disease: examination of cystathionine beta-syntase alleles at the molecular level. Human Molecular Genetics 1995;4:623-9.

    Google Scholar 

  33. Mudd SH, Levy HL, Skovby F. Disorders of transsulfuration. In: Scriver CR, Beadet AL, Sly WS, Valle D, eds. The metabolic basis for inherited diseases. New York: McGraw-Hill, 1989:693-734.

    Google Scholar 

  34. Goyette P, Frosst P, Rosenblatt DS, Rozen R. Seven novel mutations in the methylenetetrahydrofolate reductase gene and genotype/phenotype correlations in severe methylenetetrahydrofolate reductase deficiency. Am J Hum Gen 1995;56:1052-59.

    Google Scholar 

  35. Visy JM, Le Coz P, Chadefaux B, Fressinaud C, Woimant F, Marquet J, et al. Homocystinuria due to 5,10-methylenetetrahydrofolate reductase deficiency revealed by stroke in adult siblings. Neurology 1991;41:1313-15.

    Google Scholar 

  36. Fenton WA, Rosenberg LE. Inherited disorders of cobalamin transport and metabolism. In: Scriver CR, Beaudet AL, Sly WS, Valle D, eds. The metabolic basis of inherited disease. 6th ed. New York: McGraw-Hill, 1989:2065-83.

    Google Scholar 

  37. Rosenblatt DS, Cooper BA. Inherited disorders of vitamin-B 12 metabolism. Annu Rev Nutr 1987;291-320.

  38. Kang SS, Zhou J, Wong PWK, Kowalisyn J, Strokosh. Intermediate homocysteinemia: a thermolabile variant of methylene tetrahydrofolate reductase. Am J Hum Genet 1988;43:414-21.

    Google Scholar 

  39. Kang SS, Wong PWK, Susmano A, Sora J, Norusis M, Ruggie N. Thermolabile methylenetetrahydrofolate reductase: an inherited risk factor for coronary artery disease. Am J Hum Genet 1991;48:536-45.

    Google Scholar 

  40. Kang SS, Passen EL, Ruggie N, Wong PW, Sora H. Thermolabile defect of methylenetetrahydrofolate reductase in coronary disease. Circulation 1993;88:1463-9.

    Google Scholar 

  41. Frosst P, Blom HJ, Milos R, Goyette P, Sheppard CA, Matthews RG, et al. A candidate genetic risk factor for vascular disease: a common mutation in methylenetetrahydrofolate reductase. Nat Genet 1995;10:111-13.

    Google Scholar 

  42. van der Put NMJ, Steegers-Theunissen RPM, Frosst P, Trijbels FJ, Eskes TK, van den Heuvel LP, et al. Mutated methylenetetrahydrofolate reductase as a risk factor for spina bifida. Lancet 1995;346:1070-1.

    Google Scholar 

  43. Harmon DL, Woodside JV, Yarnell JWG, McMaster D, Young IS, McCrum EE, et al. The common thermolabile variant of methylene tetrahydrofolate reductase is a major determinant of mild hyperhomocysteinaemia. Q J Med 1996;89:571-7.

    Google Scholar 

  44. Kang SS, Wong PW, Bock HG, Horwitz A, Grix A. Intermediate hyperhomocysteinemia resulting from compound heterozygosity of methylenetetrahydrofolate reductase mutations. Am J Hum Gen 1991;48:546-51.

    Google Scholar 

  45. Wilcken DEL, Wilcken B. The pathogenesis of coronary artery disease. A possible role for methionine metabolism. J Clin Invest 1976;57:1079-82.

    Google Scholar 

  46. Arnesen E, Refsum H, Bonaa KH, Ueland PM, Forde OH. Serum total homocysteine and coronary heart disease. Int J Epidemiol 1995;24:704-09.

    Google Scholar 

  47. Perry IJ, Refsum H, Morris RW, Ebrahim SB, Ueland PM, Shaper AG. Prospective study of serum total homocysteine concentration and risk of stroke in middle-aged British men. Lancet 1995;346:1395-8.

    Google Scholar 

  48. Posey DL, Khoury MJ, Mulinare J, Adams MJ Jr, Chin-Yih Ou. Is mutated MTHFR a risk factor for neural tube defects? Lancet 1996;347:686-7.

    Google Scholar 

  49. Ma J, Stampfer MJ, Hennekens CH, Frosst P, Selhub J, Horsford J, et al. Methylenetetrahydrofolate reductase polymorphism, plasma folate, homocysteine, and risk of myocardial infarction in US physicians. Circulation 1996;94:2410-16.

    Google Scholar 

  50. Mudd SH, Havlik R, Levy HL, McKusik VA, Feinleib M. A study of cardiovascular risk in heterozygotes for homocystinuria. Am J Hum Genet 1981;33:883-93.

    Google Scholar 

  51. Hibbard BM. The role of folic acid in pregnancy: with particular reference to anaemia, abruption and abortion. J obstet Gynaecol Br Commonw 1964;71:529-42.

    Google Scholar 

  52. MRC Vitamin Study Research Group. Prevention of neural tube defects of the MRC Vitamin Study. Lancet 1991;338:132-7.

  53. Mills JL, McPartlin JM, Kirke PN, Lee YJ, Conley MR, Weir DG, et al. Homocysteine metabolism in pregnancies complicated by neural-tube defects. Lancet 1995;345:149-51.

    Google Scholar 

  54. Steegers-Theunissen RP, Boers GH, Blom HJ, Nijhuis JG, Thomas CM, Borm GF, et al. Neural tube defects and elevated homocysteine levels in amniotic fluid. Am J Obstet Gynecol 1995;172(5):1436-41.

    Google Scholar 

  55. Ou CY, Stevenson RF, Brown VK. V677T homozygosity associated with thermolabile 5,10-methylenetetrahydrofolate reductase as a risk factor for neural tube defects. Am J Hum Genet 1995;57(suppl):A223.

    Google Scholar 

  56. Whitehead AS, Gallagher P, Mills JL, Kirk PN, Burke H, Molloy AM, et al. A genetic defect in 5,10-methylenetetrahydrofolate reductase in neural tube defects. Q J Med 1995 88:763-6.

    Google Scholar 

  57. McDonald L, Bray C, Field C, Love F, Davies B. Homocystinuria, thrombosis and the blood-platelets. Lancet 1964;i:1745-6.

  58. Rodgers GM, Kane WH. Activation of endogenous factor V by a homocysteine-induced vascular endothelial cell activator. J Clin Invest 1986;77:1909-16.

    Google Scholar 

  59. Rodgers GM, Cone MT. Homocysteine, an artherogenic stimules, reduces protein C activation by arterial and venous endothelial cells. Blood 1990;75:895-901.

    Google Scholar 

  60. Lentz SR, Sadler JE. Inhibition of thrombomodulin surface expression and protein C activation by the thrombogenic agent homocysteine. J Clin Invest 1991;88:1906-14.

    Google Scholar 

  61. Hayashi T, Honda G, Suzuki K. An atherogenic stimulus homocysteine inhibits cofactor activity of thrombomodulin and enhances thrombomodulin expression in human umbilical vein endothelial cells. Blood 1992;79:2930-36.

    Google Scholar 

  62. Harker LA, Ross R, Slichter SJ, Scott CR, Ross R. Homocystinemia: vascular injury and arterial thrombosis. N Eng J Med 1974;291:537-43.

    Google Scholar 

  63. Harker LA, Ross R, Slichter SJ, Scott CR. Homocysteineinduced arteriosclerosis: the role of endothelial cell injury and platelet response in its genesis. J Clin Invest 1976;58:731-41.

    Google Scholar 

  64. Starkebaum G, Harlan JM. Endothelial cell injury due to copper catalyzed hydrogen peroxidase generation from homo-cysteine. J Clin Invest 1986;77:1370-6.

    Google Scholar 

  65. van den Berg M, Boers GH, Franken DG, Blom HJ, van Kamp GJ, Jakobs C, et al. Hyperhomocysteinemia and endothelial dysfuction in young patients with peripheral arterial occlusive disease. Eur J Clin Invest 1995. 25(3):176-81.

    Google Scholar 

  66. Harpel PC, Chang VT, Borth W. Homocysteine and other sulfhydryl compounds enhance the binding of lipoprotein(a) to fibrin: a potential biochemical link between thrombosis, atherogenesis, and sulfhydryl compound metabolism. Proc Natl Acad Sci USA 1992;89:10193-97.

    Google Scholar 

  67. Coelho CN, Weber JA, Klein NM, Daniels WG, Hoagland TA. Whole rat embryos require methionine for neural tube closure when cultured on cow serum. J Nutr 1989;119:1716-25.

    Google Scholar 

  68. Coelho CN, Klein NW. Methionine and neural tube closure in cultured rat embryos: morphological and biochemical analyses. Teratology 1990;42:437-51.

    Google Scholar 

  69. Essien FB. Maternal methionine supplementation promotes the remediation of axial defects in Axd mouse neural tube mutants. Teratology 1992;45:205-12.

    Google Scholar 

  70. Nosel PG, Klein NW. Methionine decreases the embryotoxicity of sodium valproate in the rat: in vivo and in vitro observations. Teratology 1992;46:499-507.

    Google Scholar 

  71. Essien FB, Wannberg SL. Methionine but not folinic acid or vitamin B12 alters the frequency of neural tube defects in Axd mutant mice. J Nutr 1993;123:973-4. Published erratum J Nutr 1993;123:973-4.

    Google Scholar 

  72. Chambers BJ, Klein NW, Nosel PG, Khairallah LH, Romanow JS. Methionine overcomes neural tube defects in rat embryos on sera from laminin-immunized monkeys. J Nutr 1995;125:1587-99.

    Google Scholar 

  73. Ehlers K, Elmazar MM, Nau H. Methionine reduces the valproic acid-induced spina bifida rate in mice without altering valproic acid kinitics. J Nutr 1996;126:67-75.

    Google Scholar 

  74. VanAerts LA, Blom HJ, Deabreu RA, Trijbels FJ, Eskes TK, Copius Peereboom-Stegeman JH, et al. Prevention of neural tube defects by and toxicity of L-homocysteine in cultured postimplantation rat embryos. Teratology 1994;50:348-60.

    Google Scholar 

  75. VanAerts LA, Poirot CM, Herberts CA, Blom HJ, De Abreu RA, Trijbels JM, et al. J Reprod Fertil 1995;103:227-32.

    Google Scholar 

  76. Mudd SH, Skovby F, Levy HL, Pettigrew KD, Wilcken B, Pyeritz RE, et al. The natural history of homocystinuria due to cystathionine b-synthase deficiency. Am J Hum Genet 1985;37:1-31.

    Google Scholar 

  77. Boers GJH, Smals AGH, Drayer JIM, Trijbels JFM, Leermakers AI, Kloppenborg PWC. Pyridoxine treatment does not prevent homocystinemia after methionine loading in adult homocystinuria patients. Metabolism 1983;32:390-97.

    Google Scholar 

  78. Freeman JM, Finkelstein JD, Mudd SH. Folate responsive homocystinuria and “Schizofrenia”. A defect in methylation due to deficient 5,10-methylenetetrahydofolate reductase activity. N Eng J Med 1975;292:491-6.

    Google Scholar 

  79. Harpey JP, Rosenblatt DS, Cooper BA, Le Moel G, Roy C, Lafourcade J. Homocystinuria caused by 5,10-methylenetetrahydrofolte reductase deficiency: a case in a infant responding to methionine, folinic acid, pyridoxine, and vitamin B12 therapy. J Pediatr 1981;98:275-8.

    Google Scholar 

  80. Van den Berg M, Boers GHJ. Homocystinuria: what about mild hyperhomocysteinaemia? Post Grad Med J 1996;72:513-18.

    Google Scholar 

  81. van den Berg M, Franken DG, Boers GHJ, Blom HJ, Jakobs C, Stehouwer CDA, et al. Combined vitamin B6 plus folic acid therapy in young patients with arteriosclerosis and hyperhomocysteinemia. J Vasc surg 1994;20(6):933-40.

    Google Scholar 

  82. Sumner AE, Margaret MC, Abrahm JL, Berry GT, Gracely EJ, Allen RH, et al. Elevated methylmalonic acid and total homocysteine levels show high prevalence of vitamin B12 deficiency after gastric surgery. Ann Intern Med 1996;124:469-76.

    Google Scholar 

  83. Lindner MC. Nutrition and metabolism of vitamins. In: Lindner MC, ed. Nutritional Biochemisty and Metabolism with Clinical Applications. New York, NY: Elsevier;1985:69-131.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bakker, R., Brandjes, D. Etoposide phosphate, the water soluble prodrug of etoposide. Pharm World Sci 19, 126–132 (1997). https://doi.org/10.1023/A:1008634632501

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1008634632501

Navigation