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Introduction.a
Over 30 nitrile-containing pharmaceuticals are prescribed for a diverse variety of medicinal
indications with more than 20 additional nitrile-containing leads in clinical development.
Trends identifying the roles of the nitrile in medical agents have emerged as the number of
nitrile-containing pharmaceuticals has increased. Coupled with the increasing number of
nitrile-containing agents have been structural advances that provide insight into the binding
of small molecule inhibitors. X-ray crystallography in particular, is providing key insight
into small molecule-protein interactions through an increasing number of structures with
inhibitors bound in the active site. Augmenting the available interactions with current nitrile-
containing pharmaceuticals are details from clinical candidates no longer under
development. The present review surveys this range of medicinally active nitriles by
focusing on the roles of the CN unit.

The prevalence of nitrile-containing pharmaceuticals, and the continued stream of potential
agents in the clinic, attests to the biocompatibility of the nitrile functionality.1 The nitrile
group is not particularly electrophilic toward free nucleophiles, even glutathione,2 unless
activated by adjacent structural elements such as electron withdrawing groups.3 A caveat is
the highly orchestrated activation-electrophilic additions such as those being exploited in
several amino nitriles for diabetes and osteoporosis treatments that feature a reversible
electrophilic attack (vide infra).

The nitrile group is quite robust and, in most cases, is not readily metabolized.4
Metabolically, the nitrile group in most nitrile-containing drugs is passed through the body
unchanged.5 In cases of drug metabolism prior to elimination, the formation of glucuronides,
6 conjugation with glutathione,7 N-dealkylation,8 N-acetylation,9 hydrolysis,6a-d and
oxidation10 typically occurs at sites remote from the nitrile and without modification of the
nitrile group.

Release of cyanide from aromatic or fully substituted carbons is not observed11 whereas
alkylnitriles bearing an adjacent proton can be oxidized in the liver to cyanohydrins with
subsequent cyanide release.12 Mandelonitrile, a cyanohydrin produced by ingesting almonds
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or some fruit pits, releases cyanide as the main degradation pathway and is responsible for
the toxicity of cyanogenic glycosides.13 The potential oxidation and cyanide ejection likely
explains why only four of the bioactive nitriles in the review contain an adjacent C-H bond.
Epoxidation of alkenenitriles and ring opening can potentially liberate cyanide but the
epoxidation is synthetically difficult14 and metabolism at other sites appears more likely
given the success of several alkenenitrile-containing pharmaceuticals.

Vildagliptin (1) is a recently released aminonitrile-containing antidiabetic drug in which the
nitrile bearing carbon is not fully substituted (Figure 1).15 Perhaps because of a concern for
cyanide release, the metabolism has been closely examined in humans. The main metabolite
comes from hydrolysis of the nitrile which likely stems from the covalent intermediate
formed from this carboxyl transition structure analog. Nitrile hydrolysis is rather rare and,
when observed, is a very minor metabolic pathway.16

Nitriles are unusual functionalities by virtue of the short, polarized triple bond.17 The linear,
rod-like geometry has a cylindrical diameter of 3.6 Å for the π-system18 resulting in a
minuscule steric demand along the axis. For comparison, the C≡N unit is essentially eight
times smaller than a methyl group!19 Several crystal structures show the nitrile projecting
into narrow clefts to make polar interactions or hydrogen bonds in sterically congested
environments.20

Nitriles often play a key role as hydrogen bond acceptors.17,21 Several crystal structures
show hydrogen bonding between the nitrile nitrogen and amino acids or to water which in
turn is bound to the protein backbone. Many hydrogen bonds are between the nitrile and
serine or arginine as expected for these hydrogen bond donors. In other clinical candidates,
the strong dipole facilitates polar interactions in which the nitrile acts as a hydroxyl or
carboxyl isostere.

The review is structured according to the nature of the nitrile-bearing substituent. As the
number of nitrile-containing drug leads is vast, the review has focused on launched nitrile-
containing pharmaceuticals and currently active clinical candidates. Most nitrile-containing
pharmaceuticals are aromatics with aliphatic-, alkene-, and nitrogen-bearing nitriles being
progressively less frequent. Within each class, the bioactive nitriles are collated according to
common structural elements and mode of action. The hope is that this survey will allow
greater deployment of this versatile functionality within drug leads.

Arylnitrile-Containing Pharmaceuticals
By far the largest class of nitrile-containing drugs are comprised of an aromatic core with a
nitrile substituent. In many cases the nitrile functions as a ketone bioisostere with the nitrile
engaging in non-specific, polar interactions. In other instances the nitrile is relatively remote
from the recognition site and may polarize the aromatic π-system to optimize π–π
interactions. para-Substituted aryl nitriles are common, possibly because the excellent
inductive properties of the nitrile group more strongly polarize the aromatic ring making
aromatics less susceptible to oxidative metabolism.

Several substituted benzonitriles have been developed as selective inhibitors of the
aromatase enzyme for the treatment of estrogen-dependent diseases. Placement of the nitrile
in the para position is essential for inhibition. There is general agreement that the nitrile
mimics the carbonyl group of androst-4-ene-3,17-diones by functioning as a hydrogen bond
acceptor (cf. 2 and 3, Figure 2).22 4 (fadrozole monohydrochloride), marketed by Novartis
as Afema, was one of the first non-steroidal aromatase inhibitors23 for treatment of breast
cancer.24 Structure activity relationships identified the efficacy of electron withdrawing
groups at C-4 with bromine and nitrile groups being best.25 Subsequent development by
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Novartis identified 5 (letrozole) as a more potent oral aromatase inhibitor for the adjuvant
treatment of hormonally-responsive breast cancer.26 Recently the crystallographic structure
of enzyme-bound androstenedione was determined which may aid in designing future
members of this class of inhibitors.27

Structurally related to 4 and 5 is 6 (finrozole) which functions both as an aromatase28 and
aldosterone inhibitor.29 Interest in 6 was stimulated by the implication of aldosterone's role
in several pathogenic diseases, and in regulating sodium and potassium balance,
extracellular fluid volume, and blood pressure. The nitrile group of 6 mimics the steroidal
carbonyl by acting as a hydrogen bond acceptor. Separation of the most active finrazole
enantiomer was achieved using monoclonal antibodies with a recent crystal structure
showing the nitrile interacting with main chain phenylalanine and histidine residues.30

Among the numerous non-steroidal androgen receptor antagonists31 is 7 (bicalutamide,
Figure 3). Launched by AstraZeneca for the treatment of advanced prostate cancer,32 7 has
good oral bioavailability with minimal activity toward other steroid receptors. The crystal
structure of the stronger-binding33 R-enantiomer shows the nitrile participating in a
hydrogen bond to arginine and to a water molecule bound in the active site.34 The hydrogen
bonding, and positioning of 7, show the nitrile mimicking the 3-keto functionality of
dihydrotestosterone.

Several androgen receptor antagonists are in various stages of clinical trials for a variety of
indications. Effort to use structurally related antagonists for the topical treatment of acne and
hair loss led to the development of 8 (RU-58841)35 which was later superseded by 9
(PF-0998425).36 Like 7, the nitrile of 9 interacts with an arginine residue and has polar
interactions with glutamine and leucine at the binding site.36

An excellent example of the equivalency of complex aryl nitriles and steroids is apparent in
the comparative cocrystal structures of the human progesterone ligand binding domain with
10 (progesterone, Figure 4a) and 11 (tanaproget, Figure 4b). 11 is one of a potentially new
class37 of non-steroidal contraceptives in clinical trials.38 The key interaction with Gln 725
and Arg 766 is a hydrogen bond to the enone carbonyl of 10 which is exceptionally well
mimicked by a similar interaction with the nitrile group of 11.39 Hydrogen bonding to the
nitrile explains the superior efficacy of this functionality over other electron withdrawing
groups within this small binding pocket.

Inhibition of farnesyltransferase has become an important target for preventing oncogenesis
by disrupting cell signaling. 12 (BMS-214662) is a farnesyltransferase inhibitor40 that
entered early clinical trials41 for chronic myeloid leukemia (Figure 5).42 Crystallization of
12 complexed with mammalian farnesyltransferase shows aromatic π-interactions within a
deep hydrophobic cleft that are critical for binding.43 No specific interactions of the nitrile
were identified but for 12 the nitrile group improves pharmacokinetic properties. Solubility
studies revealed that the nitrile substituent in 12 was nearly 10-fold more soluble than the
corresponding bromo analog.44

13 (L-778,123) is a dual inhibitor of farnesyltransferase and geranylgeranyltransferase
which entered phase I trials for the treatment of pancreatic cancer, non-small cell lung
cancer, and head and neck cancer.45 Two crystal structures of bound 13 show polar
interactions of the nitrile nitrogen with glutamine and arginine in the two enzymes.46

14 (neratinib) is an irreversible epidermal growth factor receptor (EGFR) inhibitor currently
in phase II trials for patients with breast cancer47 and non-small cell lung cancer (Figure 6).
48 The related antineoplastic agent 15 (Pelitinib, EKB-569) entered phase I clinical trials for
treating solid tumors49 and cancers resistant to treatment with gefitinib or erlotinib.50
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Crystalization of 14 in a mutant kinase confirms the irreversible inhibition through Michael
addition of cysteine to the enamide.51 The structure reveals a polar interaction between the
nitrile and a key methionine residue postulated as being critical for the remarkable
selectivity exhibited over vascular epidermal growth factor receptor-2 (VEGFR-2). 15 also
acts as an irreversible Michael acceptor.52 16 (bosutinib, SKI-606) is a kinase inhibitor in
phase III clinical trials for treating chronic myelogenous leukemia in patients resistant to
other tyrosine kinase inhibitors.53 Docking studies identified a key hydrogen bond between
threonine and the nitrile nitrogen of 16 which is a common motif in these kinase inhibitors.
54

Early structure activity relationships for the neratinib family of kinase inhibitors was guided
by recognition that the quinazoline-based inhibitors functioned through a water-bound
hydrogen bond bridged to a proximal threonine residue (17, Figure 7). Modeling indicated
that substitution of the azomethine-water aggregate for a sp2-CN unit, 18, would displace
water and allow direct hydrogen bonding between the nitrile and the amino acid.55 This
strategy was successfully applied to quinazoline analogs56 leading to identification of 1450

and 15.57 Crystallographically guided lead optimization led to a similar substitution in
quinazoline and benztriazine inhibitors of scytalone dehydratase.58

19 (milrinone), marketed as Primacor, is a phosphodiesterase inhibitor used for treating
heart failure,59 particularly when conventional treatment with vasodilators and diuretics is
ineffective (Figure 8).60 19 shares some structural homology with thyroxine and stimulates
the myocardial membrane in a similar manner to the hormone. 20 (Olprinone) is a
structurally related phosphodiesterase inhibitor used for heart failure which both enhances
myocardial contraction and acts as a vasodilator.61 X-ray crystallography of human
transthyretin with 20 shows the cyanopyridone ring bound in the hormone pocket.62 The
nitrile binds deeper in the position occupied by iodine while binding closer and tighter to the
amino acids lining the channel. Replacing the nitrile with an amino group maintains activity
but with fewer contacts to residues in the binding pocket. A bromine substituent fits better in
the same pocket suggesting that the nitrile has a similar polarizing influence but with greater
hydrophilicity.63 The interchange of nitrile and iodine or bromine as non-classical
isosteres64 in imidazoles,65 has been observed during lead optimization of other inodilators.
66

21 (cromakalim) is a potassium-dependent ATP channel opener used to treat hypertension.67

This “first generation” treatment lacks specificity which led to the search for selective agents
with decoupled anti-ischemic and vasorelaxant activity.68 Of the numerous analogs pursued,
22 (BMS-191095) is particularly promising with over 4000-fold improved selectivity for the
ischemic myocardium than 21.69 The receptor is assumed to have a π-interaction to the
aromatic core and hydrogen bonding with the nitrile.70 Replacement of the aromatic nitrile
by iodine affords an equipotent analog again indicating some similarity between nitrile and
halogen groups.71 The hydrogen bonding, however, is not as critical as in previous examples
because replacing the nitrile with iodine maintains the potency. Structure activity series
within cromakalim-type potassium ion channel openers have shown that the cyanophenyl
ring can be replaced with an N-6 pyridyl ring indicative of hydrogen bonding analogous to
that observed in cyanoquinolines (cf. Figure 7).67a,71

Several phenyl-substituted nitriles have been developed for treatment of mood disorders
(Figure 9). Although the receptors are usually known, in most instances the precise binding,
in terms of interactions, is not well understood. ±23 (citalopram) is a selective serotonin
reuptake inhibitor prescribed for depression which has recently been superseded by the more
efficacious single enantiomer 23 (escitalopram).72 Molecular modeling suggests that the two
enantiomers bind in the human serotonin transporter with opposite orientations of the
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aromatic groups and with an interaction between the nitrile and a phenylalanine residue.73

24 (RS-8359) is a selective and reversible monoamine oxygenase inhibitor under
examination for treatment of depression.74 Clinical studies75 demonstrate different efficacies
for the two enantiomers of 24 and an in vivo epimerization through oxidation and reduction
of the benzylic alcohol.76

25 (vilazodone) is a dual-acting serotonergic antidepressant that has completed Phase III
clinical trials.77 During screening of a series of 25 analogs the most efficacious leads
contained electron withdrawing groups with the nitrile or fluorine substituents being most
potent. Computed molecular electrostatic potentials and dipole moments showed a strong
homology suggesting that the nitrile can function as a fluorine bioisostere.78 Electrostatic
mapping performed during the development of the muscarinic agonist, sabcomeline,
generated similar electrostatic potential maps for the respective imidoyl nitrile, fluoride, and
chloride again suggesting the nitrile as a halogen bioisostere.79

26 (pericyazine) is a phenothiazine antipsychotic thought to act on several receptors in the
brain but for which no specific binding is available.80 27 (cyamemazine) is an antipsychotic
widely used in France to minimize withdrawal symptoms after drug addiction.81 The
mechanism of cyamemazine's anxiolytic action, and therefore the role of the functional
groups, is unknown.

28 (zaleplon) is a non-benzodiazepine hypnotic drug used for treating insomnia.82 Binding
assays show that 28 selectively binds to GABAA receptors containing the α1 subunit, though
the exact interactions are currently unknown.83 29 (donitriptan) is a 5-HT1B agonist84 which
entered phase II trials for the treatment of migraines.85

A series of nitrile-containing aromatics, some containing two nitriles, are ushering in a
potentially revolutionary approach for treating AIDS.86 30 (etravirine) is the first of this new
type of non-nucleoside reverse transcriptase inhibitor (NNRTI) of HIV to be launched
(Figure 10).87 31 (dapivirine)88 and 32 (rilpivirine) are among the many etravirine analogs
under development, with 32 being touted as among “the most potent anti-HIV agent(s) ever
discovered.”89 The nitrile groups of 32 project deep into the binding pocket with the flexible
pyrimidine allowing conformational mobility, and potency, even with several mutation-
induced changes of the binding pocket.90 Crystallographic analysis of HIV-1 inhibitor
complexes indicate that one nitrile binds to a water molecule that bridges to amino acids on
the main chain.91

33 (lersivirine, UK-453,061) is a novel NNRTI currently in phase II clinical trials.92

Structural optimization identified the nitrile and the corresponding chloride as being
equipotent with the nitrile being much less lipophilic and more metabolically stable.93 34
(MIV-150) was developed as an NNRTI but is not suitable as an anti-viral therapy because
of poor systemic absorption after oral administration.94 Exploiting the poor absorption, 34 is
now being evaluated as a vaginal microbicide.95 Early pharmacokinetics and oral
bioavailability of 14C-labeled 35 (IDX899) in humans are promising with further clinical
studies in progress.96

36 (febuxostat) is a non-purine xanthine oxidase inhibitor used to treat gouty arthritis
(Figure 11).97 X-ray crystallography suggests hydrogen bonding between the nitrile, a
bound water, and amino acids, which positions 36 in the channel leading to the molybdenum
active site.98 In the more potent inhibitor 37 (FYX-051) with better binding affinity,99 the
nitrile has a direct hydrogen bond with an arginine residue.100

39 (alogliptin) is a non-covalent inhibitor of dipeptidyl peptidase IV (DPP IV) in phase III
clinical trials for the treatment of diabetes (Figure 12, bottom right).101 39 exhibits a 10,000
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times greater preference for DPP IV over the related peptidase DPP VIII and has therapeutic
advantages over existing DPP IV inhibitors.102 The inhibitor design was based on docking
the cyanoaryl ring of a substituted quinazolinone (38) into a hydrophobic pocket augmented
with hydrogen bonding between the nitrile and an arginine residue.103 X-ray crystallography
of a cocrystal structure of 38 in the active site of DPP IV is consistent with the design motif,
clearly showing a hydrogen bond from arginine to the nitrile (Figure 12, top). Optimizations
to minimize hERG activity and maximize the metabolic half-life led to 39 which presumably
has analogous enzyme interactions.

Unfortunately no information is available for the role of the nitrile in medications 40-47
(Figure 13). 40 (lodoxamide) and 41 (lodoxamide ethyl) are histamine inhibitors used as
ocular anti-inflammatory agents.104 Structurally related 42 (TYB-2285) entered phase II
clinical trials in Japan for asthma and atopic dermatitis.105 43 (strontium ranelate) is
prescribed to promote bone formation106 through a dual-action mechanism of preventing
bone resorption while stimulating bone formation.107 44 (ravuconazole) is a recently
released broad spectrum anti-fungal agent108 for which molecular modeling suggests the
cyanophenyl ring participates in π-stacking in the target lanosterol 14-demethylase.109 45
(isavuconazole) is a structural isomer in advanced clinical trials as a broad-spectrum azole
anti-fungal agent.110 46 (NO-1886, ibrolipim) is a lipoprotein lipase activator that entered
phase II trials in Japan for the potential treatment of hyperlipidemia.111 47 (epanolol) is a
beta blocker used for angina pectoris.112 Although the exact role of the nitrile is unknown in
these agents, a reasonable speculation is that the nitrile was installed to balance the
electronics of the aromatic rings and/or to reduce potential for oxidative metabolism.

α-Aryl Acetonitriles
α-Aryl acetonitrile drugs contain the nitrile on a quaternary carbon adjacent to an aromatic
ring. Positioning the nitrile on a fully substituted carbon prevents oxidation at the nitrile-
bearing carbon and thereby prevents cyanide release.113 48 (anastrazole), 49 (verapamil),
and 50 (gallopamil) are widely prescribed and are among the best-studied nitrile-containing
pharmaceuticals (Figure 14). The block-buster drug 48, marketed by Astra-Zeneca under the
trade name Arimidex, is considered the drug of choice for treating oestrogen-dependent
breast cancer.114 Docking of 48 into the human aromatase homology model reveals a
potential hydrogen bonding interaction of the two nitriles with an adjacent serine residue.115

49 is a calcium channel antagonist used as an antiarrhythmic agent to treat angina.116 49
relaxes blood vessels so the heart does not have to pump as hard and simultaneously
increases the supply of blood and oxygen to the heart which reduces chest pain. 50 is a
methoxy derivative of 48 having a ten-fold increase in potency.117 Molecular modeling
suggests that the polar nitrile group of these inhibitors, which is required for activity,118

engages in a strong dipole interaction with the enzyme-bound calcium through the nitrile
nitrogen.119

49 blocks the drug efflux pump P-glycoprotein and is often employed as a standard to gauge
reversal of multidrug resistance (MDR). Strategies to modify verapamil into more potent
and selective MDR agents highlight the necessity of the nitrile group.120

51 (cilomilast, Ariflo) was developed as a phosphodiesterase inhibitor (DPP4) for use as an
anti-inflammatory and anti-asthmatic agent.121 51122 completed phase III trials with less
than ideal results, leaving the drug's fate in question. Numerous analogs, particularly with
more rigid scaffolds,123 have been developed to optimize activity and minimize nausea,
diarrhea and headache symptoms associated with this class of inhibitors.124 A co-crystal
structure with 51 bound in the phosphodiesterase reveals an interaction of the nitrile with
methionine and leucine residues.125 As with many of these polar interactions, slight
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movement of the protein may allow intimate hydrogen bonding. 52 (levocabastine) is a
selective second-generation H1-receptor antagonist used for allergic conjunctivitis.126 The
precise interaction of 52 with the receptor is not known.

53 (piritramide) is a synthetic opioid, almost equipotent with morphine, which is prescribed
for treating postoperative pain.127 Structurally related 54 (diphenoxylate, lomotil) is used to
treat diarrhea.128 54 is rapidly hydrolyzed to the corresponding acid, difenoxin, which slows
intestinal contractions and peristalsis, allowing the body to remove water and return the
intestine to normal function.

Alkenenitrile-Containing Pharmaceuticals
Drugs containing the unsaturated nitrile functionality are conjugated either with additional
electron withdrawing groups or heteroatoms (Figure 16). Often the nitrile is positioned
adjacent to a hydrogen bond donor or acceptor implying an electronic role for the nitrile
group. Conjugation of the nitrile with an additional electron withdrawing group facilitates
Michael additions129 as in 55 (entacapone).

55130 is a potent inhibitor of catechol-O-methyltransferase and used for treating Parkinson's
disease by facilitating passage of dopaminergic agents across the blood-brain barrier.131

Molecular docking reveals a series of hydrogen bonds with the nitrocatechol ring but no
specific interactions for the nitrile.132 56 (trilostane) is an inhibitor of 3β-hydroxysteroid
dehydrogenase that was used to treat Cushing's syndrome in humans but is now licensed
only for treating dogs.133 56 has been successfully used in treating post-menopausal women
for breast cancer134 by inhibiting 3β-hydroxysteroid dehydrogenase.135 Molecular modeling
and mutant studies demonstrate the necessity of the nitrile group and identifies an interaction
with a serine residue as being critical.136

57 (lanoconazole)137 and 58 (luliconazole)138 are topical antifungal drugs developed and
marketed in Japan. Both 57 and 58 inhibit sterol 14α-methylase in fungi137 and although
marketed as a racemate the activity resides in the S-enantiomer. A π-interaction is proposed
between the enzyme and the dichlorobenzene ring139 with the dithioalkenenitrile acting as a
Michael acceptor.140 59 (nilvadipine) is a calcium channel blocker used to treat
hypertension and cerebral artery occlusion,141 and recently entered trials to treat Alzheimer's
disease.142 The role of the nitrile is unknown.

Celgene Corp.'s antitumor agent 60 (CC-5079) prevents tubulin polymerization but remains
active against multi-drug resistant cells.143 Subsequent assays identified the Z-diastereomer
as being more active with molecular modeling suggesting a key hydrogen bond between the
nitrile nitrogen and a tyrosine hydroxyl group in tubulin.144 61 (levosimendan, Simdax) is a
novel inodilator used to manage acute or chronic heart failure.145 As with many Ca2+

sensitization and K+ channel-mediators, the enzyme-inhibitor interactions are not fully
resolved. Development of a related dinitrile inhibitor, 62 (KW-5092), suggests that the
dinitrile creates a rigid, polar moiety comparable to a nitro group.146

N-Cyanoguanidine Containing Drugs
Several drugs and drug leads contain the N-cyano guanidine functionality.147 Guanidinium
cations interact strongly with carboxylates through lateral (63) or terminal (64) ionic
interactions (Figure 17).148 In the series of N-cyano guanidine, amidine, and formamidine
functionalities the nitrile significantly changes the nitrogen basicity,149 attenuating the
ionization and H-bond acceptor properties.150 The cyanoguanidine moiety can act as a
bioisostere for cyanoamidine,151 sulfonylguanidine,152 thiourea,153 amide, or thioamide154

functionalities.
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65 (cimetidine) is a well-studied histamine H2-receptor antagonist that inhibits the
production of acid in the stomach (Figure 18).155 Originally used to treat heartburn and
peptic ulcers, 65 is being examined for several dermatological diseases156 and as an anti-
tumor agent.157 66 (pinacidil) modulates ATP-dependent potassium channels and is used to
treat hypertension.158 67 (terbogrel), a thromboxane A2 synthase inhibitor, has a similar
cyanoguanidine substitution and is a potential long-term antithrombotic therapy.159

68 (CHS-828) is an antineoplastic agent160 under active development by Gemin X
Pharmaceuticals as GMX-1778.161 The mechanism by which 68 triggers apoptosis remains
to be clarified. 69 (KR-31378) is a potassium ATP channel opener in preclinical trials to
protect retinal ganglion cells in glaucoma.162

α-Amino Nitrile Drugs and Drug Leads
Several amino nitriles have been developed as reversible inhibitors of dipeptidyl peptidase
(DPP IV) for treating diabetes.163 Proline peptidases cleave peptide bonds after a proline
residue which, for the hydrolysis of the glucagon-like peptide 1, switches off insulin
production to provide a therapeutic approach for type 2 diabetes. 70 (saxagliptin)164 was
recently launched under the name Onglyza, and the structurally related 1165 is licensed in
Europe. The dinitrile 71 (NVP-DPP728)166 is in phase II clinical development.

These inhibitors function through attack of a serine residue on the nitrile resulting in a
strong, reversible inhibition with a slow off rate (Figure 19, 72 ⇆ 73).163 A similar covalent
binding occurs in nitrile-based cysteine protease inhibitors167 for which high selectivity
between proteases is possible.168 Co-crystallization of 70 in DPP IV shows hydrogen
bonding between the nitrile nitrogen and asparagines suggesting a delicate choreography of
inhibition in which the amino nitrile binds, becomes activated, and is attacked to form the
covalent bond.169

Several cathepsins, which are cysteine proteases, have been identified as viable drug targets.
The search for cathepsin K inhibitors for the treatment of osteoporosis, uncovered a series of
aminoacetonitrile inhibitors in which the nitrile participates in a reversible, covalent
interaction with the active site cysteine residue (Figure 20).170 Subsequent refinement
identified 74 (odanacatib)171 which is currently in phase III clinical trials.172 Significant
effort is focused on inhibiting cathepsin S using amino nitrile inhibitors.173 Amino nitrile 75
is a potent, reversible inhibitor (IC50 = 9 nM) whose co-crystallization with cathepsin S
shows formation of a reversible thioimidate formed by attack of cysteine, rather than serine,
on the nitrile “warhead” (cf. 73, Figure 19).174

Conclusion
Structurally diverse nitrile-containing drugs are in use for a variety of medical treatments.
These range from blockbuster drugs such as 48 to numerous candidates currently being
pursued in clinical trials. Surveying the interactions of the nitrile within these
pharmaceuticals and drug candidates reveals that the biological function of the nitrile group
varies considerably. In some instances the nitrile merely polarizes the adjacent electron
density whereas in other cases the nitrile is a key component for molecular recognition.

Recent advances in molecular recognition, through crystallography, NMR, and modeling, is
providing an increased understanding of the interactions between small molecule inhibitors
and their targets. By surveying a range of pharmaceuticals and clinical candidates, several
roles of the nitrile group have been identified.
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1. Carbonyl bioisostere. In several non-steroidal inhibitors arylnitriles function as a
carbonyl equivalent. These inhibitors have the advantage of minimizing
interference with other steroid receptors and improving bioavailability. The
homology is evident in the overlay of progesterone and the nitrile-inhibitor 76 in
the progesterone receptor site (Figure 21).175 The nitrile nitrogen occupies virtually
the same position as the carbonyl oxygen of progesterone and engages in the same
polar interactions.

2. Hydroxyl and carboxyl surrogate. The small, polar nitrile, is a strong hydrogen
bond acceptor with a significant solvation shell. The combination allows the nitrile
to function as hydroxyl and carboxyl surrogates. Hydrogen bonding is particularly
common to the protein backbone, amino acid side chains, or water molecules
enclosed within the binding domain. The relationship is exemplified by functional
group replacements performed using the anti-cancer drug 79 (etoposide) as a lead
structure.176 Replacing the glycoside with a nitrile 77 was significantly more
efficacious than the acid 78.

3. The powerful electron-withdrawing nature of the CN unit allows non-specific
dipole interactions with amino acids and metal ions. In cyanoguanidines, and
related structures, nitrile substitution allows tuning of the guanidine basicity and
hydrogen bonding properties.

4. Cyanoquinolines and cyanopyridines (81) can act as more potent azomethine-water
(80) bioisosteres. Interchanging a water-bound quinazoline with a 3-cyano
quinoline or pyridine effectively exchanges the mobile hydrogen-bonded
pyrimidine-water complex for a direct hydrogen bond between the nitrile and the
protein. Expulsion of water from the binding domain adds an additional entropic
component to the binding affinity.

5. Carboxyl transition state analog. Several amino nitriles function as proline
peptidases by reversibly forming covalently bound imino esters at the active site.
Conversion of the nitrile to the imino ester appears choreographed through
activation of the nitrile and addition of serine or cysteine.

6. Halogen bioisostere. The nitrile mimics the polarization of the halides and is often
an excellent halogen bioisostere.177 Being smaller than bromine or iodine, the
nitrile is capable of achieving better contact with amino acids lining an active site.

7. Improving ADME178-toxicology profiles. Computational properties and empirical
rules such as Lipinski's rules179 are routinely employed to guide structure-based
drug design. While a potent molecule is essential for drug discovery, ultimately
ADME-Tox properties decide which molecule is advanced into clinical trials.
During optimization, leads tend to increase in size and lipophilicity180 which can
be offset by introducing the sterically insignificant nitrile group. Replacing a
hydrogen with a nitrile can roughly lower cLogP181 by half an order of magnitude
and nearly an order of magnitude reduction for LogD.182 A more dramatic decrease
in lipophilicity by over a full order of magnitude for cLogP/LogD often occurs
when replacing a halogen or methyl group by a nitrile.

The development of 33 from 82 (capravirine) provides an excellent case study in modulating
ADME properties through nitrile substitution.93 Refining 82 led to the truncated analog 83
that was evaluated and found to be less potent and more lipophilic. Consistent with the
nitrile being a halogen bioisostere, interchanging the chlorine with a nitrile (83 → 84)
reduced the lipophilicity by an order of magnitude and increased the lipophilic-ligand
efficiency (LLE).183 Introduction of a second nitrile led to 33 with similar activity to 82, 141
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mass units smaller, a decreased lipophilicity, and a much improved half-life in human liver
microsomes (HLM); 7.5 minutes for 82 compared to 73 minutes for 33.

This review provides a comprehensive survey of the interactions between the nitrile group
and a diverse range of bioactive receptors. Collating the nitrile-containing drugs and clinical
candidates by their structural similarities, reveals at least seven different modes by which
nitrile substituents accentuate binding to receptor targets. A greater understanding of these
specific functions is likely to facilitate lead optimizations with nitrile-containing candidates
and will, optimistically, increase the number of nitrile-containing pharmaceuticals.
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Figure 1.
Aminonitrile Vildagliptin
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Figure 2.
Nitrile-Containing Aromatase and Aldolase Inhibitors.
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Figure 3.
Non-steroidal Receptor Antagonists in which Nitriles Function as Carbonyl Bioisosteres.
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Figure 4.
Co-crystallizations in the Human Progesterone Ligand Binding Domain.
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Figure 5.
Nitrile-Containing Farnesyltransferase Inhibitors.
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Figure 6.
Nitrile-Containing Kinase Inhibitors.
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Figure 7.
Nitrile-Substituted Cyanoquinoline as an Azomethine-Water Bioisostere.
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Figure 8.
Nitrile-Containing Cardiovascular Agents.
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Figure 9.
Nitrile-Containing CNS Drugs.
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Figure 10.
Nitrile-Containing Anti-HIV Agents.
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Figure 11.
Nitrile-Containing Xanthine Oxidase Inhibitors.
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Figure 12.
Nitrile-Containing DPP IV Inhibitors.
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Figure 13.
Miscellaneous Arylnitrile-Containing Inhibitors.
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Figure 14.
Most Widely Prescribed Nitrile-Containing Pharmaceuticals.
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Figure 15.
Bioactive Quatarnary Arylacetonitriles.
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Figure 16.
Alkenenitrile-Containing Pharmaceuticals
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Figure 17.
Cyanoguanidine Binding Motifs

Fleming et al. Page 41

J Med Chem. Author manuscript; available in PMC 2011 November 25.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 18.
N-Cyanoguanidine-Containing Drugs and Drug Leads
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Figure 19.
Amino Nitrile DPP IV Inhibitors
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Figure 20.
Cathepsin Inhibitors
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Figure 21.
Nitrile Inhibitor 76 and Progesterone (10) Overlay

Fleming et al. Page 45

J Med Chem. Author manuscript; available in PMC 2011 November 25.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 22.
Comparative Nitrile and Acid Etoposide Analogs.
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Figure 21.
Cyanoquinolines and Cyanopyridines as Azomethine-Water Bioisosteres.
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Figure 22.
ADME-Directed Evolution of Capravirine (82) into Lersivirine (33).
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