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Abstract
α,β-Unsaturated carbonyl compounds are versatile intermediates in the synthesis of
pharmaceuticals and biologically active compounds. Here, we report the discovery and application
of Pd(DMSO)2(TFA)2 as a catalyst for direct dehydrogenation of cyclohexanones and other cyclic
ketones to the corresponding enones, using O2 as the oxidant. The substrate scope includes
heterocyclic ketones and several natural-product precursors.

Molecular hydrogen and oxygen are the quintessential reducing and oxidizing agents,
respectively. While hydrogenation reactions are commonplace in multistep organic
synthesis, aerobic oxidation reactions are seldom used. For example, numerous highly
selective methods and sophisticated catalysts exist for the hydrogenation of alkenes;1
however, complementary aerobic dehydrogenation methods for alkene synthesis are
unavailable2 (Scheme 1A). We recently reported a method for PdII-catalyzed aerobic
dehydrogenation of cyclohexanones to phenols.3 These reactions proceed via a
cyclohexenone intermediate that undergoes further dehydrogenation to the phenol under the
reaction conditions (Scheme 1B). Here, we report the identification of a different Pd catalyst
system that enables selective dehydrogenation of cycloketones to afford enones rather than
phenols. Cyclohexenones and related α,β-unsaturated carbonyl compounds are key
intermediates in the synthesis of pharmaceuticals and other biologically active compounds.4
Their preparation typically requires two or more steps5-7 and/or the use of stoichiometric
reagents, such as 2-iodoxybenzoic acid (IBX)8,9 or 2,3-dichloro-5,6-dicyano-1,4-
benzoquinone (DDQ).10 Catalytic methods for aerobic dehydrogenation of ketones to
enones would provide appealing, atom-economical alternatives to these stoichiometric
method.

The synthesis of enones via PdII-mediated dehydrosilylation of silyl enol ethers was reported
by Ito and Saegusa in 1978.6a In some cases, these reactions have been achieved with
catalytic PdII,6b,c but the use of ≥ 0.5 equiv of PdII is commonly required to obtain good
yields of products.4b,c,11 Methods for direct PdII-catalyzed dehydrogenation of ketones have
been pursued as an alternative to Saegusa reactions; however, previous examples exhibit
quite limited substrate scope.12-15 Both Saegusa-type dehydrosilylation and direct
dehydrogenation reactions are expected to be initiated by formation of a PdII-enolate,
followed by β-hydride elimination to afford the enone product (Scheme 2).16 The resulting
PdII–hydride intermediate can be oxidized by O2 to regenerate the PdII catalyst.17,18 Recent
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advances in PdII-catalyzed aerobic oxidation and C–H functionalization reactions19 provided
useful starting points for our investigation of dehydrogenation catalysts.

Our initial catalyst screening efforts focused on the dehydrogenation of 4-tert-
butylcyclohexanone 1 under relatively mild conditions: 1 atm O2, 80 °C, 12 h (Table 1).20

Use of the recently reported PdII catalyst, Pd(TFA)2/2-N,N-dimethylaminopyridine (2-
Me2Npy), for conversion of cyclohexanones to phenols3 resulted in incomplete conversion
and, as expected, favored formation of phenol 3 over the enone 2 (entry 1). The best
previous catalyst for the conversion of cyclohexanone to cyclohexenone, reported by Tsuji
and coworkers,12e forms enone 2 selectively, but only in 19% yield under these conditions
(entry 2). Improved results were obtained by using catalytic Pd(OAc)2 in DMSO,21,22

affording a mixture of enone and phenol products in 63% and 14% yield, respectively (entry
3). The best results were obtained by using DMSO as a ligand (10 mol %) with Pd(TFA)2 (5
mol %; TFA = trifluoroacetate) in acetic acid (entry 7). This catalyst system led to a 91%
yield of the desired enone 2. Replacing DMSO with other monodentate and bidentate
ligands led to inferior results (entries 13–19; see also Table S1).23 The benefit of using
DMSO as a catalytic ligand, rather than a solvent, has been observed recently in two other
Pd-catalyzed aerobic oxidation reactions, including chelate-directed C–H arylation of
anilides24 and oxidative amination of alkenes.25

The high selectivity for formation of the enone with the Pd(DMSO)2(TFA)2 catalyst system
is noteworthy in light of the preferential formation of phenols with a Pd(TFA)2/2-Me2Npy
catalyst system.3 A comparison of time courses for reactions with the two catalyst systems
(Figure 1) highlights the significant differences between the relative rates of the
corresponding dehydrogenation steps (cf. Scheme 1B). Fitting of the time-course data to a
simple sequential kinetic model, A → B → C,26 reveals that the first dehydrogenation step
is 33-fold faster than the second step when Pd(DMSO)2(TFA)2 is used as the catalyst. In
contrast, the first step is nearly 2-fold slower than the second step with the Pd(TFA)2/2-
Me2Npy catalyst system.27 Further mechanistic studies are ongoing, but the observations
have important implications for use of the present catalyst system in the synthesis of enones
(Table 2).

A number of 4-substituted cyclohexanone derivatives underwent dehydrogenation in good
yields with the Pd(DMSO)2(TFA)2 catalyst (Table 2, entries 1–5). Substrates with electron-
deficient substituents (entries 2 and 3) exhibited somewhat faster rates, and the conditions
tolerated various functional groups, including trifluoromethyl and siloxy groups (entries 2
and 5). The parent cyclohexanone (entry 1) decomposed under the acidic conditions, but a
good yield of enone was obtained by performing the reaction in ethyl acetate.28

Dehydrogenation of 2- and 3-substituted cyclohexanones can afford two enone
regioisomers, and reactions of 2- and 3-phenylcyclohexanone proceeded with modest (~3:1)
regioselectivity (entries 6 and 7). The ability to achieve highly regioselective
dehydrogenation was demonstrated in the reactions of two steroid derivatives (entries 8 and
9), each of which afforded one of two possible enones in excellent yield. In both cases, the
regioselectivity favored formation of the less substituted alkene. No dehydrogenation of the
cyclopentanone fragment was observed in the reaction leading to 5α-androst-1-ene-3,17-
dione (entry 9). The lower reactivity of cyclopentantones was also evident in the
dehydrogenation of indanone, which afforded the corresponding enone in 54% yield, with
toluene as the optimal solvent (entry 10). In contrast, 1-benzosuberone underwent
dehydrogenation in good yield (81%, entry 11). Cycloheptanone and cyclooctanone led to a
mixture of dehydrogenation products, with 2,6-cycloheptadien-1-one and 2,7-
cyclooctadien-1-one formed as the major products in 26 and 25% yields, respectively, based
on GC-MS and 1H NMR spectroscopic analysis.
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Chromones29 and flavones have important biological activity,30 and the saturated
dihydrobenzopyranones are readily prepared via condensation of simple precursors.31

Aerobic dehydrogenation reactions to form chromone, 6-fluorochromone,32 and flavone33

proceeded in good yield entries 12–14 Related N-methyl- and N-Boc-piperidone derivatives
underwent successful dehydrogenation to the corresponding dihydro-4-pyridone derivatives
(entries 15 and 16).

Cyclic enones are common intermediates in the synthesis of natural products, and the
aerobic dehydrogenation reactions described here could find broad utility in this context. For
example, α,α-disubstituted cyclohexenone 4 has been used as an intermediate in the
synthesis of (–)-mersicarpine. This enone was obtained in 85% yield using the
Pd(DMSO)2(TFA)2 catalytic method (eq 1); the original protocol employed stoichiometric
IBX and proceeded in 72% yield.34 Catalytic Saegusa-type6c and stoichiometric IBX8

oxidation methods failed in the synthesis of acyclopentene-α-dione precursor to the natural
product (–)-terpestacin, and stoichiometric Pd(OAc)2 was used instead.35 Application of the
aerobic Pd(TFA)2/DMSO catalyst system to this reaction afforded the enedione in 90%
yield (eq 2).

(1)

(2)

In summary, we have identified a PdII catalyst system that enables direct dehydrogenation of
cyclic ketones to the corresponding enones with a number of important substrates. The high
selectivity for enone rather than phenol formation sharply contrasts other PdII-catalyzed
dehydrogenation methods3,13 and warrants further mechanistic investigation. The ability to
replace stoichiometric reagents (e.g., Br2, organoselenium reagents, and IBX) with O2 as an
oxidant has important implications for large-scale applications of these methods in
pharmaceutical and fine-chemical synthesis.36
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Scheme 1.
Hydrogenation/Dehydrogenation of C–C Bonds (A)and Pd-Catalyzed Dehydrogenation of
Cyclohexanones (B).
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Scheme 2.
Proposed Mechanism for PdII-Catalyzed Dehydrogenation of Cyclic Ketones.
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Figure 1.
Comparison of kinetic profiles of Pd(DMSO)2(TFA)2- and Pd(TFA)2/2-Me2Npy-catalyzed
dehydrogenation of 1. (A) Time course for catalyzed Pd(DMSO)2(TFA)2-catalyzed
dehydrogenation of 1. Reaction conditions: [1] = 0.2 M (0.1 mmol), 5% Pd(DMSO)2(TFA)2
(0.005 mmol), AcOH (0.5 mL), 1 atm O2, 80 °C. (B) Time course for Pd(TFA)2/2-Me2Npy-
catalyzed dehydrogenation of 1.27 Reaction conditions: [1] = 0.2 M (0.1 mmol), Pd(TFA)2
(0.005 mmol), 2-Me2Npy (0.01 mmol), TsOH (0.02 mmol), DMSO (0.5 mL), 1 atm O2, 80
°C. Internal standard = 1,4-dimethoxybenzene. Error bars represent standard deviations from
3 independent measurements.
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