Skip to main content
Log in

Comparison of the Effects of Antidepressants and Their Metabolites on Reuptake of Biogenic Amines and on Receptor Binding

  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

Abstract

1. The present survey compares the effects of antidepressants and their principal metabolites on reuptake of biogenic amines and on receptor binding. The following antidepressants were included in the study: the tricyclic antidepressants amitriptyline, dothiepin, and lofepramine and the atypical antidepressant bupropion, which all have considerable market shares in the UK and/or US markets; the selective serotonin reuptake inhibitors (SSRIs) citalopram, fluoxetine, fluvoxamine, paroxetine, and sertraline; and the recently approved antidepressants venlafaxine and nefazodone.

2. Amitriptyline has similar in vitro reuptake inhibitory potencies for 5-HT and NA, whereas the metabolite nortriptyline is preferentially a NA reuptake inhibitor. Both amitriptyline and nortriptyline are also 5-HT2 receptor antagonists.

3. Dothiepin has equipotent 5-HT and NA reuptake inhibitory activity, whereas northiaden shows a slight selectivity for NA reuptake inhibition. Dothiepin and northiaden are also 5-HT2 receptor antagonists. The slow elimination rate of northiaden (36–46 hr) compared to dothiepin (14–24 hr) suggests that northiaden contributes significantly to the therapeutic effect of dothiepin.

4. Lofepramine is extensively metabolized to desipramine. Desipramine plays an important role in the antidepressant activity of lofepramine, as the plasma elimination half-life of lofepramine (4–6 hr) is much shorter than that of desipramine (24 hr). Both compounds are potent and selective inhibitors of NA reuptake.

5. The five approved SSRIs, citalopram, fluoxetine, fluvoxamine, paroxetine, and sertraline, are potent 5-HT reuptake inhibitors, and the demethyl metabolites, norfluoxetine, demethylsertraline, and demethylcitalopram, also show selectivity. Paroxetine and sertraline are the most potent inhibitors of 5-HT reuptake, whereas citalopram is the most selective. Fluoxetine is the least selective and the metabolite of fluoxetine, norfluoxetine, is a more selective and more potent 5-HT reuptake inhibitor than the parent compound and has an extremely long half-life (7–15 compared to 1–3 days). Thus the metabolite plays an important role for the therapeutic effect of fluoxetine. Fluoxetine is also a 5-HT2C receptor antagonist. Demethylsertraline is a weaker and less selective 5-HT reuptake inhibitor in vitro than sertraline, but demethylsertraline has a very long half-life (62–104 hr) compared to the parent compound (24 hr) and it might play a role in the therapeutic effects of sertraline. Demethylcitalopram has about a 10 times lower 5-HT reuptake inhibitory potency in vitro than citalopram, and the elimination half-lives are approximately 1.5 and 2 days, respectively.

6. Bupropion and hydroxybupropion are weak inhibitors of biogenic amine reuptake. The mechanisms of action responsible for the clinical effects of bupropion are not fully understood, but it has been suggested that both dopaminergic and noradrenergic components play a role and that the hydroxybupropion metabolite contributes significantly to the antidepressant activity.

7. Venlafaxine and O-demethylvenlafaxine are weak inhibitors of 5-HT and NA reuptake, and the selectivity ratios are close to one. O-Demethylvenlafaxine is eliminated more slowly than venlafaxine (plasma half-lives of 5 and 11 hr, respectively), and it is likely that it contributes to the overall therapeutic effect of venlafaxin.

8. Nefazodone and α-hydroxynefazodone are equipotent 5-HT and NA reuptake inhibitors. Both compounds are also 5-HT2 receptor antagonists. Both parent compound and metabolite have short elimination half-lives.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  • Artigas, F., Romero, L., de Montigny, C., and Blier, P. (1996). Acceleration of the effect of selected antidepressant drugs in major depression by 5-HT1A antagonists. Trends Neurol. Sci. 19:378–383.

    Google Scholar 

  • Ascher, J. A., Cole, J. O., Colin, J.-N., Feighner, J. P., Ferris, R. M., Fibiger, H. C., Golden, R. N., Martin, P., Potter, W. Z., Richelson, E., and Sulser, F. (1995). Bupropion: A review of its mechanism of antidepressant activity J. Clin. Psychiatry 56:395–401.

    Google Scholar 

  • Baumann, P., and Larsen F. (1995). The pharmacokinetics of citalopram. Rev. Contemp. Pharmacother. 6:287–295.

    Google Scholar 

  • Blier, P., and de Montigny, C. (1994). Current advances and trends in the treatment of depression. Trends Pharmacol. Sci. 15:220–225.

    Google Scholar 

  • Bøgesø, K. P., Arnt, J., Frederiksen, K., Hansen, H. O., Hyttel, J., and Pedersen, H. (1995). Enhanced D1 affinity in a series of piperazine ring substituted-1-piperazino-3-arylindans with potential atypical antipsychotic activity. J. Med. Chem. 38:4380–4392.

    Google Scholar 

  • Borsini, F. (1994). Balance between cortical 5-HT1A and 5-HT2 receptor function: Hypothesis for a faster antidepressant action. Pharmacol. Res. 30:1–11.

    Google Scholar 

  • Braithwaite, R. A., Montgomery, S., and Robinson, J. D. (1978). A radioimmunoassay for amitriptyline and nortriptyline. Br. J. Pharmacol. 63:370–371.

    Google Scholar 

  • Brown, A. S., and Gershon, S. (1993). Dopamine and depression. J. Neur. Transm. 91:75–109.

    Google Scholar 

  • Buckholz, N. S., Zhou, D., and Freedman, D. X. (1988). Serotonin2 agonist administration down-regulates rat brain serotonin2 receptors. Life Sci. 42:2439–2445.

    Google Scholar 

  • Burch, J. E., Roberts, S. G., and Raddats, M. A. (1984). Amitriptyline and its basic metabolites determined in plasma by gas chromatography. J. Chromatogr. Biomed. Appl. 308:165–179.

    Google Scholar 

  • Caccia, S., Cappi, M., Fracasso, C., and Garattini, S. (1990). Influence of dose and route of administration on the kinetics of fluoxetine and its metabolite norfluoxetine in the rat. Psychopharmacology 100:509–514.

    Google Scholar 

  • Claassen, V. (1983). Review of the animal pharmacology and pharmacokinetics of fluvoxamine. Br. J. Clin. Pharmacol. 15:349S-355S.

    Google Scholar 

  • de Boer, T. (1996). The pharmacologic profile of mirtazapine. J. Clin. Psychiatry 57:19–25.

    Google Scholar 

  • de Bree, H., Van der Schoot, J. B., and Post, L. C. (1983). Fluvoxamine maleate disposition in man. Eur. J. Drug Metab. Pharmacokinet. 8:175–179.

    Google Scholar 

  • de Paermentier, F., Cheetham, S. C., Crompton, R. M., Katona, C. L. E., and Horton, R. W. (1990). Brain β-adrenoceptor binding sites in antidepressant-free depressed suicide victims. Brain Res. 525:71–77.

    Google Scholar 

  • Eison, A. S., Eison, M. S., Yocca, F. D., and Gianutsos, G. (1989). Effects of imipramine and serotonin2 agonists and antagonists on serotonin2 and beta-adrenergic receptors following noradrenergic or serotonergic denervation. Life Sci. 44:1419–1427.

    Google Scholar 

  • Eison, A. S., Eison, M. S., Torrente, J. R., Wright, R. N., and Yocca, F. D. (1990). Nefazodone: Preclinical pharmacology of a new antidepressant. Psychopharmacol. Bull. 26:311–315.

    Google Scholar 

  • Ferris, R. M., and Cooper, B. R. (1993). Mechanism of antidepressant activity of bupropion. J. Clin. Psychiatry 11:2–14.

    Google Scholar 

  • Fredricson Overø, K. (1982). Kinetics of citalopram in man: Plasma levels in patients. Prog. Neuropsychopharmacol. Biol. Psychiatry 6:311–318.

    Google Scholar 

  • Fuller, R. W., Snoddy, H. D., Krushinski, J. H., and Robertson, D. W. (1992). Comparison of norfluoxetine enantiomers as serotonin uptake inhibitors in vivo. Neuropharmacology 31:997–1000.

    Google Scholar 

  • Goldberg, R. J. (1995). Nefazodone and venlafaxine: Two new agents for the treatment of depression. J. Family Pract. 41:591–594.

    Google Scholar 

  • Goodnick, P. J. (1994). Pharmacokinetic optimization of therapy with newer antidepressants. Clin. Pharmacokin. 27:307–330.

    Google Scholar 

  • Haddock, R. E., Johnson, A. M., Langley, P. F., Nelson, D. R., Pope, J. A., Thomas, D. R., and Woods, F. R. (1989). Metabolic pathway of paroxetine in animals and man and the comparative pharmacological properties of its metabolites. Acta Psychiatr. Scand. 80:24–26.

    Google Scholar 

  • Hall, H., and Ögren, S. O. (1984). Effects of antidepressant drugs on histamine H1 receptors in the brain. Life Sci. 34:597–605.

    Google Scholar 

  • Halper, J. P., Brown, R. P., Sweeney, J. A., Kocsis, J. H., Peters, A., and Mann, J. (1988). Blunted β-adrenergic responsivity in peripheral blood mononuclear cells in endogenous depression. Arch. Gen Psychiatry 45:241–243.

    Google Scholar 

  • Heal, D., Cheetham, S., Martin, K., Browning, J., Luscombe, G., and Buckett, R. (1992). Comparative pharmacology of dothiepin, its metabolites, and other antidepressant drugs. Drug Dev. Res. 27:121–135.

    Google Scholar 

  • Howell, S. R., Husbands, G. E. M., Scatina, J. A., and Sisenwine, S. F. (1993). Metabolic disposition of 14C-venlafaxine in mouse, rat, dog, rhesus monkey and man. Xenobiotica 23:349–359.

    Google Scholar 

  • Hrdina, P. D., Demeter, E., Vu, T. B., Sotonyi, P., and Plakovits, M. (1993). 5-HT uptake sites and 5-HT2 receptors in brain of antidepressant-free suicide victims/depressives: Increase in 5-HT2 sites in cortex and amygdala. Brain Res. 614:37–44.

    Google Scholar 

  • Hyttel, J. (1982). Citalopram—Pharmacological profile of a specific serotonin uptake inhibitor with antidepressant activity. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 6:277–295.

    Google Scholar 

  • Hyttel, J. (1987). Age related decrease in the density of dopamine D1 and D2 receptors in corpus striatum of rats. Pharmacol. Toxicol. 61:126–129.

    Google Scholar 

  • Hyttel, J. (1994). Pharmacological characterization of selective serotonin reuptake inhibitors (SSRIs). J. Clin. Psychopharmacol. 9:19–26.

    Google Scholar 

  • Hyttel, J., and Larsen, J.-J. (1985). Neurochemical profile of Lu 19–005, a potent inhibitor of uptake of dopamine, noradrenaline and serotonin. J. Neurochem. 44:1615–1622.

    Google Scholar 

  • Hyttel, J., Overø, K. F., and Arnt, J. (1984). Biochemical effects and drug levels in rats after long-term treatment with the specific 5-HT uptake inhibitor, citalopram. Psychopharmacology 83:181–184.

    Google Scholar 

  • Hyttel, J., Bøgesø, K. P., Lembøl, H. L., Larsen J.-J., and Meier, E. (1988). Neurochemical profile in vitro of irindalone: A 5-HT2 receptor antagonist. Drug Dev. Res. 15:389–404.

    Google Scholar 

  • Hyttel, J., Bøgesø, K. P., Perregaard, J., and Sánchez, C. (1992). The pharmacological effects of citalopram resides in the (S)-(+)-enantiomer. J. Neur. Transm. 88:157–160.

    Google Scholar 

  • Ichikawa, J., and Meltzer, H. Y. (1995). Effect of antidepressant on striatal and accumbens extracellular dopamine levels. Eur. J. Pharmacol. 281:255–261.

    Google Scholar 

  • Ishida, R., Ozaki, T., Uchida, H., and Irikura, T. (1984). Gas chromatographic-mass spectrometric determination of amitriptyline and its major metabolites in human serum. J. Chromatogr. 305:73–82.

    Google Scholar 

  • Iyer, R. N., and Bradberry, C. W. (1996). Serotonin-mediated increase in prefrontal cortex dopamine release: Pharmacological characterization. J. Pharmacol. Exp. Ther. 277:40–47.

    Google Scholar 

  • Kaye, C. M., Haddock, R. E., Langley, P. F., Mellows, G., Tasker, T. C. G., Zussman, B. D., and Greb, W. H. (1989). A review of the metabolism and pharmacokinetics of paroxetine in man. Acta Psychiatr. Scand. 80:60–75.

    Google Scholar 

  • Koe, B. K., Weissman, A., Welch, W. M, and Browne, R. G. (1983). Sertraline, 1S,4S-N-methyl-4-(3,4-dichlorophenyl)-1,2,3,4-tetrahydro-1-napthylamine, a new uptake inhibitor with selectivity for serotonin. J. Pharmacol. Exp. Ther. 226:686–700.

    Google Scholar 

  • Lemberger, L., Bergstrom, R. F., Wolen, R. L., Farid, N. A., Enas, G. G., and Aronoff, G. R. (1985). Fluoxetine: Clinical pharmacology and physiologic disposition. J. Clin. Psychiatry 46:14–19.

    Google Scholar 

  • Leysen, J. E., Van Gompel, P., Gommeren, W., Woestenborghs, R., and Janssen, P. A. J. (1986). Down-regulation of serotonin-S2 receptor sites in rat brains by chronic treatment with the serotonin-S2 antagonists: Ritanserin and setoperone. Psychopharmacology 88:434–444.

    Google Scholar 

  • Maguire, K. P., Burrows, G. D., Norman, T. R., and Scoggins, B. A. (1981). Metabolism and pharmacokinetics of dothiepin. Br. J. Clin. Pharmacol. 12:405–409.

    Google Scholar 

  • Mann, J. J., Stanley, M., and McBride, P. A. (1986). Increased serotonin2 and beta adrenergic receptor binding in the frontal cortices of suicide victims. Arch. Gen. Psychiatry 43:954–959.

    Google Scholar 

  • Martin, P., Massol, J., Colin, J. N., Lacomblez, L., and Puech, A. J. (1990). Antidepressant profile of bupropion and three metabolites in mice. Pharmacopsychiatry 23:187–194.

    Google Scholar 

  • Mayol, R. F., Cole, C. A., Luke, G. M., Colson, K. L., and Kerns, E. H. (1994). Characterization of the metabolites of the antidepressant drug nefazodone in human urine and plasma. Drug Metab. Disp. 22:304–311.

    Google Scholar 

  • Megens, A. A. P., Leysen, J. E., Awouters, F. L., and Niemegeers, C. J. E. (1986). Further validation of in vivo and in vitro pharmacological procedures for assessing the α 1/α 2 selectivity of test compounds: (1) α-adrenoceptor antagonists. Eur. J. Pharmacol. 129:49–55.

    Google Scholar 

  • Meier, E., Frederiksen, K., Nielsen, M., Lembøl, H. L., Pedersen, H., and Hyttel, J. (1997). Pharmacological in vitro characterization of Lu 25–109-T, a muscarinic compound with M1 agonistic and M2/M3 antagonistic properties. Drug Dev. Res. 40:1–16.

    Google Scholar 

  • Moreau, J.-L., Bös, M., Jenck, F., Martin, J. R., Mortas, P., and Wichmann, J. (1996). 5-HT2C agonists exhibit antidepressant-like properties in the anhedonia model of depression in rats. Eur. Neuropsychopharmacol. 6:169–175.

    Google Scholar 

  • Muth, E. A., Haskins, J. T., Moyer, J. A., Husbands, G. E. M., Nielsen, S. T., and Sigg, E. B. (1986). Antidepressant biochemical profile of the novel bicyclic compound Wy-45,030, and ethyl cyclohexanol derivative. Biochem. Pharmacol. 35:4493–4497.

    Google Scholar 

  • Muth, E. A., Moyer, J. A., Haskins, J. T., Andree, T. H., and Husbands, G. E. M. (1991). Biochemical, neurophysiological, and behavioral effects of Wy-45,233 and other identified metabolites of the antidepressant venlafaxine. Drug Dev. Res. 23:191–199.

    Google Scholar 

  • Newman, M. E., Lerer, B., and Shapira, B. (1993). 5-HT1A receptor mediated effects of antidepressants. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 17:1–19.

    Google Scholar 

  • Overmars, H., Scherpeniss, P. M., and Post, L. S. (1983). Fluvoxamine maleate: Metabolism in man. Eur. J. Drug Metab. Pharmacokin. 8:269–280.

    Google Scholar 

  • Pälvimäki, E.-P., Roth, B. L., Majasuo, H., Laakso, A., Kuoppamäki, M., Syvälahti, E., and Hietala, J. (1996). Interactions of selective serotonin reuptake inhibitors with the serotonin 5-HT2C receptor. Psychopharmacology 126:234–240.

    Google Scholar 

  • Pinder, R. M. and Wieringa, J. (1993). Third-generation antidepressants. Med. Res. Rev. 13:259–325.

    Google Scholar 

  • Plym Forsyell, G. (1977). The absorption, excretion and plasma protein binding of lofepramine in the rat, dog and man. Xenobiotica 7:153–163.

    Google Scholar 

  • Plym Forsyell, G., Siwers, B., and Tuck, J. R. (1976). Pharmacokinetics of lofepramine in man: relationship to inhibition of noradrenaline uptake. Eur. J. Clin. Pharmacol. 9:291–298.

    Google Scholar 

  • Posner, J., Bye, A., Peck, A. W., and Whiteman, P. M. (1985). The disposition of bupropion and its metabolites in healthy male volunteers after single and multiple doses. Eur. Clin. Pharmacol. 19:97–103.

    Google Scholar 

  • Schroeder, D. H. (1983). Metabolism and kinetics of bupropion. J. Clin. Psychiatry 44:79–81.

    Google Scholar 

  • Schulz, P., Dick, P., Blaschke, T. F., and Hollister, L. Discrepancies between pharmacokinetic studies of amitriptyline. Clin. Pharmacokinet. 10:257–268.

  • Simon, P., Lecrubier, Y., Jouvent, R., Puech, A., and Widlocher, D. (1984). Beta-receptor stimulation in the treatment of depression. Adv. Biochem. Psychopharmacol. 39:293–299.

    Google Scholar 

  • Sjögren, C. (1987). Influence of rats by antidepressants. Arzneim. Forsch. 37:1017–1020.

    Google Scholar 

  • Sprouse, J., Clarke, T., Reynolds, L., Heym, J., and Rollema, H. (1996). Comparison of the effects of sertraline and its metabolite demethylsertraline on blockade of central 5-HT reuptake in vivo. Neuropsychopharmacology 14:225–231.

    Google Scholar 

  • Stern, H., Konetschny, J., Herrmann, L., Säwe, U., and Belz, G. G. (1985) Cardiovascular effects of single doses of the antidepressants amitriptyline and lofepramine in healthy subjects. Pharmacopsychiatry 78:272–277.

    Google Scholar 

  • Taylor, D. P., Smith, D. W., Hyslop, D. K., Riblet, L. A., and Temple, D. L., Jr. (1986). Receptor binding and atypical antidepressant drug discovery. In O'Brien, R. A. (ed.), Receptor Binding in Drug Research, Marcel Dekker, New York.

    Google Scholar 

  • Taylor, D. P., Carter, R. B., Eison, A. S., Mullins, U. L., Smith, H. L., Torrente, J. R., Wright, R. N., and Yocca, F. D. (1995). Pharmacology and neurochemistry and nefazodone, a novel antidepressant drug. J. Clin. Psychiatry 56:3–11.

    Google Scholar 

  • Warrington, S. J. (1991). Clinical implications of the pharmacology of sertraline. Int. Clin. Psychopharmacol. 6:11–21.

    Google Scholar 

  • Weiss, J. M., Demetrikopoulos, M. K., West, C. H. K., and Bonsall, R. W. (1996). Hypothesis linking the noradrenergic and dopaminergic systems in depression. Depression 3:225–245.

    Google Scholar 

  • Welch, R. M., Lai, A. A., and Schroeder, D. H. (1987). Pharmacological significance of the species differences in bupropion metabolism. Xenobiotica 17:287–298.

    Google Scholar 

  • Wong, D. T., Bymaster, F. P., Reid, L. R., Fuller, R. W., and Perry, K. W. (1985). Inhibition of serotonin uptake by optical isomers of fluoxetine. Drug Dev. Res. 6:397–403.

    Google Scholar 

  • Yu, D. J., Dimmitt, D. C., Lanman, R. C., and Giesing, D. H. (1986). Pharmacokinetics of dothiepin in humans. A single dose-proportionality study. J. Pharm. Sci. 75:582–585.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sánchez, C., Hyttel, J. Comparison of the Effects of Antidepressants and Their Metabolites on Reuptake of Biogenic Amines and on Receptor Binding. Cell Mol Neurobiol 19, 467–489 (1999). https://doi.org/10.1023/A:1006986824213

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1006986824213

Navigation