

NIH Public Access

Author Manuscript

J Med Chem. Author manuscript; available in PMC 2011 October 14.

Published in final edited form as: *J Med Chem.* 2010 October 14; 53(19): 7035–7047. doi:10.1021/jm100668r.

Synthesis, Structure-affinity Relationships and Radiolabeling of Selective High-affinity 5-HT₄ Receptor Ligands as Prospective Imaging Probes for PET

Rong Xu, Jinsoo Hong, Cheryl L. Morse, and Victor W. Pike*

Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Building 10, Rm. B3 C346A, 10 Center Drive, Bethesda, MD 20892, USA

Abstract

In a search for high-affinity receptor ligands that might serve for development as radioligands for the imaging of brain 5-HT₄ receptors in vivo with positron emission tomography (PET), structural modifications were made to the high-affinity 5-HT₄ antagonist, (1-butylpiperidin-4-yl)methyl 8-amino-7-iodo-2,3-dihydrobenzo[*b*][1,4]dioxine-5-carboxylate (1, SB 207710). These modifications were made mainly on the aryl side of the ester bond to permit possible rapid labeling of the carboxylic acid component with a positron-emitter, either carbon-11 ($t_{1/2} = 20.4$ min) or fluorine-18 ($t_{1/2} = 109.7$ min), and included, i) replacement of the iodine atom with a small substituent such as nitrile, methyl or fluoro, ii) methylation of the 8-amino group, iii) opening of the dioxan ring, and iv) alteration of the length of the *N*-alkyl goup. High-affinity ligands were discovered for recombinant human 5-HT₄ receptors with amenability to labeling with a positron-emitter and potential for development as imaging probes. The ring-opened radioligand, (([*methoxy*-¹¹C]1-butylpiperidin-4-yl)methyl 4-amino-3-methoxybenzoate; [¹¹C]13), showed an especially favorable array of properties for future evaluation as a PET radioligand for brain 5-HT₄ receptors.

Keywords

PET; Imaging; 5-HT₄; Radioligand; Carbon-11; Fluorine-18

Introduction

Suitably effective radioligands, when applied with molecular imaging techniques, such as positron emission tomography (PET) or single photon emission computed tomography (SPECT), provide a unique means for measuring brain neurotransmitter receptor concentrations in living subjects, and therefore they constitute important clinical research tools.¹ Such radioligands may also be used with imaging techniques to assess the receptor binding of unlabeled ligands in vivo, whether exogenous (e.g., a developmental or therapeutic drug, or a substance of abuse) or endogenous (the neurotransmitter), and hence they are also useful for drug discovery and development.²

Serotonin (5-hydroxytryptamine; 5-HT) is an important neurotransmitter that is known to act on at least fourteen receptors in seven major sub-classes. Many of these receptors in brain

^{*}Author for correspondence: Tel: 301 594 5986., Fax: 301 480 5112., pikev@mail.nih.gov.

 $[\]label{eq:supporting Information Available: The chemical purities of compounds 1-21 and their HPLC methods of determination. This material is available free of charge via the Internet at http://pubs.acs.org.$

have been implicated in neuropsychiatric disorders, and hence they have become targets for deep biomedical investigation and also for drug discovery and development programs. Although many effective radioligands exist for the in vivo imaging of some of the 5-HT receptors, especially the 5-HT_{1A}, 5-HT_{2A} and 5-HT_{1B} subtypes, radioligands for some other subtypes are not yet well explored (e.g., 5-HT₄).

The 5-HT₄ receptor is a well-characterized G-protein coupled receptor that exists abundantly in brain, especially in limbic and striatonigral regions.³ This receptor population is implicated in dopamine, serotonin and acetylcholine release, and possibly plays a significant role in normal cognition, learning, and memory. 5-HT₄ receptors have also been implicated in neuropsychiatric disorders, such as Alzheimer's disease, anxiety and depression.^{4,5,6}

A reason for the relatively slow development of 5-HT₄ PET radioligands is the wide array of properties that must ideally be found in any candidate. These include high target receptor affinity, high selectivity, generally moderate lipophilicity⁷, appropriate intrinsic activity, ability to cross the blood-brain barrier⁸, absence of troublesome radiometabolites⁸ and amenability to labeling with a suitable radioisotope.^{9,10} Suitable radioisotopes are generally short-lived carbon-11 ($t_{1/2} = 20.4$ min) or fluorine-18 ($t_{1/2} = 109.7$ min) for PET and iodine-123 ($t_{1/2} = 13.2$ h) for SPECT.

(1-Butylpiperidin-4-yl)methyl 8-amino-7-iodo-2,3-dihydrobenzo[b][1,4]dioxine-5carboxylate (1, SB 207710; Chart 1) is an exceptionally high-affinity 5-HT₄ receptor antagonist.^{11,12} The use of $[^{123}I]\mathbf{1}$ with SPECT provided the first demonstration of 5-HT₄ receptor imaging in primate brain in vivo.¹³ Some analogs of **1**, labeled with either carbon-11 or fluorine-18 in the terminal N-alkyl group, have been prepared and one of these, $[^{11}C]2$ ($[^{11}C]SB$ 207145; Chart 1) has shown promise for PET imaging in animal¹⁴ and human subjects^{15,16}. This radioligand is an ester and rapidly metabolized in vivo by hydrolysis. Here, we aimed to develop alternative radioligands for 5-HT₄ receptor imaging with PET, again based on 1, in which the radiolabel is located on the carbonyl side of the ester group to avoid potential issues from possibly brain-penetrant radiometabolites, and to permit control of lipophilicity through adjustment of N-alkyl chain length. The ester hydrolysis of such radioligands outside brain would produce carboxylic acids as radiometabolites; these radiometabolites would be expected to have poor entry into brain and therefore would not be expected to interfere with the measurement of brain receptor density with the parent radioligand.⁸ The 5-HT₄ radioligand $[^{11}C]^2$ has been shown to be amenable to quantification in human brain,¹⁶ implying that ester hydrolysis to generate benzoates as radiometabolites within brain should not be a major concern for ligands related to **1**. Control of lipophilicity can be important for adjusting properties that may impact on the potential success of a radioligand, including its plasma free fraction, ability to penetrate the blood-brain-barrier (permeability parameter)¹⁷ and susceptibility to metabolism.^{8–10} Our synthetic strategies included replacement of the aryl halo group, and/or alkylation of the aryl amino group, opening of the dioxan ring and manipulation of the N-alkyl chain length. As a result, several new high-affinity ligands were discovered and radiolabeled as prospective PET radioligands for 5-HT₄ receptors. The 3-methoxy compound, $[^{11}C]$ **13**, was found to have an especially favorable array of properties for further evaluation as a new 5-HT₄ receptor PET radioligand.

Results

Chemistry

We considered several approaches for modifying the structure of **1** to allow carbon-11 to be introduced as a radiolabel into the structure on the carbonyl side of the ester bond, using readily accessible labeling agents such as $[^{11}C]$ methyl iodide¹⁸, $[^{11}C]$ methyl triflate¹⁹ or

 $[^{11}C]$ cyanide ion²⁰. These strategies included: i) replacing the iodo group in **1** with a group of similar or smaller size, namely nitrile, as in 5 and 11, or methyl as in 7 (Scheme 1), ii) Nmethylation, as in 6 and 8–11 (Scheme 1), and iii) replacement of the dioxan ring by a single O-methyl group, as in 12 and 13 (Scheme 2). Ligand 5 was obtained in low but useful yield (19%) by treating 1 with potassium cyanide. The *N*-methyl compound **6** was obtained in good yield (60%) by treating the primary arylamine 4 with paraformaldehyde and then sodium borohydride. Treatment of 6 with N-halosuccinimides (NXS, X = Cl, Br or I) gave the respective halo derivatives 8-10 in moderate yields (30–56%). Ligand 7 was obtained from 1 in moderate yield (44%) through Pd-catalyzed methylation with tetramethyltin. Ligand 11 was similarly obtained from ligand 10 but in much lower yield (7%). The ring Omethyl derivatives, 12 and 13, were obtained in moderate (32%) and low (8%) overall yields, respectively, from the corresponding methyl esters 12a and 13a in two steps, namely N-protection and trans-esterification (Scheme 2). Analogs of 13, in which either the ester group was replaced with an amido group, as in 14, or in which the length of the N-alkyl group was altered to vary lipophilicity, as in 15 and 16, were also prepared in two steps and moderate overall yields (30-69%) from 4-amino-3-methoxybenzoic acid (Scheme 3).

For the purpose of creating a radioligand that might be labeled with fluorine-18, we succeeded in preparing **17**, a 7-fluoro analog of **1**, in six steps from 5-fluoro-2-hydroxybenzoic acid (Scheme 4). All steps proceeded in > 75% yield, except the final two-stage esterification, involving Cbz–protection (34%) and trans-esterification (59%). Also, two fluoroalkoxy analogs of **13**, the fluoro-methoxy compound **18** and the 2-fluoroethoxy compound **19**, were prepared in two steps from methyl 4-amino-3-hydroxybenzoate in moderate overall yields of 37 and 20%, respectively (Scheme 5).

Potential precursors for radiolabeling were also synthesized, including the phenol precursor **20** by demethylation of **13** (42% yield) (Scheme 6), and the nitro compound **21** in three steps from 8-amino-7-nitro-2,3-dihydrobenzo[*b*][1,4]dioxine carboxylic acid methyl ester (**21a**) in 42% overall yield (Scheme 7).

Pharmacological Assays and Screen

Assay of compounds 1, 5, 8, 13, 15 and 17–19 for binding to 5-HT₄ receptors in guinea pig striatal membranes showed all these compounds to have sub-nanomolar K_i values (Table 1). However, assay of the same ligand set against human recombinant 5-HT₄ receptors (h5-HT₄), expressed in HEK293T cells, revealed a greater variation in K_i , with only some of the compounds (1, 8, 13 and 17) showing low nanomolar values. This assay was applied to the full range of new ligands and revealed interesting structure-activity information (Table 1).

Replacement of the iodine atom in **1** with a nitrile, methyl or nitro group resulted in approximately 15-, 3- and 3.5-fold decrease in binding affinity, respectively, whereas replacement with fluorine retained binding affinity and replacement with hydrogen slightly increased affinity. *N*-Methylation of **1** resulted in about a 4-fold reduction in binding affinity, while the *N*-methylation of the corresponding nitrile, **5**, resulted in only a marginal reduction in binding affinity. The *N*-methyl 8-chloro analog **8** showed a binding affinity comparable to that of **1**.

Replacement of the dioxan ring in **1** with a 2-methoxy group gave ligand **12** with much reduced affinity whereas replacement with a 3-methoxy group gave ligand **13** with affinity comparable to that of **1**. Shortening or lengthening of the *N*-alkyl chain length in **13** gave ligands of 5- and 7-fold lower affinity, respectively.

Replacement of the ester group in 13 with an amido group drastically reduced binding affinity.

Replacement of the methoxy group in **13** with fluoromethoxy or 2-fluoroethoxy led to 7and 5-fold reduction in binding affinity, respectively.

A selection of the compounds was also assessed for intrinsic activity (Table 1). The majority of these ligands were found to be quite potent partial or full inverse agonists with pEC_{50} values in the range 7.70–8.23. The 2-methoxy ligand **12** was found to be a potent full agonist with a pEC_{50} value of 9.75. In stark contrast, the high-affinity regional isomer **13** was found to be an antagonist. The arylmethyl analog of **1** was also found to be an antagonist, as was the previously known ligand, **4**.

Ligand 13 showed greater than 2000-fold selectivity for h5-HT₄ receptors versus twelve other h5-HT receptors and binding sites (Table 2). Ligands 8 and 17 were not quite as selective among h5-HT receptors and binding sites. The lowest selectivity for 8 was 33-fold versus h5-HT_{2B} receptors and for 17, 80-fold versus the same receptors (Table 2). Ligand 13 also exhibited high selectivity for h5-HT₄ receptors versus a wide range of non-serotonergic receptors and binding sites (Table 3). For 13, the lowest selectivities for h5-HT₄ receptors were versus σ_1 and σ_2 receptors, namely 88- and 62–fold, respectively. Ligands 8 and 17 were also generally selective for h5-HT₄ receptors versus other receptors and binding sites, except that they displayed much lower selectivities versus σ_1 and especially σ_2 receptors (Table 3). Ligand 8 also showed a quite low 22-fold selectivity versus D₄ receptors (Table 3).

Computation of cLogD

The. cLogD values of ligands ranged from 1.74 to 3.27 (Table 1).

Syntheses of Radioligands

Some ligands, namely ligands **5**, **8**, **13**, **17** and **18**, were selected to test their amenability for rapid labeling with a positron-emitter, either carbon-11 or fluorine-18. Ligand [¹¹C]**5**, a [¹¹C]nitrile, was produced in an average of 26% decay-corrected radiochemical yield (RCY) by Pd-mediated exchange of the iodine atom with no-carrier-added (NCA) [¹¹C]cyanide ion in the presence of potassium carbonate-K 2.2.2 in THF (Scheme 8). Use of potassium dihydrogen phosphate as base in THF or DMSO²¹ gave much lower RCY (Table 4). The *N*-[¹¹C]methyl ligand, [¹¹C]**8**, was obtained in 11% RCY by ¹¹C-methylation of **1** with NCA [¹¹C] methyl iodide in the presence of the solid base, Li₃N, under the influence of ultrasound (Scheme 9). Use of Li₂O as solid base resulted in a lower RCY (7%) of [¹¹C]**8**. The *O*-[¹¹C]methyl ligand [¹¹C]**13** was obtained from the phenol **20** by methylation with either NCA [¹¹C]methyl loidide or [¹¹C]methyl triflate in either 36 or 27% RCY, respectively (Scheme 9). An experiment based on ¹³C/¹¹C co-labeling, followed by ¹³C-NMR,²² confirmed the position of the radiolabel. This radioligand was obtained in moderately high specific radioactivity, namely 2,848 mCi/µmol from [¹¹C]methyl iodide and 2,517 mCi/µmol from [¹¹C]methyl triflate at the end of radiosynthesis.

All attempts to prepare [¹⁸F]**17** by substitution of the nitro group in precursor **21** or the *N*-Boc-protected analog **21c** with cyclotron-produced [¹⁸F]fluoride ion were unsuccessful. However, the [¹⁸F]fluoro-*di*-deutero-methoxy ligand, NCA [¹⁸F]**18** was obtained in 13% RCY from [¹⁸F]fluoride ion by treating the phenol **21** with derived [¹⁸F]*d*₂-fluorobromomethane in acetonitrile with NaOH as base at 100 °C (Scheme 10). Other tested conditions gave inferior RCYs (Table 5).

Discussion

In this study, variation of the structure of 1 led to several new high-affinity ligands for guinea pig and h5-HT₄, receptors, some of which proved amenable to labeling with a

positron-emitter to provide candidate radioligands for imaging brain 5-HT₄ receptors with PET. Interestingly, all seven new ligands (5, 8, 13, 15,17–19) that were tested for binding to guinea pig 5-HT₄ receptors showed sub-nanomolar affinity within a narrow range ($K_i = 0.22-0.90$ nM), while the same set of ligands assayed against human recombinant receptors (h5-HT₄) showed somewhat lower binding affinity across a wider range ($K_i = 2.2-33$ nM) (Table 1). This species difference was unexpected, since 5-HT₄ receptor ligands from several other structural classes do not show such major differences in binding affinity between guinea pig 5-HT₄ and h5-HT₄ receptors.²³ Also, the affinities of 1, the prototypic ligand for our series, were previously reported to be quite similar for human colon and guinea pig 5-HT₄ receptors.¹² Because any successfully developed PET radioligand would ultimately be used for imaging 5-HT₄ receptors in human brain, all new ligands from this study were assayed against h5-HT₄ receptors (Table 1).

Replacement of the iodine atom in **1** with a methyl or nitro substituent reduced h5-HT₄ receptor binding affinity by less than one order of magnitude, whereas replacement with a fluoro substituent caused negligible change, and replacement with hydrogen slightly improved affinity (Table 1). Replacement with a nitrile or nitro group caused a 15- or 4-fold reduction in affinity, respectively. Therefore, the h5-HT₄ receptor was quite tolerant of a small substituent ortho to the 8-amino group in **1**, irrespective of the electronic influence of the substituent.

Although a primary arylamino group is a frequent constituent of ligands reported for 5-HT₄ receptors,²⁴ the effect of *N*-alkylation of this group on binding affinity had not been examined previously. We found that the *N*-methylations of **1**, **4** and **5** caused only small reductions of binding affinity, of about 3-, 6.5- and 1.1-fold, respectively. The *N*-methylated **4** recovered its affinity to 2.0 nM after chlorination in the ortho position as seen in **8**. Another prepared *N*-methyl ligand, **9**, also exhibited low nanomolar affinity. Thus, the *h*5-HT₄ receptor readily tolerates the secondary 8-*N*-methylamino substituent in this structural class of ligand.

SB 204070 (3) is the 7-chloro analog of **1**. The non-dioxan 2-methoxy analog of **3** has nanomolar affinity for guinea pig 5-HT₄ receptors.²⁵ Here, opening of the dioxan ring in the proto analog of **1**, namely ligand **4**, by removal of either OCH₂ group gave the two *O*-methyl compounds, **12** and **13**. Binding affinity was reduced 36-fold in the 2-methoxy compound **12** but only 1.7-fold in the 3-methoxy compound **13**. Replacement of the 3-methoxy group in **13** with fluoromethoxy or 2-fluoroethoxy reduced affinity by 7- and 4.6-fold, respectively. Shortening or lengthening of the *N*-alkyl chain in **13**, similarly reduced binding affinity by 7- and 5-fold, respectively.

We noted that the conversion of the ester function in the benzodioxan **3** into an amido function has negligible effect on binding affinity $(1/IC_{50})^{24}$ and in the ring-opened 2-methoxy analog causes only a 10-fold reduction in binding affinity.²⁵ We therefore considered replacing the ester function in the new radioligands with an amide function in order to confer greater resistance to hydrolysis in vivo. However, replacement of the ester group in the 3-methyl ether **13** with an amido group dramatically reduced affinity by several thousand-fold.

The maximal receptor-specific signal to be expected from the use of a radioligand with PET is related to the binding potential (BP), expressed as $B_{\text{max}}/K_{\text{D}}$, where B_{max} is the local concentration of receptors and K_{D} is the equilibrium dissociation constant of radioligand from the receptor.^{9,10} Therefore, high affinity $(1/K_{\text{D}} \text{ or as a surrogate measure, } 1/K_i)$ is a key parameter in determining whether a particular radioligand can be successful. Previously, it has been found that moderately sizeable receptor-specific signals can be obtained in mini-

pig,¹⁴ monkey¹³ and human¹⁶ subjects *in vivo* with 5-HT₄ receptor radioligands having K_D values in the low or sub-nanomolar range, such as [¹²³I]**1** and [¹¹C]**2**. Our new ligands **8**, **13** and **17** showed K_i values less than or comparable with that of **1** for *h*5-HT₄ receptors, and they therefore met the high-affinity criterion for development as PET radioligands. Since target selectivity, intrinsic activity²⁶ and lipophilicity also bear on the likely success of candidate PET radioligands,^{9,10} these three ligands were also assessed for these parameters. For comparison, lipophilicity was also computed for the other synthesized ligands, and intrinsic activity also assessed for **1**, **4** and **6–13** and **17**.

Ligands 1, 8 and 17 appeared to be similarly potent inverse agonists in the GloSensor assay, whereas ligands 4 and 13 were antagonists (inactive) in the same assay (Table 1). Ligand 1 is widely considered to be an antagonist at 5-HT₄ receptors.^{11,12} However, it should be noted that ligands characterized as competitive antagonists often express inverse agonism in assays where constituitive receptor activity is present.²⁷ This fact likely explains why 1 appears to be an inverse agonist in the Glo-sensor assay. Ligand 7 was also inactive in the Glo-sensor assay, whereas ligands 6 and 9–11 were inverse agonists. Remarkably, ligand 12, the close methoxy positional isomer of the antagonist 13, was a potent agonist with quite high binding affinity.

Ligands 8, 13 and 17 showed generally high selectivity for binding to h_5 -HT₄ receptors versus binding to other h5-HT receptors and binding sites (Table 2). The lowest selectivity was 33-fold for ligand 8 versus h5-HT_{2B} receptors. Although there is strong evidence that 5-HT_{2B} receptors exist in brain, their distribution and density in human brain remains unknown and is suspected to be low.^{28,29} Thus, the low-affinity binding of 8 to 5-HT_{2B} receptors in human brain in vivo would likely be insignificant compared to its high-affinity binding to relatively abundant 5-HT₄ receptors. Therefore, this off-target binding would probably not be a serious impediment to the development of 8 as a PET radioligand. Ligands 8, 13 and 17 showed only low affinity for a wide range of other receptors and binding sites, except for σ_1 and σ_2 receptors in the cases of 8 and 17 and for D₄ receptors in the case of 8 (Table 3). Both sigma receptors are present in brain, ³⁰ and indeed σ_1 receptors may be imaged with PET in vivo with moderately high-affinity radioligands, such as [¹¹C]SA4503 $(K_i = 17.4 \text{ nM})$.³⁰ Thus, the affinities of ligands 8 ($K_i = 60 \text{ nM}$) and 17 ($K_i = 55 \text{ nM}$) for σ_1 receptors may be insufficiently low for successful 5-HT₄ receptor PET imaging. Imaging data suggest that the density of σ_2 receptors in human brain is much lower than that of σ_1 receptors.³⁰ Hence, it is uncertain whether the high-affinities of 8 ($K_i = 8$ nM) and 17 ($K_i =$ 13 nM) for σ_2 receptors may be problematic for their development as PET 5-HT₄ receptor radioligands. The moderate affinity of 8 for D_4 receptors is unlikely to be problematic, since D_4 receptors only exist in very low density in human brain.^{31,32} As a candidate for development as a PET radioligand, 13 expressed excellent overall 5-HT₄ receptor selectivity, with greater than 60-fold selectivity against the full range of tested receptors and binding sites (Table 3).

Ligands 8, 13 and 17 had computed lipophilicities (*cLogD* values) between 2.0 and 3.3, and these are within the range considered desirable for achieving adequate brain entry from blood without incurring excessive non-specific binding.^{7–10}

Given the array of favourable properties expressed by ligands **8**, **13** and **17**, it appeared especially attractive to attempt to label these ligands with a positron-emitter, either carbon-11 or fluorine-18, to give radioligands that might be tested and evaluated in vivo with PET.

Various conditions were attempted for the labeling of **8** with carbon-11 in its *N*-methyl group, all based on 11 C-methylation of the primary arylamine, **3**. However, **3**, as is quite

usual for primary arylamines, proved stubbornly reactive towards [¹¹C]methyl iodide or [¹¹C]methyl triflate under conventional conditions. Recently, we have developed methodology for labeling such precursors in the presence of a strong inorganic base under the influence of ultrasound agitation. This method, using DMF as solvent and Li₃N as solid base gave [¹¹C]**8** in low but still useful RCY (11%) from [¹¹C]methyl iodide after HPLC separation (Figure 9).

By contrast to **8**, the methoxy compound **13**, was readily labeled by reaction of the phenol **20** with [¹¹C]methyl iodide or [¹¹C]methyl triflate under basic conditions. No protection of the anilino nitrogen was necessary because of its low reactivity towards these labeling agents. The selectivity of the ¹¹C-methylation reaction for the phenol oxygen versus the anilino nitrogen was confirmed through a ¹¹C/¹³C co-labelling experiment and subsequent ¹³C-NMR spectroscopy.²² [¹¹C]**13** was readily separated by HPLC and was shown to be radiochemically pure by analytical HPLC.

The labeling of the fluoro compound 17 was first attempted through treatment of the N-Bocprotected 21 with NCA [18F]fluoride ion because the presence of unprotected amino group plus the electron-rich nature of the aryl ring were expected to oppose facile aromatic nucleophilic substitution.³³ The *N*-Boc group was found to be unstable when temperature exceeded 120 °C. Nitro substitution occurred in deprotected 21 at high temperature (200 °C) but not without concomitant ester hydrolysis. The direct labeling of 21 also only gave ^{[18}F]fluoride ion-substituted benzoic acid at similarly high temperature. Another attempt based on halogen exchange in methyl 7-iodo-8-nitro-2,3-dihydrobenzo[b][1,4]dioxine-5carboxylate precursor resulted in the replacement of the nitro group instead of the iodo group by [¹⁸F]fluoride ion. We considered other strategies for ¹⁸F-labeling, including the production of a diaryliodonium salt precursor for radiofluorination.³⁴ However, we were unable to synthesize a suitable iodonium salt via a metalated-ring intermediate, since the aryl ring resisted clean stannylation, boronation or mercuration by conventional reagents and methods. Curiously, the *n*-tributyl stannyl analog of $\mathbf{1}$ is known¹³ but its synthesis, as far as we can ascertain, has never been published. Therefore, the radiosynthesis of $[^{18}F]$ 17 remains a major challenge.

The radiolabeling of the relatively lower affinity ligands **5** and **18** with carbon-11 and fluorine-18, respectively, was shown to be feasible. Thus, $[^{11}C]$ **5** was obtained by palladium-mediated ¹¹C-cyanation of **1** and $[^{18}F]$ **18** by ^{18}F -fluoromethylation of the phenol 20 with $[^{18}F]d_2$ -fluoromethyl bromide. Deuterium was incorporated into $[^{18}F]$ **18** to provide for greater resistance to defluorination in vivo.^{34–36}

Conclusions

In this study, manipulations of the structure of **1** led to several new ligands with high affinity towards guinea pig 5-HT₄ receptors and a few (**8**, **13** and **17**) with comparably high affinity towards h5-HT₄ receptors. Both **8** and **13** were amenable to labeling with carbon-11, whereas the labeling of **17** with NCA fluorine-18 remains a challenge. [¹¹C]8 has affinity, selectivity, intrinsic activity and computed lipophilicity comparable to [¹²³I]**1** (Table 1), and should prove to be similarly effective for imaging 5-HT₄ receptors in monkey in vivo. [¹¹C]**13** is an easily-labeled, highly selective, high-affinity, and moderate lipophilicity antagonist for 5-HT₄ receptors and therefore merits evaluation as a PET radioligand for the study of 5-HT₄ receptors *in vivo* with PET. This radioligand is currently under evaluation in monkey, and findings will be published elsewhere.

Experimental Section

Materials

Methyl 3-methoxy-4-nitrobenzoate, 4-(aminomethyl)-1-(*n*-butyl)-piperidine, and *tetrakis*(triphenylphosphine)palladium(0) were purchased from Alfa Aesar (Ward Hill, MA). Chlorofluoromethane and 1-chloro-2-fluoroethane were purchased from SynQuest (Alachua, FL). Other chemicals were purchased from Aldrich Chemical Co. (Milwaukee, WI) and used as received. Compounds **3** (SB 204070; 1-butylpiperidin-4-yl)methyl 8-amino-7chloro-2,3-dihydrobenzo[*b*][1,4]dioxane-5-carboxylate) and the des-chloro analog **4** were synthesized from 2,3-dihydro-benzodioxin by modified literature procedures.^{25, 37, 38}

General Methods

¹H- (400.13 MHz), ¹³C- (100.62 MHz) and ¹⁹F- (376.46 MHz) NMR spectra were recorded at rt on an Avance-400 spectrometer (Bruker, Billerica, MA). Chemical shifts are reported in δ units (ppm) downfield relative to the chemical shift for tetramethylsilane. Abbreviations s, d, t, dd, dt and bs denote singlet, doublet, triplet, doublet of doublet, doublet of triplet and broad singlet. Thin layer chromatography was performed with POLYGRAM[®] SIL G/UV₂₅₄ layers (0.2 mm silica gel with fluorescent indicator; Grace Davison Discovery Sciences; Deerfield, IL); compounds were visualized under UV light ($\lambda = 254$ nm).

High resolution mass spectra (HRMS) were acquired from the Mass Spectrometry Laboratory, University of Illinois at Urbana-Champaign (Urbana, IL) under electron ionization conditions using a double-focusing high-resolution mass spectrometer (Autospec, Micromass Inc., USA) with samples introduced through a direct insertion probe.

LC-MS analyses of synthesized compounds were performed on an LCQ Deca model instrument (Thermo Fisher Scientific Corp.; Waltham, MA). A gradient or isocratic LC analysis of sample was carried out with binary solvents (A: B; 150 μ L/min) composed of water-methanol-acetic acid (90: 10: 0.5 by vol.) (A) and methanol-acetic acid (100: 0.5, v/v) (B) on a Luna C18 column (3 μ m, 50 \times 2 mm; Phenomenex; Torrance, CA). Following electrospray ionization of the column effluent, ions *m*/*z* 150 through 750 were acquired.

Melting points were measured with a Mel-Temp manual apparatus (Electrothermal, Fisher Scientific) and were uncorrected.

 γ -Radioactivity from 11C and 18F was measured using a calibrated dose calibrator (Atomlab 300; Biodex Medical Systems). Radioactivity measurements were corrected for physical decay. All radiochemistry was performed in lead-shielded hot-cells for personnel protection from radiation.

Radioactive products were separated by HPLC on a Gemini or Gemini-NX C18 column (5 μ m, 10 × 250 mm; Phenomenex) eluted with 10 mM-NH₄OH-MeCN or 100 mM-HCOONH₄-MeCN at the stated composition and flow rate. Eluates were monitored for radioactivity (pin diode detector; Bioscan) and absorbance at 294 nm (System Gold 166 detector; Beckman).

The purity of each new non-radioactive compound was assessed by reverse phase HPLC under the conditions tabulated in Supporting Information. Each compound was shown to have a chemical purity of > 98%. Radioactive compounds were analyzed with HPLC on a Gemini C18 column (5 μ m, 4.6 × 150 mm) or Gemini-NX C18 column (5 μ m, 4.6 × 250 mm; Phenomenex) eluted with 10 mM-NH₄OH-MeCN or 100 mM-HCOONH₄-MeCN at the later stated composition and flow rate. Eluates were monitored for radioactivity (pin diode detector; Bioscan). Samples were injected alone, and then co-injected with the

reference non-radioactive compound to check for co-elution. RCYs were calculated for labeled products isolated with HPLC.

Computation of cLogP and cLogD

cLogP and cLogD (at pH 7.4) values for ligands were computed with ACD software.

(1-Butylpiperidin-4-yl)methyl 8-amino-7-iodo-2,3-dihydrobenzo[b][1,4]dioxine-5carboxylate (1)

N-Iodosuccinimide (498 mg, 2.21 mmol) was added portion-wise to a solution of **4** (770 mg, 2.21 mmol) in acetic acid (5 mL) at 0 °C and stirred at rt for 2 h. The acetic acid was evaporated off, and the residue was basified with NaHCO₃ solution and extracted twice with CH₂Cl₂. The combined organic layers were evaporated to dryness. Silica gel chromatography (MeOH-CH₂Cl₂, 1: 20 v/v) of the residue gave **1** as a light yellow oil (410 mg, 40%). ¹H-NMR (CDCl₃): δ 0.92 (3H, t, *J* = 7.2 Hz), 1.25–1.53 (6H, m), 1.74–1.79 (3H, m), 1.94 (2H, t, *J* = 11.2 Hz), 2.31–2.34 (2H, m), 2.96 (2H, d, *J* = 11.2 Hz), 4.10 (2H, d, *J* = 6.4 Hz), 4.30–4.38 (4H, m), 4.54 (2H, bs), 7.82 (1H, s). ¹³C-NMR (CDCl₃): δ 14.09, 20.92, 29.02, 29.17, 35.53, 53.44, 58.89, 63.97, 64.44, 68.86, 71.21, 110.80, 129.77, 133.29, 141.06, 144.75, 164.14.

(1-Butylpiperidin-4-yl)methyl 8-amino-7-cyano-2,3-dihydrobenzo[*b*][1,4]dioxine-5carboxylate (5) ³⁹

A mixture of **1** (200 mg, 0.42 mmol), KCN (42 mg, 0.64 mmol), CuI (17 mg, 0.084 mmol) and 1,10-phenanthroline (30 mg, 0.17 mmol) in DMF (500 µL) was stirred at 110 °C in an oven-dried sealed tube under Ar for 42 h. Then the mixture was cooled to rt and filtered through celite. The celite pad was rinsed twice with CH₂Cl₂. The combined filtrates were evaporated to dryness and dissolved in MeOH. Separation by HPLC on an XTerra RP18 column (10 µm, 19 × 250 mm; Waters) eluted with MeOH *-aq.* NH₄OH (0.025%) (9: 1 v/v) at 10 mL/min) gave **5** as a pale yellow solid ($t_{\rm R} = 14$ min; 30 mg, 19%). Mp: 108–110 °C. ¹H-NMR (CDCl₃): δ 0.92 (3H, t, J = 7.2 Hz), 1.28–1.50 (6H, m), 1.81–1.84 (3H, m), 2.15 (2H, t, J = 11.4 Hz), 2.51 (2H, m), 3.16 (2H, d, J = 11.6 Hz), 4.12 (2H, d, J = 6.0 Hz), 4.34–4.44 (4H, m), 4.87 (2H, s), 7.67 (1H, s). ¹³C-NMR (CDCl₃): δ 14.09, 20.92, 29.06, 29.23, 35.53, 53.42, 58.89, 63.73, 64.85, 69.13, 88.00, 110.11, 116.81, 128.80, 129.90, 143.32, 147.47, 163.64. LC-MS *m/z*: [M + H]⁺, 374.2. HRMS: calc'd for C₂₀H₂₇N₃O₄ (M⁺ + H), 374.2080; found, 374.2070.

(1-Butylpiperidin-4-yl)methyl 8-(methylamino)-2,3-dihydrobenzo[*b*][1,4]dioxine-5-carboxylate (6) ⁴⁰

A mixture of **4** (2.24 g, 6.44 mmol) and paraformaldehyde (580 mg) in ethanol (58 mL) was heated at 60 °C overnight and then NaBH₄ (245 mg, 6.44 mmol) was added. The mixture was heated at 70 °C for 2 h and then evaporated to dryness. The residue was diluted with water and extracted thrice with CH₂Cl₂. The combined organic layers were dried on MgSO₄ and evaporated to dryness. Silica gel chromatography of the residue (MeOH-CH₂Cl₂, 1: 20 v/v) gave **6** as a colorless oil (1.4 g, 60%). ¹H-NMR (CDCl₃): δ 0.92 (3H, t, *J* = 7.2 Hz), 1.29–1.35 (2H, m), 1.52–1.53 (4H, m), 1.78–1.82 (3H, m), 1.99 (2H, t, *J* = 11.2 Hz), 2.39–2.35 (2H, m), 2.90 (2H, d, *J* = 5.2 Hz), 3.02 (2H, d, *J* = 11.2 Hz), 4.10 (2H, d, *J* = 6.0 Hz), 4.28–4.30 (2H, m), 4.34–4.36 (2H, m), 4.46–4.52 (1H, m), 6.18 (1H, d, *J* = 8.8 Hz), 7.51 (1H, d, *J* = 8.8 Hz). ¹³C-NMR (CDCl₃): δ 14.02, 20.85, 28.78, 28.88, 29.85, 35.47, 53.38, 58.75, 63.83, 64.50, 68.18, 100.99, 107.36, 125.60, 129.78, 143.15, 144.11, 165.40. LC-MS *m*/z: [M + H]⁺, 363.3. HRMS: calc'd for C₂₀H₃₀N₂O₄ (M⁺ + H), 363.2284; found, 363.2281.

(1-Butylpiperidin-4-yl)methyl 8-amino-7-methyl-2,3-dihydrobenzo[*b*][1,4]dioxine-5-carboxylate (7) ⁴¹

1 (210 mg, 0.44 mmol), *N*-methyl pyrrolidone (560 μL), Pd₂(dba)₃ (14 mg, 0.015 mmol) and PPh₃ (28 mg, 0.11 mmol) were added to an oven-dried sealed tube. The mixture was heated at 50 °C for 10 min and then CuI (6.0 mg, 0.031mmol) was added. The mixture was stirred for another 10 min and then Me₄Sn (91 μL, 0.65 mmol) was added. The mixture was heated at 70 °C for 48 h. The solvent was evaporated off and, the residue was diluted with water and extracted thrice with CH₂Cl₂. The combined organic layers were dried over MgSO₄ and evaporated to dryness. Silica gel chromatography (MeOH-CH₂Cl₂, 1: 20 v/v) of the residue gave **7** as a pale yellow oil (70 mg, 44%). ¹H-NMR (CDCl₃): δ 0.92 (3H, t, *J* = 7.2 Hz), 1.25–1.58 (7H, m), 1.72–1.81 (3H, m), 1.78–1.82 (3H, m), 1.95 (2H, t, *J* = 11.2 Hz), 2.11 (3H, s), 2.31–2.35 (2H, m), 2.98 (2H, d, *J* = 11.6 Hz), 4.08 (2H, s), 4.10 (2H, d, *J* = 6.4 Hz), 4.30–4.36 (4H, m), 7.28 (1H, s). ¹³C-NMR (CDCl₃): δ 14.02, 16.48, 20.84, 28.69, 35.39, 53.34, 58.72, 63.87, 64.45, 68.27, 107.79, 113.41, 125.34, 130.17, 138.86, 143.34, 165.46. LC-MS: *m/z* [M + H]⁺, 363.1. HRMS: calc'd for C₂₀H₃₀N₂O₄ (M⁺ + H), 363.2284; found, 363.2279.

(1-Butylpiperidin-4-yl)methyl 7-chloro-8-(methylamino)-2,3-dihydrobenzo[*b*][1,4]dioxine-5-carboxylate (8)

N-Chlorosuccinimide (70 mg, 0.52 mmol) was added in portions to a stirred solution of **6** (190 mg, 0.52 mmol) in acetic acid (5 mL) at rt and left for 1 h. The acetic acid was evaporated off and the residue was basified with NaHCO₃ solution and extracted thrice with CH₂Cl₂. The combined organic layers were evaporated to dryness. Silica gel chromatography (MeOH-CH₂Cl₂, 1: 20 v/v) of the residue gave **8** as a pale yellow oil (80 mg, 38%). ¹H-NMR (CDCl₃): δ 0.92 (3H, t, *J* = 7.2 Hz), 1.29–1.35 (2H, m), 1.44–1.53 (4H, m), 1.75–1.80 (3H, m), 1.98 (2H, t, *J* = 11.2 Hz), 2.34–2.38 (2H, m), 3.00 (2H, d, *J* = 11.2 Hz), 3.12 (3H, d, *J* = 4.8 Hz), 4.10 (2H, d, *J* = 6.4 Hz), 4.28–4.36 (5H, m), 7.45 (1H, s). ¹³C-NMR (CDCl₃): δ 14.03, 20.84, 28.83, 28.97, 33.82, 35.42, 53.35, 58.76, 63.63, 64.26, 68.72, 109.54, 112.30, 124.79, 133.42, 140.14, 144.06, 164.27. LC-MS: *m*/*z* [M + H]⁺, 397.6. HRMS: calc'd for C₂₀H₂₉ClN₂O₄ (M⁺ + H), 397.1894; found, 397.1886.

(1-Butylpiperidin-4-yl)methyl 7-bromo-8-(methylamino)-2,3-dihydrobenzo[b][1,4]dioxine-5carboxylate (9)

The procedure for the synthesis of **8** was used with a solution of 6 (140 mg, 0.39 mmol) in acetic acid (4 mL) and with *N*-bromosuccinimide (70 mg, 0.39 mmol) replacing *N*-chlorosuccinimide, and gave **9** as a pale yellow oil (50 mg, 30%). ¹H-NMR (CDCl₃): δ 0.92 (3H, t, *J* = 7.2 Hz), 1.29–1.52 (6H, m), 1.73–1.78 (3H, m), 1.92 (2H, dt, *J* = 2.4, 11.6 Hz), 2.29–2.33 (2H, m), 2.96 (2H, d, *J* = 11.2 Hz), 3.10 (3H, d, *J* = 5.2 Hz), 4.10 (2H, d, *J* = 6.4 Hz), 4.27–4.37 (5H, m), 7.62 (1H, s). ¹³C-NMR (CDCl₃): δ 14.09, 20.93, 29.11, 29.27, 34.11, 35.58, 53.48, 58.93, 63.60, 64.31, 68.96, 102.04, 110.64, 127.61, 133.67, 141.18, 144.76, 164.21. LC-MS: *m*/*z* [M + H]⁺ 441.1. HRMS: calc'd for C₂₀H₂₉⁸⁰BrN₂O₄ (M⁺ + H), 441.1389; found, 441.1368.

(1-Butylpiperidin-4-yl)methyl 7-iodo-8-(methylamino)-2,3-dihydrobenzo[b][1,4]dioxine-5carboxylate (10)

The procedure for the synthesis of **8** was used with a solution of **6** (195 mg, 0.54 mmol) in acetic acid (4 mL) and with *N*-iodosuccinimide (122 mg, 0.54 mmol) replacing *N*-chlorosuccinimide to give **10** as a colorless oil (147 mg, 56%). ¹H-NMR (CDCl₃): δ 0.92 (3H, t, *J* = 7.2 Hz), 1.19–1.54 (6H, m), 1.72–1.80 (3H, m), 1.96 (2H, t, *J* = 11.2 Hz), 2.33–2.37 (2H, m), 3.00 (2H, d, *J* = 11.2 Hz), 3.07 (3H, d, *J* = 3.2 Hz), 4.05 (1H, bs), 4.09–4.11 (3H, m), 4.28–4.38 (4H, m), 7.84 (1H, s). ¹³C-NMR (CDCl₃): δ 14.06, 20.89, 28.91, 29.06,

34.50, 35.47, 53.39, 58.83, 63.57, 64.35, 68.88, 112.25, 133.12, 133.80, 143.57, 145.67, 164.02. LC-MS: m/z [M + H]⁺, 489.2. HRMS: calc'd for C₂₀H₂₉IN₂O₄ (M⁺ + H), 489.1250; found, 489.1258.

(1-Butylpiperidin-4-yl)methyl 7-cyano-8-(methylamino)-2,3-dihydrobenzo[*b*][1,4]dioxine-5carboxylate (11) ³⁹

A mixture of **10** (140 mg, 0.29 mmol), KCN (21 mg, 0.32 mmol), CuI (6.0 mg, 0.029 mmol), 1,10-phenanthroline (11 mg, 0.057 mmol) in DMF (300 µL) was stirred at 110 °C in an oven-dried sealed tube under Ar for 48 h. The mixture was cooled to rt and then filtered through celite. The celite pad was rinsed twice with CH₂Cl₂. The combined filtrates were evaporated to dryness and then dissolved in MeOH. Separation by HPLC on an XTerra RP18 column (10 µm, 19 × 250 mm; Waters) eluted with MeOH-*aq*. NH₄OH (0.025%) (9: 1 v/v) at 15 mL/min gave **11** (t_R = 10.31 min; 8 mg, 7%). ¹H-NMR (CDCl₃): δ 0.92 (3H, t, *J* = 7.2 Hz), 1.25–1.52 (7H, m), 1.73–1.79 (3H, m), 1.90–1.96 (2H, t, *J* = 11.2 Hz), 2.30–2.34 (2H, m), 2.96 (2H, d, *J* = 11.2 Hz), 3.33 (3H, d, *J* = 5.2 Hz), 4.09 (2H, d, *J* = 6.0 Hz), 4.30–4.40 (4H, m), 5.04–5.06 (1H, m), 7.71 (1H, s). ¹³C-NMR (CDCl₃): δ 14.09, 20.92, 29.10, 29.26, 31.63, 35.53, 53.44, 58.91, 63.79, 64.61, 69.07, 85.21, 109.42, 119.52, 130.19, 131.81, 144.86, 145.98, 163.61. LC-MS: m/z [M + H]⁺, 388.2. HRMS: calc'd for C₂₁H₂₉N₃O₄ (M⁺ + H), 388.2236; found, 388.2219.

Methyl 4-(benzyloxycarbonylamino)-2-methoxybenzoate (12b) 42

Saturated NaHCO₃ solution (50 mL) and then CbzCl (1.70 mL, 12.1 mmol) were added to a solution of methyl 4-amino-2-methoxybenzoate (**12a**, 2.0 g, 11 mmol) in THF (50 mL). The mixture was stirred at rt for 4 h and then filtered through celite. The filtrate was acidified to pH < 1 and extracted with EtOAc. After concentration of this solution, the residue was purified by recrystallization from EtOAc-hexane to give **12b** as a white solid (3.09 g, 89%). Mp: 132–134 °C. ¹H-NMR (CDCl₃): δ 3.84 (3H, s), 3.87 (3H, s), 5.19 (2H, s), 6.77 (1H, dd, J = 1.6, 8.4 Hz), 6.66, 7.11 (1H, s), 7.35–7.39 (5H, m). 7.79 (1H, d, J = 8.4 Hz). ¹³C-NMR (CDCl₃): δ 51.84, 55.97, 67.30, 101.72, 109.43, 114.05, 128.32, 128.52, 128.68, 133.06, 135.67, 143.19, 152.96, 160.76, 166.07.

(1-Butylpiperidin-4-yl)methyl 4-amino-2-methoxybenzoate (12) 43

A THF solution of *n*-BuLi (1.6M; 612 µL, 0.98 mmol) was added drop-wise to a solution of (4-butylpiperidin-1-yl)methanol (190 mg, 1.11 mmol) in THF (3 mL) in an oven-dried flask under Ar at 0°C. After stirring the mixture for 10 min, a solution of **12b** (350 mg, 1.11 mmol) in THF (3 mL) was added drop-wise. The mixture was stirred for 2 h, poured into water and extracted with CH₂Cl₂. The combined organic layers were dried on MgSO₄ and evaporated to dryness. Silica gel chromatography of the residue (MeOH-CH₂Cl₂, 1: 15 v/v) gave a white solid (200 mg). MeOH (15 mL) was added to this solid (170 mg) plus Pd/C (10%; 25 mg). The mixture was degassed with H₂ for 30 min, stirred at rt overnight, filtered and evaporated to dryness. Silica gel chromatography (MeOH-CH₂Cl₂, 1: 20 v/v) of the residue gave **12** as a colorless oil (108 mg, 36%). ¹H-NMR (CDCl₃): δ 0.91 (3H, t, *J* = 7.6 Hz), 1.28–1.53 (6H, m), 1.71–1.80 (3H, m), 1.95 (2H, t, *J* = 11.2 Hz), 2.31–2.35 (2H, m), 2.97 (2H, d, *J* = 11.6 Hz), 3.81 (3H, s), 4.09 (2H, d, *J* = 6.0 Hz), 4.22 (2H, br), 6.18–6.22 (2H, m), 7.72 (1H, d, *J* = 8.4 Hz). ¹³C-NMR (CDCl₃): δ 14.06, 20.88, 28.94, 29.07, 35.53, 53.45, 55.66, 58.84, 68.33, 97.58, 106.23, 108.78, 134.06, 152.29, 161.87, 165.63. LC-MS: *m/z* [M + H]⁺, 321.1. HRMS: calc'd for C₁₈H₂₈N₂O₃ (M⁺ + H), 321.2178; found, 321.2181.

Methyl 4-amino-3-methoxybenzoate (13a)

Pd/C (10%; 1.8 g) and HCOOK (7.4 g, 88 mmol) were added to a solution of methyl 3methoxy-4-nitrobenzoate (2.0 g, 9.5 mmol) in MeOH (50 mL). The mixture was refluxed at

80 °C for 1 h. The suspension was cooled and filtered through celite. The filtrate was evaporated to dryness. Silica gel chromatography (30% EtOAc in hexane) of the residue gave **13a** as a white solid (1.72 g, 100%). Mp: 127–129 °C. Lit. mp 127–128 °C.⁴⁴ ¹H-NMR (CDCl₃): δ 3.86 (3H, s), 3.90 (3H, s), 4.22 (2H, br), 4.45 (1H, s), 6.66 (1H, d, *J* = 8.4 Hz), 7.55 (1H, d, *J* = 8.4 Hz). ¹³C-NMR (CDCl₃): δ 51.69, 55.58, 111.15, 113.09, 119.41, 124.09, 141.21, 146.10, 167.35.

Methyl 4-(benzyloxycarbonylamino)-3-methoxybenzoate (13b)

As described for **12b** from **12a**, **13b** was obtained from **13a** as a white solid (58%). Mp: 95– 96 °C. ¹H-NMR (CDCl₃): δ 3.89 (6H, 2s), 5.22 (2H, s), 7.34–7.52 (6H, m), 7.69 (1H, dd, *J* = 1.6, 8.4 Hz), 8.20 (1H, d, *J* = 8.4 Hz). ¹³C-NMR (CDCl₃): δ 52.05, 55.90, 67.27, 110.73, 116.92, 123.48, 124.25, 128.43, 128.49, 128.68, 132.06, 135.84, 146.96, 152.93, 166.81.

(1-Butylpiperidin-4-yl)methyl 4-amino-3-methoxybenzoate (13)

As described for **12** from **12b**, compound **13** was obtained from **13b** as a white solid in 13% yield. Mp: 162–164 °C. ¹H-NMR (CDCl₃): δ 0.94 (3H, t, *J* = 7.2 Hz), 1.31–1.39 (2H, m), 1.72–1.80 (2H, m), 1.95–1.99 (5H, br), 2.55 (2H, br), 2.75–2.79 (2H, m), 3.37 (2H, d, *J* = 11.6 Hz), 3.90 (3H, s), 4.18 (2H, d, *J* = 4.0 Hz), 4.38 (2H, br), 6.69 (1H, d, *J* = 8.0 Hz), 7.43 (1H, d, *J* = 2 Hz), 7.52–7.53 (1H, dd, *J* = 1.6, 8 Hz); ¹³C-NMR: δ (CDCl₃) 14.09, 20.94, 29.10, 29.25, 35.71, 53.50, 55.63, 58.94, 68.84, 111.21, 113.05, 119.75, 124.02, 141.09, 146.16, 166.86. LC-MS: *m*/*z* [M + H]⁺, 321.3. HRMS: calc'd for C₁₈H₂₈N₂O₃ (M⁺ + H), 321.2178; found, 321.2190.

4-Amino-N-((1-butylpiperidin-4-yl)methyl)-3-methoxybenzamide (14) 37

CDI (485 mg, 2.99 mmol) was added in portions to a suspension of 4-amino-3-methoxybenzoic acid (500 mg, 2.99 mmol) in MeCN (30 mL) in an oven-dried flask and then stirred for 2 h at rt. (1-Butylpiperidin-4-yl)methanamine (510 mg, 2.99 mmol) in MeCN (10 mL) was added drop-wise. The above solution was stirred overnight and evaporated to dryness. Silica gel chromatography (from 9% to 33%. MeOH in CH₂Cl₂) of the residue gave an oil which was then dissolved in MeCN and filtered through an Iso-DiscTM Filter (PTFE 25-4, 25 mm × 0.45 µm). The filtrate was dried to give **14** as a light brown foam-like oil (660 mg, 69%). ¹H-NMR (CDCl₃): δ 0.91 (3H, t, *J* = 7.2 Hz), 1.26–1.38 (4H, m), 1.42–1.48 (2H, m), 1.57–1.64 (1H, m), 1.88 (2H, dt, *J* = 2.0, 11.6 Hz), 2.27–2.31 (2H, m), 2.92 (2H, d, *J* = 11.6 Hz), 3.30 (2H, t, *J* = 6.4 Hz), 3.86 (3H, s), 4.14 (2H, bs), 6.34 (1H, t, *J* = 5.6 Hz), 6.63 (1H, d, *J* = 8.0 Hz), 7.14 (1H, dd, *J* = 2.0, 8.4 Hz), 7.37 (1H, d, *J* = 1.6 Hz). ¹³C-NMR (CDCl₃): δ 12.58, 19.41, 27.72, 28.58, 34.79, 43.98, 52.06, 54.08, 57.36, 108.34, 111.67, 118.05, 122.76, 138.15, 145.21, 166.04. LC-MS: *m*/z [M + H]⁺, 320.2. HRMS: calc'd for C₁₈H₃₀N₃O₂ (M⁺ + H), 320.2338; found, 320.2328.

(1-Propylpiperidin-4-yl)methyl 4-amino-3-methoxybenzoate (15)

CDI (485 mg, 2.99 mmol) was added in portions to a suspension of 4-amino-3methoxybenzoic acid (500 mg, 2.99 mmol) in MeCN (15 mL) in an oven-dried flask and stirred for 30 min at rt. Solvent was then evaporated off and the residue dissolved in anhydrous THF (7 mL). In another oven-dried flask, (1-propylpiperidin-4-yl)methanol (319 mg, 2.03 mmol) was dissolved in anhydrous THF (7 mL) and cooled (ice-bath). A THF solution of *n*-BuLi (1.6M, 1.27 mL, 2.03 mmol) was added drop-wise to this solution and stirred for 10 min. The solution of CDI-activated acid was then added, stirred overnight and evaporated to dryness. The residue was diluted with water and extracted thrice with CH₂Cl₂. The combined organic layers were dried on MgSO₄ and evaporated to dryess. Silica gel chromatography (MeOH-CH₂Cl₂, 1: 30 v/v) of the residue gave **15** as a yellow oil (312 mg, 50%). ¹H-NMR (CDCl₃): δ 0.89 (3H, t, *J* = 7.2 Hz), 1.37–1.56 (4H, m), 1.72–1.78 (2H, m), 1.94 (2H, dt, J = 2.0, 12.0 Hz), 2.25–2.29 (2H, m), 2.94 (2H, d, J = 11.6 Hz), 3.86 (3H, s), 4.13 (2H, d, J = 6.0 Hz), 4.36 (2H, bs), 6.63 (1H, d, J = 8.4 Hz), 7.44 (1H, d, J = 2.0 Hz), 7.54 (1H, dd, J = 1.6, 8.0 Hz). ¹³C-NMR (CDCl₃): δ 12.05, 20.15, 29.06, 35.67, 53.40, 55.50, 61.09, 68.76, 111.08, 112.90, 119.35, 124.03, 141.31, 146.03, 166.83. LC-MS: m/z [M + H]⁺, 307.2. HRMS: calc'd for C₁₇H₂₆N₂O₃ (M⁺ + H), 307.2022; found, 307.2022.

(1-Pentylpiperidin-4-yl)methyl 4-amino-3-methoxybenzoate (16)

As described for **15**, compound **16** was obtained from 4-amino-3-methoxybenzoic acid and 1-pentylpiperidin-4-yl)methanol as a pale yellow oil (200 mg, 30%). ¹H-NMR (CDCl₃): δ 0.89 (3H, t, *J* = 7.2 Hz), 1.24–1.52 (8H, m), 1.77–1.79 (3H, m), 1.89–1.95 (2H, dt, *J* = 2.4, 12 Hz), 1.95–2.32 (2H, m), 2.96 (2H, d, *J* = 11.6 Hz), 3.89 (3H, s), 4.13 (2H, d, *J* = 6.4 Hz), 4.26 (2H, bs), 6.65 (1H, d, *J* = 8 Hz), 7.45 (1H, d, *J* = 1.6 Hz), 7.55 (1H, dd, *J* = 2, 8.4 Hz). ¹³C-NMR (CDCl₃): δ 14.06, 22.64, 26.78, 29.10, 29.94, 35.71, 53.49, 55.59, 59.23, 68.82, 111.16, 113.00, 119.61, 124.03, 141.17, 146.12, 166.86. LC-MS: *m*/z [M + H]⁺ 335.2. HRMS: calc'd for C₁₉H₃₀N₂O₃(M⁺ + H), 335.2335; found, 335.2325.

3-Bromo-5-fluoro-2-hydroxybenzoic acid (17a)

5-Fluoro-2-hydroxybenzoic acid (20 g, 0.13 mol) and *N*-bromosuccinimide (23 g, 0.13 mol) were added to acetic acid (200 mL). The mixture was heated at 80 °C for 24 h. After evaporation of all acetic acid, the residue was recrystalized from EtOAc and hexane to give **17a** (27 g, 90%). Mp 233–235 °C. Lit. mp 233°C.^{45 1}H-NMR (MeOD): δ 7.48–7.50 (2H, br). ¹³C-NMR (MeOD): δ 111.91 (d, *J* = 10.0 Hz), 114.92 (d, *J* = 7.0 Hz), 116.22 (d, *J* = 24.0 Hz), 127.13 (d, *J* = 26.0 Hz), 155.70 (d, *J* = 239 Hz), 156.56, 172.24.

5-Fluoro-2,3-dihydroxybenzoic acid (17b) ⁴⁶

NaOH solution (2.5M; 300 mL) was stirred under an aspirator for 2 h. Then CuSO₄ (250 mg, 1.57 mmol) was added and the solution further stirred for 1h. To the filtrate of this solution was added **17a** (22 g, 0.094 mol) and the mixture was refluxed overnight. The reaction mixture was cooled, acidified with 37% HCl to pH < 2 and then evaporated to dryness. The residue was dissoved in MeOH and filtered through celite. The combined filtrates were evaporated to dryness. Silica gel chromatography (30% EtOAc in hexane with 1% HOAc) of the residue gave **17b** as a white solid (12 g, 75%). Mp 184–186 °C. ¹H-NMR (MeOD): δ 6.58 (1H, dd, *J* = 3.2, 9.6 Hz), 7.01 (1H, dd, *J* = 3.0, 9.0 Hz). ¹³C-NMR (MeOD): δ 105.80 (d, *J* = 24.0 Hz), 109.44 (d, *J* = 26.0 Hz), 113.48 (d, *J* = 9.0 Hz), 148.36, 148.50 (d, *J* = 9.0 Hz), 156.24 (d, *J* = 234 Hz), 173.03. ¹⁹F-NMR (CDCl₃): δ –125.39. HRMS: calc'd for C₇H₅FO₄ (M⁺ + H), 172.01719; found, 172.01717.

Methyl 7-fluoro-2,3-dihydrobenzo[b][1,4]dioxine-5-carboxylate (17c) 47

TMSCHN₂ (2.0M, 45 mL, 90 mmol) was added in portions to a solution of **17b** (6.0 g, 35 mmol) in MeOH (150 mL) and Et₂O (150 mL). After 20 min the solvent was evaporated off. Silica gel chromatography (15% EtOAc in hexane) of the residue gave the methyl ester (5.6 g, 93%). A mixture of this ester (3.9 g, 20 mmol) and Cs₂CO₃ (16.2 g, 49.8 mmol) in DMF (40 mL) was stirred at rt for 0.5 h. Then 1,2-dibromoethane (5.07 g, 27.0 mmol) was added and the mixture stirred at 80 °C for 16 h. The mixture was cooled to rt and filtered through celite, which was then rinsed twice with DMF. The combined DMF rinses were evaporated to dryness under high vacuum to give a dark red residue, which after silica gel chromatography (20% EtOAc in hexane with 1% HOAc) gave **17c** as a white solid (3.37 g, 77%). Mp 108–110 °C. ¹H-NMR (MeOD): δ 3.89 (3H, s), 4.28–4.34 (4H, m), 6.77 (1H, dd, J = 3.2, 8.8 Hz), 7.11 (1H, dd, J = 3.2, 8.8 Hz). ¹³C-NMR (MeOD): δ 52.27, 64.10, 64.30, 108.71 (d, J = 26.0 Hz), 109.73 (d, J = 24.0 Hz), 120.07 (d, J = 9.0 Hz), 140.65, 144.69 (d, J

= 12.0 Hz), 155.69 (d, J = 238 Hz), 164.99. ¹⁹F-NMR (CDCl₃): δ =121.14. HRMS: calc'd for C₁₀H₉FO₄ (M⁺ + H), 213.0563; found, 213.0561.

Methyl 7-fluoro-8-nitro-2,3-dihydrobenzo[b][1,4]dioxine-5-carboxylate (17d)

17c (3.4 g, 15.9 mol) was added in portions to a flask cooled between -50 and -60 °C and containing HNO₃ (90%; 30 mL). After 16 min, the reaction mixture was warmed gradually and water was added. The precipitate was filtered off and washed with water to give **17d** as a yellow solid (3.58 g, 88%). **17d** was used in the next step without further purification. Mp 133–135 °C. ¹H-NMR (CDCl₃): δ 3.92 (3H, s), 4.33–4.40 (4H, m), 6.83 (1H, d, *J* = 11.2 Hz). ¹³C-NMR (CDCl₃): δ 53.59, 64.22, 64.80, 107.12 (d, *J* = 25.0 Hz), 119.75 (d, *J* = 1.0 Hz), 137.57 (d, *J* = 3.0 Hz), 148.50 (d, *J* = 12.0 Hz), 150.10 (d, *J* = 257 Hz), 162.83 (d, *J* = 3.0 Hz). ¹⁹F-NMR (CDCl₃): δ –124.76. HRMS: calc'd for C₁₀H₈FNO₆ (M⁺ + Na), 280.0233; found, 280.0225.

8-Amino-7-fluoro-2,3-dihydrobenzo[b][1,4]dioxine-5-carboxylic acid (17e)

Pd/C (10%, 340 mg) and potassium formate (1.4 g, 17 mmol) were added to a solution of **17d** (500 mg, 1.94 mmol) in MeOH (10 mL). The mixture was refluxed at 80 °C for 2 h, and then cooled and filtered through celite. 37% HCl was added to the filtrate until no CO₂ was released. The white solid was filtered off and the filtrate evaporated to dryness. Silica gel chromatography (MeOH-CH₂Cl₂, 1: 30 v/v) of the residue gave **17e** as light brown solid (350 mg, 85%). Mp 174–176°C. ¹H-NMR (MeOD): δ 4.08–4.10 (2H, m), 4.18–4.21 (2H, m), 6.67 (1H, d, *J* = 11.6 Hz). ¹³C-NMR (MeOD): δ 65.06, 66.29, 106.06 (d, *J* = 4.0 Hz), 109.21 (d, *J* = 23.0 Hz), 134.30 (d, *J* = 11.0 Hz), 134.44, 140.54 (d, *J* = 3.0 Hz), 147.01 (d, *J* = 232 Hz), 169.25. ¹⁹F-NMR (MeOD): δ –143.14. HRMS: calc'd for C₉H₈FNO₄ (M⁺ + H), 214.0516; found, 214.0510.

(1-Butylpiperidin-4-yl)methyl 8-amino-7-fluoro-2,3-dihydrobenzo[b][1,4]dioxine-5carboxylate (17)

Saturated NaHCO₃ solution (5 mL) and THF (20 mL), followed by CbzCl (662 mg, 3.87 mmol) were added to a flask containing **17e** (750 mg, 3.52 mmol). After stirring the mixture overnight, the THF was evaporated off. The solution was diluted with water, acidified with 37% HCl to pH <1 and extracted thrice with EtOAc. The combined organic layers were dried on MgSO₄ and evaporated to dryness. Silica gel chromatography (30% EtOAc in hexane) of the residue gave Cbz-protected **17e** as a white solid (420 mg, 34%).

Cbz-protected 17e (420 mg, 1.21 mmol), CDI (196 mg, 1.21 mmol) and MeCN (30 mL) were added to an oven-dried flask under Ar. The mixture was stirred for 2 h and evaporated to dryness. The residue was dissolved in THF (10 mL). In another oven-dried flask, a solution of (4-butylpiperidin-1-yl)methanol (207 mg, 1.21 mmol) in THF (10 mL) was added drop-wise to a THF solution of *n*-BuLi (1.6M; 760 µL, 1.21 mmol) under Ar at 0 °C and stirred at this temperature for 10 min. Then the activated acid in THF was added dropwise to the prepared lithium alkoxide solution. The mixture was warmed to rt and stirred overnight. The reaction mixture was evaporated to remove THF, diluted with water and extracted with CH₂Cl₂. The residue was purified by silica gel chromatography (MeOH-CH₂Cl₂, 1: 15 v/v) to give an oil. Pd/C (10%; 25 mg) was then added to a solution of the oil in MeOH (15 mL). The suspension was degassed for 30 min with H₂ and then stirred at rt overnight under H₂. The mixture was filtered through celite and evaporated to dryness. Silica gel chromatography (MeOH-CH₂Cl₂, 1: 15 v/v) of the residue gave 17 as a yellow solid (260 mg, 59%). Mp 160–162 °C. ¹H-NMR (CDCl₃): δ 0.95 (3H, t, J = 7.4 Hz), 1.33– 1.39 (2H, m), 1.70–1.95 (7H, m), 2.39–2.42 (2H, m), 2.67–2.71 (2H, m), 3.31 (2H, d, J = 11.6 Hz), 4.19-4.27 (6H, m), 4.88 (2H, s), 6.71 (1H, d, J = 11.6 Hz). ¹³C-NMR (CDCl₃): δ 13.74, 20.46, 26.97, 34.35, 52.56, 57.84, 63.84, 64.56, 68.14, 105.60 (d, J = 4.0 Hz), 108.19

(d, J = 23.0 Hz), 132.20 (d, J = 15.0 Hz), 133.43 (d, J = 11.0 Hz), 139.81 (d, J = 3.0 Hz), 145.24 (d, J = 232 Hz), 166.72 (d, J = 4 Hz). ¹⁹F-NMR (CDCl₃): δ –141.99. LC-MS: m/z [M + H]⁺ 367.1. HRMS: calc'd for C₁₉H₂₇FN₂O₄ (M⁺ + H), 367.2033; found, 367.2033.

Methyl 4-amino-3-(fluoromethoxy)benzoate (18a) ⁴⁸

Chlorofluoromethane was bubbled into a tube (30-mL) containing anhydrous DMF (10 mL), methyl 4-amino-3-hydroxybenzoate (500 mg, 2.99 mmol) and Cs₂CO₃ (1.95 g, 5.98 mmol) for 14 min at -70 °C. The tube was then sealed and slowly warmed to rt. The mixture was stirred for 5 d then filtered through celite which was then rinsed thrice with EtOAc. The combined rinses were evaporated to dryness. Silica gel chromatography (20% EtOAc in hexane) of the residue gave **18a** as a pale yellow solid (368 mg, 62%). Mp: 69–70 °C. ¹H-NMR (CDCl₃): δ 3.84 (3H, s), 4.46 (2H, br), 5.71 (2H, d, *J* = 54.4 Hz), 6.69 (1H, d, *J* = 8 Hz), 7.63 (1H, dd, *J* = 8.4, 1.6 Hz), 7.68 (1H, s). ¹³C-NMR (CDCl₃): δ 51.73, 100.22, 102.40, 114.25, 116.72, 119.23, 126.79, 142.44, 142.92, 142.95, 166.90. ¹⁹F-NMR (CDCl₃): δ –147.56. LC-MS: *m*/*z* [M + H]⁺ 200.1. HRMS: calc'd for C₉H₁₁FNO₃ (M⁺ + H), 200.0723; found, 200.0723.

(1-Butylpiperidin-4-yl)methyl 4-amino-3-(fluoromethoxy)benzoate (18)

n-BuLi (1.6M; 1.6 mmol; 1 mL) was added drop-wise to a solution of (4-butylpiperidin-1-yl)methanol (280 mg, 1.64 mmol) in THF (2 mL) contained in an oven-dried flask under Ar at 0 °C. The solution was stirred for 10 min and **18a** (160 mg, 0.80 mmol) in THF (2 mL) was added drop-wise. The mixture was stirred overnight, poured into water and extracted with CH₂Cl₂. The combined organic layers were dried on MgSO₄ and evaporated to dryness. Silica gel chromatography (MeOH-CH₂Cl₂, 1: 20 v/v) of the residue gave **18** as a pale yellow oil (160 mg, 59 %). ¹H-NMR (CDCl₃): δ 0.92 (3H, t, *J* = 7.6 Hz), 1.43–1.53 (6H, m), 1.75–1.80 (3H, m), 1.91–1.98 (2H, t, *J* = 12.0 Hz), 2.33 (2H, t, *J* = 8 Hz), 2.98 (2H, d, *J* = 11.6 Hz), 4.14 (2H, d, *J* = 6.0 Hz), 4.28 (2H, br), 5.76 (2H, d, *J* = 54.4 Hz), 6.71 (1H, d, *J* = 8.0 Hz), 7.67 (1H, dd, *J* = 2.0, 8.4 Hz), 7.70 (1H, s). ¹³C-NMR (CDCl₃): δ 12.81, 19.65, 27.73, 27.89, 34.37, 52.18, 57.63, 67.66, 100.17 (d, *J* = 219 Hz), 113.04, 115.81, 118.78, 125.58, 140.86, 141.85 (d, *J* = 2.0 Hz), 165.00. ¹⁹F-NMR (CDCl₃): δ –147.50. LC-MS *m*/z [M + H]⁺, 214.1. HRMS: calc'd for C₁₈H₂₈FN₂O₃ (M⁺ + H), 339.2084; found, 339.2088.

Methyl 4-amino-3-(2-fluoroethoxy)benzoate (19a)

1-Chloro-2-fluoroethane (760 mg, 8.97 mmol) was added to a tube (15-mL) containing anhydrous DMF (5 mL), methyl 4-amino-3-hydroxybenzoate (500 mg, 2.99 mmol) and Cs₂CO₃ (1.95 g, 5.98 mmol). The tube was sealed and stirred for 88 h. The mixture was then filtered through celite which was rinsed thrice with EtOAc. The combined filtrate and rinses were evaporated to dryness. Silica gel chromatography (20% EtOAc in hexane) of the residue gave **19a** as a white solid (270 mg, 42%). Mp. 86–87 °C. ¹H-NMR (CDCl₃): δ 3.84 (3H, s), 4.18–4.27 (2H, dt, *J* = 28.4, 4 Hz), 4.39 (2H, br), 4.65–4.79 (2H, dt, *J* = 47.2, 3.7 Hz), 6.66 (1H, d, *J* = 8 Hz), 7.43 (1H, d, *J* = 1.6 Hz), 7.55 (1H, dd, *J* = 8.4, 1.6 Hz). ¹⁹F-NMR (CDCl₃): δ –147.56. LC-MS: *m*/*z* [M + H]⁺, 214.1. HRMS: calc'd for C₁₀H₁₃FNO₃ (M⁺ + H), 214.0879; found, 214.0876.

(1-Butylpiperidin-4-yl)methyl 4-amino-3-(2-fluoroethoxy)benzoate (19)

As described for **18** from **18a**, compound **19** was obtained from **19a** as a white solid in 48% yield. Mp 72–74 °C. ¹H-NMR (CDCl₃): δ 0.92 (3H, t, *J* = 7.6 Hz), 1.27–1.53 (6H, m), 1.74–1.79 (3H, m), 1.94 (2H, t, *J* =12.0 Hz), 2.33 (2H, t, *J* = 7.6 Hz), 2.97 (2H, d, *J* = 11.2 Hz), 4.13 (2H, d, *J* = 6 Hz), 4.24–4.33 (2H, dt, *J* = 28.4, 4.0 Hz), 4.36 (2H, br), 4.69–4.83 (2H, dt, *J* = 47.2, 4.0 Hz), 6.67 (1H, d, *J* = 8.0 Hz), 7.45 (1H, d, *J* = 2.0 Hz), 7.57 (1H, dd, *J* =

1.6, 8.4 Hz). ¹³C-NMR (CDCl₃): δ 14.07, 20.89, 29.03, 29.17, 35.65, 53.45, 58.88, 67.92 (d, J = 20.0 Hz), 68.82, 81.77 (d, J = 170 Hz), 112.94, 113.39, 119.45, 124.79, 141.70, 144.70, 166.67. ¹⁹F-NMR (CDCl₃): δ –147.49. LC-MS m/z [M + H]⁺, 353.2. HRMS: calc'd for C₁₉H₃₀FN₂O₃ (M⁺ + H), 353.2240; found, 353.2238.

(1-Butylpiperidin-4-yl)methyl 4-amino-3-hydroxybenzoate (20) 49,50

AlCl₃ (311 mg, 2.34 mmol) and NaI (351 mg, 2.34 mmol) were added to a solution of **13** (500 mg, 1.56 mmol) in MeCN (10 mL). The mixture was refluxed overnight and extracted thrice with EtOAc. The combined organic layers were dried on MgSO₄ and evaporated to dryness. Silica gel chromatography (MeOH/CH₂Cl₂, 1:20 v/v) of the residue gave **20** as an orange-brown solid (200 mg, 42%). Mp: 210–212 °C. ¹H-NMR (CDCl₃): δ 0.98 (3H, t, *J* = 7.6 Hz), 1.31–1.43 (2H, m), 1.51–1.63 (4H, m), 1.87–1.93 (3H, m), 2.28 (2H, t, *J* = 11.2 Hz), 2.54–2.58 (2H, m), 3.17 (2H, d, *J* = 12.0 Hz), 4.14 (2H, d, *J* = 5.6 Hz), 6.68 (1H, d, *J* = 8.0 Hz), 7.34 (1H, d, *J* = 2.0 Hz), 7.38–7.41 (1H, dd, *J* = 1.6, 8.0 Hz); ¹³C-NMR (CDCl₃): δ 13.96, 21.05, 27.46, 34.81, 53.45, 58.09, 68.05, 114.47, 116.05, 119.06, 124.34, 143.61, 144.84, 168.55. LC-MS: *m*/*z* [M + H]⁺, 307.2. HRMS: calc'd for C₁₇H₂₆N₂O₃ (M⁺ + H), 307.2022; found, 307.2025.

(1-Butylpiperidin-4-yl)methyl 8-amino-7-nitro-2,3-dihydrobenzo[*b*][1,4]dioxine-5-carboxylate (21)

A mixture of **21a**⁵¹(200 mg, 0.79 mmol), (Boc)₂O (515 mg, 2.36 mmol) and DMAP (44 mg, 0.039 mmol) in CH₂Cl₂ (15 mL) was refluxed at 50 °C for 1 h, then quenched with water and extracted thrice with CH₂Cl₂. The combined organic layers were dried on MgSO₄ and then condensed to a crude product, which after silica gel chromatography (30% EtOAc in hexane) gave *di*-Boc-protected **21a** as a yellow solid (**21b**; 343 mg, 95%). ¹H-NMR (CDCl₃): δ 1.41 (18H, s), 3.94 (3H, s), 4.37–4.49 (4H, m), 8.30 (1H, s). ¹³C-NMR (CDCl₃): δ 27.78, 52.63, 63.77, 64.80, 83.66, 118.16, 120.06, 126.55, 138.19, 140.71, 148.53, 149.49, 163.61.

A THF solution of *n*-BuLi (1.6M; 0.95 mL, 1.52 mmol) was added drop-wise to a solution of (4-butylpiperidin-1-yl)methanol (260 mg, 1.52 mmol) in THF (2 mL) in an oven-dried flask, under Ar at 0 °C. After stirring this solution for 10 min, a solution of **21b** (343 mg, 0.76 mmol) in THF (4 mL) was added dropwise. The mixture was stirred overnight, poured into water and extracted with CH₂Cl₂. The combined organic layers were dried on MgSO₄ and evaporated to dryness. Silica gel chromatography (MeOH/CH₂Cl₂, 1: 15 v/v) of the residue gave *mono*-Boc-protected **21** as a white solid (**21c**; 186 mg, 50%). ¹H-NMR (CDCl₃): δ 0.92 (3H, t, *J* = 7.2 Hz), 1.29–1.49 (15H, m), 1.78 (3H, t, *J* = 12.4 Hz), 1.93 (2H, t, *J* = 10.0 Hz), 2.31 (2H, t, *J* = 7.6 Hz), 2.96 (2H, d, *J* = 11.6 Hz), 4.16 (2H, d, *J* = 6.4 Hz), 4.39–4.48 (4H, m), 7.20 (1H, br), 8.15 (1H, s). ¹³C-NMR (CDCl₃) δ 13.06, 19.88, 27.05, 28.01, 28.24, 34.43, 52.34, 57.85, 62.79, 63.70, 68.82, 81.43, 119.75, 124.57, 134.69, 135.44, 146.92, 150.51, 162.21.

21c (100 mg, 0.20 mmol) was stirred overnight in a dioxane solution of HCl (4M). The mixture was evaporated to dryness, diluted with water and then neutralized to pH 7 with *aq*. NH₄OH (1M). The solution was extracted thrice with CH₂Cl₂. The organic layers were combined and dried on MgSO₄. Evaporation of solvent gave **21** as a yellow solid (71 mg, 89%). Mp 108–110 °C (n = 2). ¹H-NMR (CDCl₃): δ 0.92 (3H, t, J = 7.2 Hz), 1.29–1.51 (7H, m), 1.79 (3H, d, J = 8.4 Hz), 1.92 (2H, t, J = 11.6 Hz), 2.33 (2H, t, J = 7.6 Hz), 2.98 (2H, d, J = 11.6 Hz), 4.14 (2H, d, J = 6.4 Hz), 4.38–4.46 (4H, m), 8.45 (1H, s). ¹³C-NMR (CDCl₃): δ 14.06, 20.89, 28.99, 29.16, 35.47, 53.38, 58.85, 63.82, 64.84, 69.28, 108.62, 123.12, 125.47, 130.17, 139.42, 147.16, 163.70. LC-MS: m/z [M + H]⁺, 394.2. HRMS: calc'd for C₁₉H₂₈N₃O₆ (M⁺ + H), 394.1978; found, 394.1972.

Pharmacological Assay and Screen

Some ligands (1, 5, 8, 13, 15, 17–19) were evaluated at Caliper Life Sciences (Hanover, MD) for binding to 5-HT₄ receptors in guinea pig striatal membranes at 37 °C with [³H]GR 113808 as reference radioligand.⁵²

All new ligands (2, 3 and 5–21) plus the already known ligands 1 and 4 were submitted to the National Institute of Mental Health Psychoactive Drug Screening Program (NIMH-PDSP) for assessment of binding affinity to human recombinant 5-HT₄ receptors (reference radioligand, [³H]GR 113808) and a wide range of other receptors and binding sites (5-HT_{1A-1E}, 2A-2C, 3, 5A, 6, 7, α_{1A} , 1B, 1D, 2A-2C, BZP (rat brain site), β_{1-3} , $\sigma_{1,2}$, D1-5, DAT, DOR, GABAA, H1-4, KOR, M1-5, MOR, NET and SERT). Selected ligands (1, 4, 6–13 and 17) were also assessed for agonist/partial agonist activity in a GloSensor L9 assay for cAMP response and for antagonist activity. Detailed assay protocols are available at the NIMH-PDSP web site (http://pdsp.cwru.edu).

Radiochemistry

Production of NCA [¹¹C]carbon dioxide

No-carrier-added (NCA) [¹¹C]carbon dioxide was produced with a PEtrace cyclotron (GE; Milwaukee, WI) according to the ¹⁴N(p,α)¹¹C reaction²⁰ by irradiation of nitrogen gas (300 psi) containing 1% oxygen with a proton beam (16.5 MeV, 45 DA) for either 20 or 40 min. A 40-min irradiation produced about 2.0 Ci of [¹¹C]carbon dioxide.

Production of NCA [¹¹C]hydrogen cyanide²⁰

A PETrace Radiotracer Production System was used to produce this labeling agent, as follows. Cyclotron-produced NCA [¹¹C]carbon dioxide was trapped on molecular sieve (13 Å, 80–100 mesh; 0.55g) at 40 °C, while residual [¹³N]nitrogen was directed to waste. The [¹¹C]carbon dioxide was then released with a stream of nitrogen (250 mL/min), mixed with a stream of hydrogen (30 mL/min) and passed through a heated (400 °C) glass tube (10 mm × 200 mm) containing nickel catalyst (Ni-3266 Engelhardt). The effluent containing the generated [¹¹C]methane was passed through an OXY-TRAP® (PNr.-4001R; Alltech), mixed with anhydrous ammonia (research grade, 20 ml/min) and then passed over a wad of platinum wire (d 0.127 mm; 2.6 g) at 920 °C. The generated [¹¹C]hydrogen cyanide was delivered to a hot-cell for subsequent radiochemistry in a mixture of hydrogen, ammonia, and nitrogen carrier gas at 300 mL/min.

Production of NCA [¹¹C]methyl iodide

NCA [¹¹C]methyl iodide was produced from NCA [¹¹C]carbon dioxide (~ 2.0 Ci) via reduction to [¹¹C]methane and then vapour phase iodination¹⁸, either in a TRACERlab FX C Pro module (GE; Milwaukee, WI) for the synthesis of [¹¹C]**8** or a MeI MicroLab apparatus (GE; Milwaukee, WI)for the synthesis of [¹¹C]**13**.

Production of NCA [¹¹C]methyl triflate

A quartz column (i.d. 2.6 mm, length 26 cm) was packed around its center with a 6 cm length of AgOTf/Graphac (50: 50 w/w/) held in place at each end with glass wool. NCA [¹¹C]methyl triflate (~ 350 mCi) was produced by passing [¹¹C]methyl iodide in helium gas (17 mL/min) into the heated (180 °C) column.¹⁹

Production of NCA [¹⁸F]d₂-fluoromethyl bromide⁵³

Cyclotron-produced [¹⁸F]fluoride ion (~ 150 mCi) in [¹⁸O]water was delivered into a glass vial containing K 2.2.2 (5.0 mg, $13.3 \mu \text{mol}$) and potassium carbonate (0.50 mg, $3.6 \mu \text{mol}$) in

MeCN-H₂O (0.1 mL, 9: 1 v/v). This solution was transferred to a modified version of a TRACERlab FX_{F-N} module and diluted with MeCN (1 mL). The mixture was evaporated to dryness at 90 °C under reduced pressure with a nitrogen flow. MeCN (2 mL) was again added and then evaporated to dryness. The vessel was sealed and then CD₂Br₂ (100 μ L) in MeCN (1.0 mL) was added to the dry [¹⁸F]fluoride ion-K 2.2.2-K⁺ complex which was then heated at 95 °C for 15 min. The reaction vessel was then cooled to 35 °C. Nitrogen gas was used to transfer the volatile [¹⁸F]d₂-fluoromethyl bromide through a series of four silica gel cartridges (SepPak Plus) and then into a V-vial (1-mL) having a crimp-sealed silicon-Teflon septum cap. The RCY of [¹⁸F]d₂-fluoromethyl bromide was typically about 28%.⁵³

Radiosynthesis of [¹¹C]5

NCA [¹¹C]hydrogen cyanide (~ 200 mCi) was trapped in a V-vial (5-mL) containing THF (500 μ L), precursor (**1**, ~ 1.0 mg), Pd(PPh₃)₄ (1.5–2.0 mg), base [K₂CO₃ (~ 2.0 mg) plus K 2.2.2 (~ 5.0 mg), or usually KH₂PO₄ (~ 2.0 mg) only]. The reaction mixture was heated at 80 °C for 5 min. HPLC mobile phase (3 mL) was added to the V-vial and [¹¹C]**5** isolated with radio-HPLC on a Gemini C18 column (5 μ m, 10 × 250 mm; MeCN-*aq*. NH₄OH (10 mM; 3: 2 v/v; 6 mL/min; *t*_R = 7.2 min). The identity of [¹¹C]**5** was confirmed by analytical radio-HPLC on a Gemini C18 column (5 μ m, 4.6 × 150 mm) eluted at 1 mL/min with MeCN-10 mM NH₄OH (16: 9 v/v; *t*_R = 5.8 min) and also by LC-MS of associated carrier. The radiochemical purity of [¹¹C]**5** was > 99%. The decay-corrected radiochemical yield (RCY) from [¹¹C]hydrogen cyanide was 26% (*n* = 3).

Radiosynthesis of [¹¹C]8

[¹¹C]Methyl iodide (~ 15 mCi) was trapped in a capped fluoro-polymer custom-made reaction vial (1.5-mL) containing anhydrous DMF (300 µL), precursor (**3**, ~ 1.0 mg) and base (Li₃N or Li₂O; ~ 5.0 mg). The mixture was sonicated in an ultrasound apparatus (UIS250L, Hielscher Ultrasonics, Germany) for 10 min and then filtered through an Iso-DiscTM filter (PFTE13-4, 13 mm × 0.45 µm) which was then rinsed twice with DMF. The combined filtrates were diluted with water and then the [¹¹C]**8** was isolated with radio-HPLC (MeCN-HCOONH₄; 2: 3 v/v; 3 mL/min; $t_R = 13.1$ min). The identity of [¹¹C]**8** was confirmed by analytical radio-HPLC on a Gemini-NX C18 column (5 µm, 4.6 × 250 mm) eluted with MeCN-100 mM HCOONH₄ (16: 9 v/v) at 1 mL/min ($t_R = 7.0$ min) and also by LC-MS of associated carrier. The RCYs from [¹¹C]methyl iodide were 7% (Li₂O) and 11% (Li₃N).

Radiosynthesis of [¹¹C]13 from [¹¹C]methyl triflate

[¹¹C]Methyl triflate (30–20 mCi) was trapped in a tapered bottom vial (0.9-mL) containing **20** (0.15–0.8 mg), 0.5M NaOH (3 eq.) and MeCN (300 µL). The mixture was heated at 80 °C for 5 min, diluted with HPLC mobile phase (500 µL), and then the [¹¹C]**13** ($t_R = 8.7$ min) isolated with radio-HPLC (MeCN-HCOONH₄; 2: 3 v/v; 4 mL/min). The identity of [¹¹C]**13** was confirmed by analytical radio-HPLC on a Gemini-NX C18 column (5 µm, 4.6 × 250 mm) eluted with MeCN-100 mM HCOONH₄ (2: 3 v/v) at 1 mL/min ($t_R = 4.4$ min) and also by LC-MS of associated carrier. The RCY was 27% (n = 12) from [¹¹C]methyl triflate and the radiochemical purity > 99%. The absorbance detector response of the analytical HPLC system was calibrated for mass of carrier ligand **13**. This allowed the mass of **13** in measured samples of [¹¹C]**13** to be determined, and the specific radioactivity to be calculated. The specific radioactivity was 2,517 mCi/µmol at end of synthesis (EOS).

Radiosynthesis of [¹¹C]13 from [¹¹C]methyl iodide

 $[^{11}C]$ Methyl iodide (30–550 mCi) was trapped in a tapered bottom vial (0.9-mL) containing **20** (~ 1.0 mg, 3.2 µmol), 1.0M (*n*-Bu)₄NOH (3 eq., 10 µL, 3.2 µmol) and DMF (300 µL).

The mixture was heated at 80 °C for 5 min and then diluted with water (500 μ L). [¹¹C]**13** was separated and analyzed as described above. The RCY of [¹¹C]13 from [¹¹C]iodomethane was 36% (*n* = 6) and the radiochemical purity > 99%. The specific radioactivity was 2,848 mCi/µmol at EOS.

The following experiment²² was performed to confirm the position of radiolabel in [¹¹C]**13**. [¹¹C]Methyl iodide (~ 47 mCi) was trapped in a solution of **20** (~ 1.0 mg) in DMF (300 μ L). Then [¹³C]methyl iodide (10 μ L from 47.7 mM stock solution in DMF) was added. [¹¹C]/ [¹³C]**13** was isolated by HPLC, as described above. A sample of the collected radioactive fraction was then analyzed by HPLC and LC-MS. The radioactive fraction was then evaporated to dryness, dissolved in CDCl₃ and, analyzed by ¹³C-NMR{DEPT 135}.

Radiosynthesis of [¹⁸F]18

Phenol **20** (~ 0.15 mg, 0.49 umol), MeCN (300 µL) and 0.5M NaOH (1.5 µmol, 3 µL) were added to a V-vial (1-mL). [¹⁸F]FCD₂Br (~ 20 mCi) was transferred to the solution under computer control from a TRACERIab FX_{F-N} module. Radioactivity transfer was monitored by two external radioactivitydetectors (Bioscan) and was stopped when radioactivity maximized. The mixture was heated at 100 °C for 15 min and then diluted with water (700 µL). [¹⁸F]**18** was isolated with HPLC (MeCN-HCOONH₄; 2: 3 v/v; 3 mL/min; $t_R = 10.1$ min). The identity of [¹⁸F]**18** was confirmed by analytical HPLC on a Gemini-NX C18 column (5 µm, 4.6 × 250 mm) eluted with MeCN-100 mM HCOONH₄ (1: 1 v/v) at 1 mL/min ($t_R = 4.2$ min) and also by LC-MS. The RCY of [¹⁸F]**18** was 13% (n = 1) from [¹⁸F]fluoride ion and the radiochemical purity > 99%.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgments

This study was supported by the Intramural Research Program of the National Institutes of Health (NIH), specifically the National Institute of Mental Health (NIMH). We thank the NIH PET Department for radioisotope production and the NIMH Psychoactive Screening Program (PDSP) for performing assays; the PDSP is directed by Bryan L. Roth, PhD with project officer Jamie Driscol (NIMH), at the University of North Carolina at Chapel Hill (contract # NO1MH32004). We thank our colleagues, Drs. Lisheng Cai and Joong-Hyun Chun, for useful suggestions and technical assistance in some areas of this work.

Abbreviations

BZP	peripheral benzodiazepine receptor
Cbz	benzyloxycarbonyl
CDI	N,N'-carbonyldiimidazole
D	dopamine
DAT	dopamine transporter
DOR	δ opiate receptor
DMAP	4-(dimethylamino)pyridine
DMF	dimethylformamide
EOS	end of synthesis
Н	histamine

К 2.2.2	4,7,13,18-tetraoxo-1,10-diazabicyclo[8,8,8]hexacosane
Μ	muscarinic
MOR	μ opiate receptor
NBS	N-bromo-succinimide
NCA	no-carrier-added
NET	noradrenalin transporter
NMP	N-methyl-2-pyrrolidinone
NXS	<i>N</i> -halo-succinimide (X = halo atom)
PET	positron emission tomography
rt	room temperature
RCY	decay-corrected radiochemical yield
SERT	serotonin transporter
SPECT	single photon emission computed tomography
THF	tetrahydrofuran
TMS	trimethylsilyl
ТРР	triphenylphosphine
5-HT	serotonin

References

- Wong DF, Gründer G, Brašić JR. Brain imaging research: does the science serve clinical practice? Int Rev Psychiatry. 2007; 19:541–558. [PubMed: 17896234]
- 2. Gibson RE, Burns HD, Hamill TG, Eng WS, Francis BE, Ryan C. Non-invasive radiotracer imaging as a tool for drug development. Curr Radiopharm Design. 2000; 6:973–989.
- Eglen RM, Wong EHF, Dumuis A, Bockaert J. Central 5-HT₄ receptors. TiPs. 1995; 16:391–398. [PubMed: 8578609]
- Langlois M, Fischmeister R. 5-HT₄ receptor ligands: applications and new perspectives. J Med Chem. 2003; 46:319–344. [PubMed: 12540230]
- 5. Eglen RM, Hegde SS. 5-Hydroxytryptamine (5-HT₄) receptors: physiology, pharmacology and therapeutic potential. Exp Opin Invest Drugs. 1996; 5:373–388.
- Warner-Schmidt JL, Flajolet M, Maller A, Chen EY, Qi HS, Svenningsson P, Greengard P. Role of p11 in cellular and behavioral effects of 5-HT₄ receptor stimulation. J Neurosci. 2009; 29:1937– 1946. [PubMed: 19211900]
- Waterhouse RN. Determination of lipophilicity and its use as a predictor of blood brain barrier penetration of molecular imaging agents. Mol Imaging Biol. 2005; 5:376–389. [PubMed: 14667492]
- Pike VW. PET Radiotracers: crossing the blood-brain barrier and surviving metabolism. TiPs. 2009; 30:431–440. [PubMed: 19616318]
- Pike VW. Positron-emitting radioligands for studies in vivo probes for human psychopharmacology. J Psychopharmacology. 1993; 7:139–158.
- Laruelle M, Slifstein M, Huang Y. Relationships between radiotracer properties and image quality in molecular imaging of the brain with positron emission tomography. Mol Imaging Biol. 2003; 5:363–375. [PubMed: 14667491]

- Kaumann AJ, Gaster LM, King FD, Brown AM. Blockade of human atrial 5- HT₄ receptors by SB 207710, a selective and high affinity 5-HT₄ receptor antagonist. Nauyn-Schmiedebergs Arch Pharmacol. 1994; 349:546–548.
- McLean PG, Coupar IM. 5-HT₄ receptor antagonist affinities of SB207710, SB205008, and SB203186 in the human colon, rat oesophagus, and guinea pig ileum peristaltic reflex. Nauyn-Schmiedebergs Arch Pharmacol. 1995; 352:132–140.
- Pike VW, Halldin C, Nobuhara K, Hiltunen J, Mulligan RS, Swahn CG, Karlsson P, Olsson H, Hume SP, Hirani E, Whalley J, Pilowsky LS, Larson S, Schnell PO, Ell PJ, Farde L. Radioiodinated SB 207710 as a radioligand in vivo: imaging of brain 5-HT₄ receptors with SPET. Eur J Nucl Med & Mol Imaging. 2003; 30:1520–1528. [PubMed: 14579092]
- Kornum BR, Lind NM, Gillings N, Marner L, Andersen F, Knudsen GM. Evaluation of the novel 5-HT₄ receptor PET ligand [¹¹C]SB207145 in the Gottingen mini-pig. J Cereb Blood Flow Metab. 2009; 29:186–196. [PubMed: 18797470]
- 15. Gee AD, Martarello L, Passchier J, Wishart M, Parker C, Matthews J, Comley R, Hopper R, Gunn R. Synthesis and evaluation of [¹¹C]SB207145 as the first *in vivo* serotonin 5-HT₄ receptor radioligand for PET imaging in man. Curr Radiopharm. 2008; 1:110–114.
- Marner L, Gillings N, Comley RA, Baarré WFC, Rabiner EA, Wilson AA, Houle S, Hasselbalch SG, Svarer C, Gunn RN, Laruelle M, Knudsen GM. Kinetic modeling of ¹¹C-SB207145 binding to 5-HT₄ receptor in the human brain in vivo. J Nucl Med. 2009; 50:900–908. [PubMed: 19470850]
- 17. Rappaport SI, Ohno K, Pettigrew KD. Drug entry into the brain. Brain Research. 1979; 172:254.
- Larsen P, Ulin J, Dahlström K, Jensen M. Synthesis of [¹¹C]iodomethane by iodination of [¹¹C]methane. Appl Radiat Isot. 1997; 48:153–157.
- 19. Jewett DM. A simple synthesis of [¹¹C]methyl triflate. Appl Radiat Isot. 1992; 43:1383–1385.
- 20. Christman DR, Finn RD, Karlström K, Wolf AP. The production of ultra high specific activity ¹¹C-labeled hydrogen cyanide, carbon dioxide, carbon monoxide and methane via the ¹⁴N(p,α)¹¹C reaction. Int J Appl Radiat Isot. 1975; 26:435–442.
- 21. Donohue SR, Pike VW, Finnema SJ, Truong P, Andersson J, Gulyás B, Halldin C. Discovery and labeling of high affinity 3,4-diarylpyrazolines as candidate radioligands for *in vivo* imaging of cannabinoid subtype-1 (CB₁) receptors. J Med Chem. 2008; 51:5608–5616. [PubMed: 18754613]
- 22. Luthra SK, Pike VW, Brady F, Turton DR, Wood B, Matthews RW, Hawkes GE. The utility of ¹³C/¹¹C-co-labelling and subsequent ¹³C-NMR in the characterisation of ¹¹C-labelled products. J Label Compd Radiopharm. 1987; 25:1070–1072.
- 23. Vickery RG, Mai N, Kaufman E, Beattie DT, Pulido-Rios T, O'Keefe M, Humphrey PPA, Smith JAM. A comparison of the pharmacological properties of guinea pig and human recombinant 5-HT₄ receptors. Br J Pharmacol. 2007; 150:782–791. [PubMed: 17293885]
- 24. Clark, RD. Medicinal chemistry of 5-HT₄ receptor ligands. In: Eglen, RM., editor. 5-HT₄ Receptors in the brain and periphery. Vol. Ch 1. Landes Bioscience; Austin, TX, USA: 1997. p. 1-48.
- 25. Gaster LM, Jennings AJ, Joiner GF, King FD, Mulholland KR, Rahman SK, Starr S, Wyman PA, Wardle KA, Wardle ESE, Gareth JS. (1-Butyl-4-piperidinyl)methyl 8-amino-7-chloro-1,4-benzodioxane-5-carboxylate hydrochloride: a highly potent and selective 5-HT₄ receptor antagonist derived from metoclopramide. J Med Chem. 1993; 36:4121–4123. [PubMed: 8258837]
- 26. McCarron JA, Zoghbi SS, Shetty SS, Ichise M, Vermeulen ES, Wikström HV, Halldin C, Innis RB, Pike VW. Synthesis and preliminary evaluation of [¹¹C](-)-RWAY in monkey a new simply labeled PET radioligand for imaging brain 5-HT_{1A} receptors. Eur J Nucl Med & Mol Imaging. 2007; 34:1670–1682. [PubMed: 17579853]
- 27. Kenakin T. Efficacy as a vector: the relative prevalence and paucity of inverse agonism. Mol Pharmacol. 2004; 66:2–11. [PubMed: 14722230]
- Kursar JD, Nelson DL, Wainscott DB, Baez M. Molecular cloning, functional expression, and mRNA tissue distribution of the human 5-hydroxytryptamine_{2B} receptor. Mol Pharmacol. 1994; 46:227–234. [PubMed: 8078486]

- Duxon MS, Flanigan TP, Reavley AC, Baxter GS, Blackburn TP, Fone KCF. Evidence for expression of the 5-hydroxytryptamine-2B receptor in the rat central nervous system. Neurosci. 1997; 76:323–329.
- Hashimoto K, Ishiwata K. Sigma receptor ligands: possible application as therapeutic drugs and as radiopharmaceuticals. Curr Pharmaceutical Design. 2006; 12:3857–3876.
- Marazziti D, Baroni S, Masala I, Ginnaccini G, Betti L, Palego L, Dell'Osso MC, Consoli G, Castagna M, Lucacchini A. [³H]-YM-09151-2 binding sites in human brain post mortem. Neurochem Int. 2009; 55:643–647. [PubMed: 19540292]
- 32. Marazziti D, Lucacchini A, Baroni S, Betti L, Catena M, Ginnaccini G, Dell'Osso B, Masala I, Mungai F, Dell'Osso L. Presence of D₄ dopamine receptors in human prefrontal cortex: a post mortem study. Revista Brasileira de Psiquiatria. 2007; 29:148–152. [PubMed: 17639254]
- 33. Cai L, Lu S, Pike VW. Chemistry with [¹⁸F]fluoride ion. Eur J Org Chem. 2008; 17:2853–2873.
- 34. Pike VW, Aigbirhio FI. Reactions of cyclotron-produced [¹⁸F]fluoride with diaryliodonium salts

 a novel single-step route to no-carrier-added [¹⁸F]fluoroarenes. J Chem Soc, Chem Commun. 1995:2215–2216.
- 35. Hamill T, Burns H, Eng W, Ryan C, Krause S, Gibson R, Hargreaves R. An improved fluorine-18 labeled neurokinin-1 receptor ligand. Mol Imaging Biol. 2002; 4(Suppl 1):S34.
- 36. Schou M, Halldin C, Sovago J, Pike VW, Gulyas B, Mozley D, Dobson D, Johnson PD, Innis RB, Farde L. Evaluation of two fluorinated reboxetine analogs as potential norepinephrine transporter probes in the monkey brain with PET. Synapse. 2004; 53:57–67. [PubMed: 15170818]
- 37. Terry GE, Hirvonen J, Liow JS, Zoghbi SS, Gladding R, Tauscher JT, Schaus JM, Phebus L, Felder CC, Morse CL, Donohue SR, Pike VW, Halldin C, Innis RB. Imaging and quantitation of cannabinoid CB₁ receptors in human and monkey brain using ¹⁸F-labeled inverse agonist radioligands. J Nucl Med. 2010; 51:112–120. [PubMed: 20008988]
- King, FD.; Gaster, LM.; Mulholland, KR.; Rahman, SK.; Wyman, PA.; Sanger, GJ.; Wardle, KA.; Baxter, GS.; Kennett, GA.; Kaumann, AJ. 5-HT₄ receptor antagonists. US Patent. 5,580,885. 1996.
- 39. Kowalczyk BA, Robinson J III, Gardner JO. Process development of the synthetic route to sulamserod hydrochloride. Org Process Res Dev. 2001; 5:116–121.
- Cristau H-J, Ouali A, Spindler J-F, Taillefer M. Mild and efficient copper-catalyzed cyanation of aryl iodides and bromides. Chem Eur J. 2005; 11:2483–2492.
- Sellarajah S, Lekishvili T, Bowring C, Thompsett AR, Rudyk H, Birkett CR, Brown DR, Gilbert IH. Synthesis of analogues of Congo Red and evaluation of their anti-prion activity. J Med Chem. 2004; 47:5515–5534. [PubMed: 15481988]
- 42. Hudgens TL, Turnbull KD. C-methylation of phenols, tyrosine derivatives, and a tyrosine containing peptide. Tetrahedron Lett. 1999; 40:2719–2722.
- 43. Qiao C, Gupte A, Boshoff HI, Wilson DJ, Bennett EM, Somu RV, Barry CE, Aldrich CC. 5'-O-[(N-Acyl)sulfamoyl]adenosines as antitubercular agents that inhibit MbtA: an adenylation enzyme required for siderophore biosynthesis of the mycobactins. J Med Chem. 2007; 50:6080–6094. [PubMed: 17967002]
- 44. Meth-Cohn O. Transesterification of methyl esters of aromatic and α, β⁻ansaturated acids with bulky alcohols: (D)-menthyl cinnamate and (D)-menthyl nicotinate. Organic Syntheses. 1990; 68:155–157.
- Eaborn C, Hornfeld HL, Walton DRM. Preparation of some aryltrialkyl- and tetraaryl stannanes. J Organometal Chem. 1967; 10:529–530.
- Duda H, Ostaszynski A, Urbanski T. Halosalicylohydroxamic acids. I. Dihalosalicylohydroxamic acids. Bull Acad Pol Sci, Ser Sci Chim. 1965; 13:341–347.
- 47. Weller DD, Stirchak EP. Quassinoid synthesis via o-quinone Diels-Alder reactions. J Org Chem. 1983; 48:4873–4879.
- Fukuda Y, Seto S, Furuta H, Ebisu H, Oomori Y, Terashima S. Novel seco cyclopropa[c]pyrrolo[3,2-e]indole bisalkylators bearing a 3,3'-arylenebisacryloyl group as a linker. J Med Chem. 2001; 44:1396–1406. [PubMed: 11311062]

- Hamill TG, McCauley JA, Burns HD. The synthesis of a benzamidine-containing NR2B-selective NMDA receptor ligand labelled with tritium or fluorine-18. J Label Compd Radiopharm. 2005; 48:1–10.
- 50. Yadav JS, Reddy BVS, Madan Ch, Hashim SR. A mild and chemoselective dealkylation of alkyl aryl ethers by cerium(III) chloride-NaI. Chem Lett. 2000; 29:738–739.
- 51. Ghiaci M, Asghari J. Dealkylation of alkyl and aryl ethers with AlCl₃-NaI in the absence of solvent. Synth Commun. 1999; 29:973–979.
- Gaster, LM.; Wyman, PA. Preparation of aminoalkyl tricyclic heterocyclecarboxylates as 5-HT₄ receptor antagonists. PCT Int Appl. WO 9417071 A1 19940804. 1994.
- 53. Grossman CJ, Gale JD, Bunce KT, Kilpatrick GJ, Whitehead JWF, Oxford AW, Humphrey PPA. Development of a radioligand binding assay for 5HT₄ receptors in guinea pig and rat brain. Brit J Phamacol. 1993; 109:618–624.
- 54. Chin FT, Morse CL, Shetty HU, Pike VW. Automated radiosynthesis of [¹⁸F]SPA-RQ for imaging human brain NK₁ receptors with PET. J Label Compd Radiopharm. 2006; 49:17–31.

Scheme 1.

Synthesis of ring methyl, halo and nitrile ligands, and *N*-methyl ligands **5–11**.^{*a*} ^{*a*}Reagents and conditions: (i) NXS (X = Cl, Br or I), AcOH; (ii) KCN, CuI, 1,10phenanthroline, DMF, 42 h, 110 °C; (iii) 1) paraformaldehyde, EtOH, 20 h, 60 °C; 2) NaBH₄; (iv) Me₄Sn, CuI, Pd₂(dba)₃, TPP, NMP, 70 °C, 48 h.

Scheme 2.

Synthesis of ring methoxy ligands, **12** and **13**.^{*a*}

^{*a*}Reagents and conditions: (i) CbzCl, NaHCO₃, overnight; (ii) 1) lithium (1-butylpiperidin-4-yl)methanolate, THF, 0 °C, then rt overnight; 2) H_2 , Pd/C.

Scheme 3.

Synthesis of amide (**14**) and *N*-alkyl analogs (**15** and **16**) of **13**.^{*a*} ^{*a*}Reagents and conditions: i) CDT; (ii) (1-butylpiperidin-4-yl)methanamine or lithium (1propylpiperidin-4-yl)methanolate or lithium (1-pentylpiperidin-4-yl)methanolate.

Scheme 4.

Synthesis of ring fluoro ligand, **17**^{*a*}.

^{*a*}Reagents and conditions: (i) NBS, AcOH; (ii) NaOH, CuSO₄; (iii) 1) TMSCHN₂; 2) Cs₂CO₃, 1,2-dibromoethane, DMF, 80 °C, 16 h; (iv) HNO₃ - 50 °C, 16 min; (v) 10% Pd/C, HCOOK, MeOH, 80 °C, 2 h; (vi) 1) CbzCl, aq. NaHCO₃; 2) CDI, MeCN, rt, 2 h; 3) lithium (1-butylpiperidin-4-yl)methanolate, THF, 0 °C, then rt overnight; 4) H₂, Pd/C.

Scheme 5.

Synthesis of fluoroalkoxy ligands, 18 and 19.^a

^{*a*}Reagents and conditions: i) $F(CH_2)_nCl$, Cs_2CO_3 , DMF, rt; (ii) lithium (1-butylpiperidin-4-yl)methanolate, THF, 0 °C, then rt overnight.

Scheme 6.

Synthesis of phenol precursor, 20.^{*a*}

^aReagents and conditions: (i) AlCl₃, NaI, MeCN, reflux, overnight.

Scheme 7.

Synthesis of nitro analog, 21.^{*a*}

^{*a*}Reagents and conditions: (i) (Boc)₂O, DMAP, 50 °C, 1 h; (ii) lithium (1-butylpiperidin-4-yl)methanolate, THF, 0 °C, then rt overnight; (iii) 4M HCl in dioxane, overnight.

[¹¹C]**5**

Scheme 9. Radiosynthesis of [¹¹C]8.^{*a*}. ^{*a*} Reagents, conditions and yield: (i) [¹¹C]MeI, Li₃N, DMF, rt, ultrasound, 10 min. RCY= 11%.

Scheme 10.

Radiosyntheses of [¹¹C]**13** and [¹⁸F]**18**.^{*a*}

^{*a*}Reagents, conditions and yields: (i) [¹¹C]MeI, DMF, 1.0 M (*n*-Bu)₄NOH in MeOH, 80 °C, 5 min, RCY = 36%; (ii) [¹¹C]MeOTf, MeCN, 0.5 MNaOH, heat, 5 min, RCY = 27%; (iii) [¹⁸F]FCD₂Br, MeCN, 0.5MNaOH, 100 °C, 15 min. RCY= 13% from [¹⁸F]fluoride ion.

Chart 1. Current analogs of **1** for 5-HT₄ receptor imaging in vivo.

NIH-PA Author Manuscript

			с (¹		\times \longrightarrow \pm \sim			Z	,		
Compound	\mathbb{R}^1	${f R}^2$	R ³	${f R}^4$	X	u	5 -HT ₄ K_i (mM) ^{a}	$h5$ -HT ₄ $K_{\rm i}$ (nM) ^b	Efficacy ^c	pEC_{50}	cLogDd
1	п	Н	OCH_2	OCH_2	0	7	0.20	2.2 ± 0.3	Inv. Ag.	7.9	3.20
4	Η	Н	OCH_2	OCH_2	0	0		1.4 ± 0.2	Antagonist	ı	1.74
S	CN	Н	OCH_2	OCH_2	0	0	0.45	33 ± 5	n.m.	n.m.	2.59
9	Η	Me	OCH_2	OCH_2	0	0		9.1 ± 0.7	Inv.Ag	8.05	2.37
7	Me	Н	OCH_2	OCH_2	0	0		6.3 ± 1	Antagonist	ı	2.20
8	C	Me	OCH_2	OCH_2	0	0	0.577	2.0 ± 0.2	Inv. Ag.	7.85	3.27
6	Br	Me	OCH_2	OCH_2	0	0		4.5 ± 0.4	Inv. Ag.	8.0	3.36
10	Ι	Me	OCH_2	OCH_2	0	0		7.4 ± 0.5	Inv. Ag.	7.7	3.41
11	CN	Me	OCH_2	OCH_2	0	7		37 ± 5	Inv. Ag.	7.8	2.52
12	Η	Н	Н	OMe	0	7		50 ± 7	Ag.	9.75	1.77
13	Η	Н	OMe	Η	0	7	0.738	2.4 ± 0.3	Antagonist		2.07
14	Η	Н	OMe	Н	z	0		$8,664\pm857$	n.m.	n.m.	0.16
15	Н	Н	OMe	Н	0	-	0.901	17 ± 1	n.m.	n.m.	1.54
16	Η	Н	OMe	Н	0	б		12 ± 1	n.m.	n.m.	2.60

_
_
0
>
2
~
~
<u> </u>
+
_
-
0
_
•
_
<
-
01
<u> </u>
-
1
10
0)
0
$\mathbf{\nabla}$
 .
0
+

NIH-PA Author Manuscript

			لي ال	,			ج ع				
Compound	R¹	\mathbb{R}^2	R ³	${f R}^4$	X	u	5-HT $_4K_{\rm i}~({\rm nM})^{a}$	$h5$ -HT ₄ $K_{\rm i}$ (nM) b	Efficacy ^c	pEC ₅₀	cLogD ^d
17	ц	Н	OCH_2	OCH_2	0	7	0.334	2.1 ± 0.3	Inv. Ag.	8.23	2.42
18	Η	Η	$\rm OCH_2F$	Η	0	0	0.334	17 ± 1	n.m.	n.m.	1.97
19	Η	Η	$O(CH_2)_2F$	Η	0	7	0.215	11 ± 1	n.m.	n.m.	2.30
21	NO_2	Η	OCH_2	OCH_2	0	0		7.8 ± 0.9	n.m.	n.m.	3.04

 a For guinea pig striatal membrane 5-HT4 receptors. Values are averages of triplicate measurements.

J Med Chem. Author manuscript; available in PMC 2011 October 14.

 $b_{\rm Fot}$ h5-HT4 receptors. Binding as say results are averages of triplicate measurements.

^cIn agonist/inverse agonist assay. Ag. = agonist; Inv. Ag. = Inverse agonist; n.m. = not measured.

 d_{cLogD} was calculated with ACD software; estimated errors, are approximately \pm 1.0.

Binding affinities of 5-HT₄ ligands **8**, **13** and **17** forother 5-HT receptors/binding sites.

	Bindir	ng affinities (<i>l</i>	K _i) (nM)
Binding site or receptor	Ligand 8	Ligand 13	Ligand 17
<i>h</i> 5-HT ₄	2.0	2.4	2.1
<i>h</i> 5-HT _{1A}	300	>10,000	>10,000
<i>h</i> 5-HT _{1B}	820	>10,000	>10,000
<i>h</i> 5-HT _{1D}	1,304	5,686	2,856
$h5-\mathrm{HT}_{1\mathrm{E}}$	>10,000	>10,000	>10,000
<i>h</i> 5-НТ _{2А}	1,776	>10,000	>10,000
<i>h</i> 5-НТ _{2В}	66	2,861	168
$h5-HT_{2C}$	685	>10,000	8,363
<i>h</i> 5-HT ₃	1,072	3,511	>10,000
<i>h</i> 5-НТ _{5А}	8,589	>10,000	>10,000
<i>h</i> 5-НТ ₆	489	>10,000	>10,000
<i>h</i> 5-HT ₇	5,702	>10,000	>10,000
hSERT	9,006	>10,000	>10,000

Binding affinities of 5-HT₄ ligands 8, 13 and 17 for non-serotonergic receptors and binding sites.

	Bindir	ng affinities (<i>l</i>	Ki) (nM)
Binding site or receptor	Ligand 8	Ligand 13	Ligand 17
$h\alpha_{1A}$	522	>10,000	87.6
$h\alpha_{1\mathrm{B}}$	>10,000	4,228	9,076
$h\alpha_{1\mathrm{D}}$	2,276	>10,000	>10,000
$h\alpha_{2A}$	2,239	>10,000	>10,000
$h\alpha_{2B}$	671.2	>10,000	773
$h\alpha_{2C}$	556	989	593
β_1 (rat)	>10,000	4,407	>10,000
β_2 (rat)	>10,000	>10,000	>10,000
β_3 (rat)	>10,000	>10,000	>10,000
σ_1 (rat)	60	211	55
σ_2 (rat)	8	148	12.9
BZP (rat brain site)	>10,000	>10,000	>10,000
hDAT	2,020	>10,000	>10,000
hDOR	>10,000	>10,000	>10,000
D ₁ (rat)	2,291	>10,000	>10,000
D ₂ (rat)	220	>10,000	615
D ₃ (rat)	336	6,272	1,011
D ₄ (rat)	43	1,272	316
hD_5	972	>10,000	>10,000
hGABA _A	>10,000	>10,000	>10,000
H ₁ (guinea pig)	2,727	>10,000	>10,000
H ₂ (guinea pig)	>10,000	>10,000	>10,000
H ₃ (guinea pig)	>10,000	1,649	5,038
H ₄ (guinea pig)	>10,000	>10,000	>10,000
hKOR	>10,000	>10,000	>10,000
hMOR	>10,000	>10,000	>10,000
hM_1	>10,000	>10,000	>10,000
hM_2	433	>10,000	>10,000
hM ₃	823	1,095	>10,000
hM_4	760	2,579	>10,000
hM_5	972	4,058	>10,000
hNET	3,226	>10,000	>10,000

RCYs for $[^{11}C]5$ under various conditions.

Solvent	Base	RCY ^a (%)	n
THF	KH ₂ PO ₄	2	1
DMSO	KH_2PO_4	10	2
THF	K ₂ CO ₃ , K 2.2.2	26	3

^{*a*}From [¹¹C]HCN.

NIH-PA Author Manuscript

RCYs of $[^{18}F]$ **18** under various conditions.

Solvent	Base	T (°C)	Time (min)	RCY ^a (%)
MeCN	0.5M NaOH	80	5	1
DMF	K ₂ CO ₃ , 18-crown-6	110	10	7
MeCN	0.5M NaOH	100	15	13

^aOverall from starting [¹¹C]fluoride ion.