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ABSTRACT 

We report on the temperature dependence of thermal conductivity of single crystalline and 

polycrystalline organometallic perovskite CH3NH3PbI3. The comparable absolute values and 

temperature dependence of the two sample’s morphologies indicate the minor role of the grain 

boundaries on the heat transport. Theoretical modelling demonstrates the importance of the 

resonant scattering in both specimens. The interaction between phonon waves and rotational 

degrees of freedom of CH3 NH3
+ sub-lattice emerges as the dominant mechanism for attenuation 

of heat transport and for ultralow thermal conductivity of 0.5 W/(Km) at room temperature.   
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Recently the organic-inorganic hybrid compound CH3NH3PbI3 (hereafter MAPbI3) has emerged 

as the central component of highly efficient solar cells1-4. MAPbI3 is deposited in a dye 

sensitized solar cell configuration by spin coating on TiO2 nanoparticles and using a solid state 

redox mediator its light conversion efficiency (η) reaches 16%, an unprecedented value for such 

a device. There is very vivid world-wide activity to understand the success of this material in 

solar cells and to find the materials parameters which would be tuned to further improve η 5−6. 

The known advantages of this material are the high cross section for photo-electron generation, 

the long diffusion length of the charge carriers and the simplicity of MAPbI3 synthesis and 

device architecture 4. The unknown parameters are the health hazards related to the handling of 

MAPbI3 and the expected lifetime of these solar cells.  

The thermal management of such multi-component solar cells can be an important factor in the 

device’s lifetime since a large part of the solar radiation is converted into heat 7. The lack of its 

evacuation can result in mechanical stresses in the sandwich-structured device and over 

time it can cause structural decoupling of the constituents and severely decrease η. Thus the heat 

distribution in the cell and particularly around MAPbI3 must be controlled. 

The scope of this paper is therefore to study and understand the thermal transport occurring in 

MAPbI3 as a necessary pre-requisite to well-designed new devices. To our knowledge no 

investigation of thermal conductivity (κ) of MAPbI3 has been performed so far. Moreover, since 

thermal conductivity is strongly dependent on the sample’s morphology 8-9 we analyze the 

change in κ in single crystal and in polycrystalline MAPbI3 samples. The measurements were 

performed on few mm3 large single crystals (SC) and on polycrystalline sample (PC) obtained by 

pressing together an assembly of micro-crystallites. PC mimics the material’s texture in solar cell 
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devices. Typical samples and the zoom on the microstructure are shown in figures 1 and 2 for 

single and polycrystalline samples, respectively. Resistivity measurements confirm the insulating 

nature of the material. Regarding thermal properties we find ultralow values of thermal 

conductivity even on single crystals which is ascribed to the complex unit cell and the disordered 

CH3NH3
+ sublattice 10. Its temperature dependence is described by the Callaway formalism 

arguing that phonons are the main heat carriers in both single crystal and polycrystalline 

samples.  

MAPbI3 crystals were prepared by precipitation from a concentrated aqueous solution of 

hydroiodic acid containing lead (II) acetate and a respective amount of CH3NH3
+ solution. The 

two ends of the sample holder were held at 55 and 42 °C respectively to induce the saturation of 

the solute at the low temperature part of the solution. After 24 hours sub-millimetre sized crystals 

appeared in the solution. Large MAPbI3 crystals with 3x5 mm silver-grey mirror-like facets were 

grown after 7 days. Smaller crystals were ground in a mortar and pressed together to obtain a 

mechanically stable polycrystalline sample. 
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Figure 1. SEM image of a CH3NH3PbI3 single 

crystal. The inset shows a typical crystal used 

in electrical and thermal transport 

measurements. 

Figure 2. SEM image of a CH3NH3PbI3 

polycrystalline sample. The inset shows a 

typical polycrystal used in electrical and 

thermal transport measurements. 

 

Figure 3 shows the resistivity as a function of temperature for the single crystal and 

polycrystalline samples measured in the dark. Room temperature resistivity of 13*106 Ωcm in 

MAPbI3 single SC is in agreement with previously reported data 11. Upon cooling and heating in 

the 4-300 K range the sample shows hysteretic behaviour as it has been already observed by 

Stoumpos et al. 11. They explain it as a result of the structural phase transition occurring at 162 

K. Optical microscopy observations reveal that the change of the lattice parameters at low 

temperature causes formation of micro-cracks which develop with thermal cycling. Modelling 

resistivity in the 250-320 K temperature range with thermally activated behaviour ��exp	��	/

��
� yields an activation energy of Ei=185 meV which is ascribed to simple thermal activation 

from impurity levels (the optical gap is 1.5eV 5). A similar fit below 250 K gives Ei= 70 meV 

which is likely to come from hopping conduction within the impurity level. Such change in the 
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conductivity mechanism is well known and was reported in different insulating materials like 

TiO2 
12, ZnO  etc. 

For PC samples ρ(300K)= 38 MΩcm (Figure 4) that is less than a factor of two higher than that 

of single crystals. The resulting activation energies in the same temperature ranges are 427 meV 

and 81 meV. These higher values, compared to SC, are interpreted as a consequence of barriers 

for charge transport at the grain boundaries. 

 

Figure 3. Resistivity as function of temperature for single (black curve) and polycrystalline (red 

curve) samples. In both cases the activated behavior comes from an impurity level at Ei= 0.18 and 

0.48 eV from the band edge, respectively.  

 

Figure 4 shows our main result, the temperature dependence of the thermal conductivity of 

SC and PC MAPbI3. The experiments were repeated on three different specimens with high 

reproducibility proving that the observed behaviour is an intrinsic material property. The 

overall temperature dependence of the SC and PC samples is similar. Yet, certain differences 
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are manifested and will be discussed in more detail below. 

The room temperature values are 0.5 and 0.3 W/(mK) respectively. These are considered as 

ultra-low and markedly different from the known inorganic materials such as: TiO2 
13, Bi2Te3 

etc which are in the range of 10-100 W/mK 14. In fact, the thermal conductivity of MAPbI3 is 

closer to that of polymeric materials than those of crystalline structures 15.  

In the temperature dependence a sharp dip in κ emerges around 160 K. This coincides with 

the tetragonal - orthorhombic structural phase transition, being previously observed by heat 

capacity measurements 16. As shown in the inset of Figure 4, for the SC samples the width of 

this dip is only 2 K, while for the PC samples the structural transition is smeared over a wider 

temperature range, corresponding to approximately 8 K. 

Apart this phase transition that does not influence much the thermal conductivity, we observe 

that the temperature dependence resembles that of insulating inorganic materials 17, where 

three temperature regimes may be distinguished. In the high-temperature regime κ increases 

with decreasing temperature, and there is a rapid drop in the low-temperature limit 
→0. 

Between these two limiting behaviours, κ reaches a maximum, specifically around Tmax = 30 

K and Tmax = 43 K   for the SC and the PC samples respectively. 
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Figure 4. Temperature dependence of thermal conductivity of single crystal (black) and 

polycrystal   (red) CH3NH3PbI3 samples. Blue lines are obtained from the theoretical model. 

The inset shows the detail around the structural transition at 160 K. 

 

In an attempt to shed more light on microscopic mechanisms that limit heat conduction, and 

in particular to resolve differences between the SC and the PC samples, we start our analysis 

by decoupling the electronic (κel) and the lattice (κlat) contributions to the total thermal 

conductivity κ, since dynamics of these two subsystem should be characterized by very 

different time scales. For a rough estimate of the former, one may consider the Wiedemann–

Franz law	κ�� � ���
, where L0 is the Lorenz number and σ is the electrical conductivity. In 
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materials for which itinerant electrons contribute considerably to the heat transfer, the order 

of magnitude of L0 is expected to be around	10����/���. On the other hand, we find for our 

MAPbI3 samples that L0 should be four orders of magnitude higher in order to explain 

thermal conductivity by itinerant electrons only, which clearly implies that these have a 

negligible role in the total thermal conductivity. Consequently, the lattice contribution κlat 

dominates in the entire temperature range.  

The temperature dependence of κlat is frequently analysed within Callaway’s approach, 

which  has its origin in the Boltzman equation 18. The basic approximation is that different 

phonon scattering mechanism can be treated independently, ��� = ∑ �	��	 , 

κ = �
 ! ��"� # "$%&
�%& − 1��( )"

*+/,

�
													�1� 

 

with � = - ./
�01234 -./ћ 4

 
, " = 	ћ5/��
 , 67 Debye temperature, kb Boltzmann constant, ћ 

Planck constant, and 9: the average speed of sound. 

Our first approach for the analysis of the data presented in Figure 4 was the traditional one, 

considering three scattering mechanisms, ��� =	�;�� + �=�� + �>��, 13. The first one, due to 

sample boundaries, is proportional to the square root of the inverse cross section of the 

specimen, �;���"�∝	A�∝	1/S1/2. The second is associated with scattering events by point 

defects like vacancies, substitutions, and other point-like impurities. Within the Rayleigh 

scattering model, the associated relaxation rate is taken to be temperature independent, 

�=���"�∝	5$	∝	A�
$"$. Finally, as temperature increases, one should consider interactions 
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between the phonons, since with leaving the harmonic regime, three-phonon Umklapp 

processes start to dominate the behaviour of	κ. For the corresponding relaxation rate we use 

the form �>���"�∝	A 
 "�exp	�− *+
B,�. In the high temperature limit 67 ≪ D
, this form 

reduces to the appropriate one for describing Umklapp and normal processes �>��∝	
 "�, 

with κ obeying the 1/T-law 19.Combining all three relaxation times we obtain a fitting 

procedure involving five adjustment parameters, A�, A�, A , D and 67. 

Due to the very large unit cell 990.0(4) Å3 11, it is natural to expect rather low Debye 

temperatures for various acoustic phonon modes in MAPbI3. Indeed, the results of the 

calorimetric study predict that the range of Debye temperatures is between 80 and 220 K for 

MAPbX3 (X=Cl, Br, I) compounds 16. Although for our SC samples some improvements of 

fits are obtained by using higher Debye temperatures 67 in Eq. 1, hereafter we choose to fix 

67 at 120 K, in agreement with the value for the high acoustical mode reported previously16 

For the remaining four  parameters our fit for SC samples provides the values displayed in 

the first row of Table 1, with a good quantitative agreement with experiments. Indeed, 

according to theoretical expectations, for the set of the SC parameters presented in Table 1,  

�> dominates the high-temperature behaviour, becoming negligible in the low-temperature 

limit 
→0. The importance of the exponential factor in	�>, involving α, exhibits itself in the 

crossover region around Tmax.   
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Table 1.  Fitting parameters by using Callaway’s approach 

 

 a1 /C a2/C au/C D 

Single crystal 2× 104 0.004 0.87 16 

Polycrystal 1.5× 105 0.004 0.87 16 

 

In order to extend our present approach to PC experimental data, we consider a particular fit 

keeping the relaxation rates �=�� and �>��	 fixed to the values obtained for the SC sample, 

because these mechanisms should depend on the bulk properties. Despite of the fact that we 

are now dealing with just one free parameter, A�, the fitting procedure yields a very 

satisfactory agreement with the experiment, comparable to the already discussed case of SC 

samples.  

However, some aspects of the results in Table 1 deserve additional attention. First,  κpoly near 

room temperature is reduced only by a factor of 2 compared to κsingle, which is one order of 

magnitude smaller than in other energy materials like CdSe 20. Second, the effective cross 

section H	∝	�;� for all samples appears to be several orders of magnitude smaller than the 

specimen dimension. All this is a strong indication of a very effective, internal mechanism of 

acoustic phonon attenuation. Therefore, the values that follow from Table 1 for the cross 
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section S should be understood as effective quantities, rather than being derived from the 

specimen dimension (the SC case), or from the grain boundaries (the PC case).  In order to 

address this issue, we use a different mechanism, resonant scattering instead of scattering by 

impurities and grain boundaries. We keep the Umklapp scattering in the analysis because of 

its dominant contribution at high temperatures, �>��∝	
 "�. Resonant scattering is known to 

be of the great importance in materials with dynamical disorder, being frequently modelled 21 

by	�I��∝	AJ KL1K1
MKL1�K1N1 .ω0 characterizes vibrations coupled to acoustic phonons. With 	67 =

120 K, our fitting procedure involves three parameters: 	A> , AI , 5�	. The computed curves 

nicely reproduce the experimental data, Figure 4, and the parameters of the model are 

summarized in Table 2.  

Table 2.  Fitting parameters by assuming resonant and Umklapp scattering 

 ar /C ω0 au/C 

Single crystal 4.8	 × 10R 42 K 0.84 

Polycrystal 5.8	 × 10R 42 K 0.69 

 

 

The obtained resonance frequency ω0 = 42 K in Table 2 may be conjectured to the slow, 

nondispersive phonon modes associated to the rotation degrees of freedom of CH3NH3
+.  

Indeed, rotational vibrations of this cation have recently been discussed 22, while for similar 

compounds, PbI based organic-inorganic hybrid, low energy optical modes were 

experimentally observed 23. Furthermore, strong effects of the dynamical disorder on thermal 
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conductivity were observed in other solids like clathrate hydrates and anion doped crystalline 

KCl 21, 24-25. This leads us to a conclusion that the ultralow thermal conductivity in 

CH3NH3PbI3 is due to its particular crystal structure, involving slowly rotating CH3NH3
+ 

cations within the unit cell. 

In summary, we have presented thermal conductivity measurements for large single crystals 

and polycrystalline samples of MAPbI3. The room temperature value of κ  is equal to 0.5 

W/(Km) for  single crystals and 0.3 W/(Km) for polycrystals. These values are very low. The 

origin of the strongly reduced κ might be the disorder of the CH3NH3
+ sublattice and its easy 

excitation even below 160 K. Such a low κ will prevent the rapid spread of the light 

deposited heat, which can cause mechanical stresses and limit the lifetime of the photovoltaic 

device. These conclusions concerning κ stay valid even when the samples are exposed to 

light, since the number of photo-excited electrons remains low and their contribution to the 

thermal conductivity is negligible. Finally, the electrical and thermal conductivities in the 4–

300 K temperature range clearly revealed the effect of grain boundaries but their importance 

is lower than expected.  

 

Experimental Methods 

Resistivity measurements on SC and PC samples were performed in a standard four-point 

configuration. Gold wires were glued on pre-evaporated gold pads on the sample. The 

experiments were carried out in the dark to avoid unwanted photo induced effects inside a 

closed-cycle He cryostat maintained at a base pressure of 1e-3mbar. Temperature was 
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sweeped from 310 K down to 25 K. Thermal conductivity (κ) was measured by a steady-state 

method by using calibrated stainless-steel as reference sample (see fig 5).  Special care was 

taken in maintaining temperature gradient across the sample around 1 K as described 

elsewhere 26. 

 

Figure 5. Schematic view of the experimental setup used for thermal conductivity 

measurement. The black rectangle represents the sample, the gray one is the calibrated 

stainless-steel reference and the orange solid is the copper heat sink. The gray curled wires 

are type E differential thermocouples connected to the sample and to the reference with 

Stycast 2850 Ft thermal conducting epoxy. A heater is connected to the sample using the 

same epoxy. 
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