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§ 1. HISTORICAL

In 1880, L. Cailletet made a very important and entirely unex-
pected observation. Upon compressing a mixture of one volume of
air with five volumes of carbon dioxid, in the apparatus employed
by him to liquefy the permanent gases, he observed a portion of the
mixture assume the liquid state under a moderate pressure ; continu-
ing to increase the pressure gradually, that the temperature might
remain constant, he saw the liquid disappear when the pressure had
attained a certain value’. When the pressure was gradually dimin-
ished the liquid reappeared suddenly at the moment of reaching the
pressure under which it had disappeared in the first experiment ; at
any given temperature the meniscus was formed as soon as the pres-
sure had attained a definite value, which was the lower the higher
the temperature. _

The liquid could thus be distinguished from the gas
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“Translated, by J. E. Tsevor, from the author’s French manuseript.

2L,. Cailletet. Expériences sur la compression des mélanges gazeux,
Comiptes rendus 90, 210 (1880). Jour. de phys. (1) 9, 192 (1880).

L. Cailletet et P. Hautefeuille. Recherches sur la liguéfaction des
mélanges gazeux. Comptes rendus, 92, gor1 (1881),
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and finally at 21° the mixture, even when compressed above 390
atmospheres, was no longer liquefied.

Shortly after Cailletet’s communication, and without knowiedge
of it, van der Waals' made an analagous observation. In experi-
mienting with a mixture of nine volumes of carbon dioxid with one
volume of air he found, at different temperatures, the following
values for the pressure 2 under which the lignid began to appear,
and for the pressure 2’ under which it disappeared :

at +29.0°C P=17.5atm P’'=9g5 atm

-+ 20.4 72 103
+19.2 72 106
+ 2.0 72 149

A mixture of seven volumes of carbon dioxid with three volumes of
hydrochloric acid gave the following results :
at +22.5°C P =69 atm P'=115 atm
+ o.0 39 190
At the temperature 31.6°C the two pressures.became equal at go
atmospheres.

On the 18th of March, 1886, Stokes communicated to the Royal
Society of London a posthumous memoir of Andrews.” In this
memoir the illustrious physicist studied the compressibility of mix-
tures of nitrogen and carbon dioxid. Three volumes of carbon
dioxid when mixed with four volumes of nitrogen could not
be liquefied under any pressure, even at the temperature 42°C. On
the other hand a mixture of 6.2 volumes of nitrogen with 1 volume
of carbon dioxid exhibited the following behavior: At 3.5°C the
liquid began to appear under a pressure of 48.3 atmospheres, the
quantity of liquid increasing simultaneously with increase of pres- -
sure ; under a pressure of 1oz atmospheres the gas was reduced to a
small bubble, which finally disappeared. At a higher temperature
the phenomenon observed by Cailletet and by van der Waals was

17, D. van der Waals. Die Continuitdt des gasformigen und fliissigen
Zustandes. Translation by F. Roth, page 143 (Leipzig, 1881).

2Andrews. On the Properties of Matter in the Gaseous and Liquid States
under Various Conditions of Temperature and Pressure, Phil. Trans. 178, 57
(1888), .
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produced ; the liquid after having appeared under a certain pressure
disappeared under a greater one.

A mixture of 3.43 volumes of carbon dioxid with 1 volume of
nitrogen gave the following values for the pressure 2 under which
the liquid appeared and for the pressure £’ under which it disap-

peared : .
+6.3°C P =68.7 atm FP'=113.2 atm
9.9 76.6 107.8
13.2 91.6 103.2

It is seen that the values of 2 and of 2 tend to becomne equal at ¢8
atmospheres for a temperature of about 14°.

In 1883 Jamin' proposed a theory of the curious phenomenon
discovered by Cailletet and by van der Waals. Remarking that the
critical point of a single fluid is the point where the gas and the
vapor have the same density he supposed that at this temperature
the liquid does not cease having properties distinct from those of the
vapor, but that having the same specific gravity as the vapor it re-
mains mixed therewith, forming with it a fluid abparently homo-
geneous. Extending this view to the mixture of two fluids, of air
and of carbon dioxid for example, he supposed the diéappearance of
the liquid mixture under a sufficiently high pressure to be only an
apparent disappearance ; that the liquid mixture continued to sub-
sist although its density had become equal to that of the gaseous
mixture, and that it had diffused into the latter, becoming no longer
distinguishable therefrom.

If this theory be true the liquid must disappear under a pressure
which is the less the more dense the hardly liquefiable gas which is
mixed with the carbon dioxid, and so to make the liquid disappear
it would be necessary to employ a much greater pressure when the
gaseous component is hydrogen than when it is air ; this result fore-
seen by Jamin was verified by Cailletet. According to Jamin’s
explanation of the disappearance of the liquid it would seem that in
continuing to compress the system the density of the gaseous mix-
ture should become greater than that of the liquid and that in con-

Jamin. Sur le point critique des gaz liquéfiables. Comiptes rendus, 96
(1883); Jour. de phys. (2) 2, 389 (1883).
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sequence the liquid should assemble in the upper part of the tube.
Jamin says: «I proposed this second experiment to M. Cailletet,
who has made it; the attempt was unsuccessful but I do not yet
despair »n.

The theory of Jamin presents another difficulty not less serious,
it is not sufficient that two fluids should have the same density
in order that they can form a homogeneous mixture ; the exper-
iménts of Plateau on the statics of liquids removed from the
action of gravity demonstrate this. In order that two fluids initially
separated may mix it is necessary that their molecular attractions
become the same ; at the critical point of a single fluid this condition
is evidently satisfied if it be admitted that the liquid and the vapor
become identical there ; but it is not apparent why two mixtures of
carbon dioxid and of air, the one liquid and the other gaseous,
should have the same molecular attractions at the moment when
they have the same density. Notwithstanding these difficulties of
the explanation proposed by Jamin it was still held by Cailletet and
Colardeau' in 188q.

In 1888 I proposed’ to abandon Jamin’s explanation and to
seek to account for the phenomena observed by Cailletet and van der
Waals through the theory of double mixtures, as deducible from the
principles advanced by J. Willard Gibbs.

Suppose two fluids, 1 and 2, mixed one with the other and form-
ing two layers. ‘The one of these layers is liquid, let it contain a
mass M, of the body 1 and a mass 7, of the body 2 ; the other layer
is gas and may contain a mass 7, of the body 1 and a mass m, of the

body 2.
Let
5o M T
M, §= m, (1)

be the concentrations of these twolayers. Under the constant pres-
sure II at the temperature 7° the thermodynamic potential of the
first is

critique. Ann, chim. phys. (6) 18, 269 (1889).
P, Duhem. Sur la liquéfaction de l'acide carbonique au présence de
I'air. Jour. de phys. (2) 7, 198 (1888).
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M, F(S,II,T)+M,F(S,IT,T),
the thermodynamic potential of the second is
m, (5,11, 7 ) +m, £,(s,11,T),
and the system is in equilibrium when
FAS LT = F (ST,
f I, TYy = F (S, II,T).
If we assign the values of
M, = me,+ M,
N, = m,+ M,
the equations (1) and (2) will yield for each pressure I/ and each

temperature 7 the values of w,, M, m,, M,

If we set
N

b “ 2
X=357
z

i

we shall obviously find
M, = G(X, I, T )M .
If G(X, I1, 7") is positive, this equation will make known the
mass M, of the fluid 1 which is in the liquid state; if G(X, I, T)
is negative, the equation constitutes an impossibility and the gaseous

mixture will remain homogenous. Between these two general cases
appears the particular case where
G(X,ILLT)=o. (3)
This equation defines, for a gaseous mixture of the concentration X
at the temperature 7, the pressure /7 under which the mixture will
be in equilibrium with an indefinitely small drop of the liquid. Or,
if preferred, it defines the dew point 7 of the gaseous mixture hay-
ing the composition X under the pressure II ; whence the name of
the dew line of the mixture of the concentration X, given by me in
a previous memoir' to the line represented by equation (3) when X
is regarded as a constant, 7 as an abscissa and I7 as an ordinate.
To account for the curious fact demonstrated first by Cailletet

P, Duliem. Dissolutions et mélanges. ‘Troisi¢me Mémoire : Les mélanges
doubles, Travaux et mémoires des Facultés de Lille. 3, No. 13 (1893).
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and later by van der Waals it is sufficient to admit that for certain
concentrations X of the gaseous mixture the dew line presents
two ordinates I7, and I, for a same abscissa 7'; when compressed
at the constant temperature 7 the gaseous mixture will remain
homogeneous under pressures less than II ; under the pressure
IT the liquid will appear, the system will contain gas and liquid
together between the pressures II, and I7,; and finally under the
pressure 7, the liquid will disappear not to appear again under any
pressure. When the temperature 7 rises towards a certain tempera-
ure S the two pressures I7,and II, tend towards a common limit 7z, in
such wise that the dew line has a form similar to that represented by

Fig. 1.
My paper was already printed

when there appeared in the
Philosophical Transactions of the
Royal Society of London a pos-
thumous memoir by Andrews',
which Stokes had presented to
this Society on the 18th of March,
1886. In this memoir the illus-
trious discoverer of the ecritical
point studies the compressibility
of a mixture of nitrogen and of
carbon dioxid, finding again the
phenomenon discovered by Cail-

/4

17

7 letet.
A mixture of 3.43 volumes of
‘carbon dioxid with one volume of
nitrogen gave the following values for the pressure /I, under which
the liquid appeared and for the pressure /I, under which it disap-
pear'ed :

+0.3°C  II,=68.7 atm II, =113.2 atm
9.9 76.6 107.8
13.2 91.6 103.2

‘Andrews. On the properties of matter in the gaseous and liquid states
under various conditions of temperature and pressure. Phil. Trans. 178, 37
(1888). :
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It is seen that the values IT, and II, tend to become equal, and
equal to g8 atmospheres for a temperature of about +14°C, in con-
formity with the indications of my theoretical ideas.

It results clearly from the formulas given by me in 1888 that,
in the system compressed at the constant temperature 7, the liquid
mass passes from zero at the pressure I, to return to zero when the
pressure again assumes the value I/,; and that, consequently, in the
interval the liquid mass increases, passes through a maximum, and
tlien decreases. These propositions are such obvious consequences
of my formulas that I did not think it necessary to state them ex-
plicitly. I did not suppose it could be doubted that they result from
my view, yet this doubt has been raised, so it must be considered.
In the observations of Cailletet, of van der Waals and of Andrews
the liquid mass did not approach disappearance by decreasing to
zero amount, the surface separating the liquid and the gas became
simply plane and indistinct when the pressure approached I7,; it then
disappeared and the two seemed homogeneous.

In comparing the results of my theory with the observations of
the experimenters cited I drew attention only to the general accord-
ance between them, without seriously considering this partial lack
of agreement, for it did not seem to me at all improbable that Cail-
letet, van der Waals and Andrews had not really observed states of
equilibrium. In these phenomena, as in the vaporization of a liquid
near its critical point, the wiscosity, negligible under. other circum-
stances, assumes a considerable importance; the equilibrium is
established with an extraordinary slowness, from which must follow
apparent contradictions between-the results of rapidly made experi-
ments and the consequences of a theory treating only systems in
equilibrium. :

P. Kuenen' has concluded from my failure to draw attention to
this divergence in my memoir of 1888 that I did not at that time
admit the existence, between the pressures I7, and I, of a progres-
sive condensation causing the mass of the liquid to increase con-
tinuously from zero and followed by a retrograde condensation decreas-

‘Kuenen. On the condensation of a mixture of two gases. Communica-
tions from the laboratory of physics at the University of Leiden. No. 13 (1894).



280 P. Duhem

ing this mass continuously to zero. 'T'o sustain this opinion would be
to maintain that I did not understand the formulas which I advanced
nor the reasoning through which they were established. Kuenen
could argue from my silence concerning this apparent experimental
contradiction to accuse me of temerity ; but he himself has brought
ne justification, for in taking care to agitate the gaseous mixtures
studied, in order to assure the prompt establishment of states of
equilibrim, he has observed' the appearance of the retrograde con-
densation which stood already written in my formulas.

The object of Kuenen's first paper was to supply experimental
data for an important theory developed by van der Waals®. If the
concentration of the mixture be denoted by s, its density by p, and
its absolute temperature by 7, the inner themodynamic potential of
its unit of mass can be represented by Z(p,s, 7). It has two dif-
ferent values, depending upon whether the mixture is in the liquid
state or in thatof gas; van der Waals admits that these two values
are two different determinations of the same multiform analytic
function. He then introduces the following change of variables :

I X
= S =
P v

0

I—x
which transforms the function Z (p, s, 7°) into a function ¢ (x, v, 7).’
Teaving then the temperature 7 constant and representing in three
rectangular axes the values of the variables x, v and ¢, he proposes
to construct the surface
=1(x,v 7).

With this surface constructed, the properties of the mixture, its
homogeneous‘ constitution or its separation into two layers, can be
studied by the methods which Gibbs has applied to the surface rep-
resenting the inner thermodynamic potential of a single fluid as a
function of its specific volume and of its temperature.

In order to determine the form of the surface ¢, van der Waals
is obliged to introduce numerous hypotheses. In the first place he

*Kuenen. Mésures concernant la surface de van der Waals pour des
mélanges d'acide carbonique et de chlorure de methyle. Arch. néerl. 26, 394
{1892).
zyan der Waals. Théorie moléculaire d'une substance composée de deux
matiéres différentes. Ibid, 24, 1 (1891).
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s'upposes that the specific volume v, the pressure IT and the temper-
ature 7 are united through a relation of the form
RT a
=o'
previously proposed By him for a single fluid; but here a and b,'
instead of being constants, are functions of x, he assigns to them
expressions of the following form :
a=a,(r1—x)42a,x(1—x)+a,x’ ‘
i{ b= b (r—x)+2b, x(1—x)+b, 2, (4)

where a,, 2, a,, b,, b, 6, are six constants.

The expression of I7 as a function of v, x and 7 can serve
through aid of the well known equation

? .
a; zp(x,v, T)+ﬂ= 0,

for the determination of ¢ (x, », 7 ), nevertheless it determines this
function ¢ (x, v, 7°) only with a function of the variables x and T
left arbitrary. ‘'Through a series of considerations, whose precision
leaves something to be desired, van der Waals succeeds in suppress-
ing this function, whereby @ is reduced to the form

h = —log (v—b) ——%‘—{—RT[JC log x4 (1—x) log (1—x)] (5)

where @ and 4 have the values (4). He admits finally that one must
have, for the stability of the mixture, the inequality

azlp aZLP a)lp a

31?3 —( Bxav) >0
but this inequality, taken from Gibbs, has not been established in a
satisfactory manner, as I have elsewhere remarked'.

Notwithstanding the employment of all these hypotheses van

der Waals cannot deduce from the equation of the surface ¢ the
necessity of the curious phenomenon observed by Cailletet and him-
self? he shows only that it is possible to conceive a mode of variation

'P. Duhem. Dissolutions et mélanges. Premier Mémoire : Equilibres et
mouvenient des fluides mélangés. Travaux et Mémoires des Facultés de Lille.
No. 11, g0 (1892).

2van der Waals. /. ¢. 54.
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of this surface with the temperature which accords with that obser-
vation ; in the paper of van der Waals, therefore, as in that pub-
lished by me three years before, the retrograde condensation is
regarded not as a consequence of the theory but as a result which
the theory must be made to represent.

The University of Leyden having set for competition the fol-
lowing question : «Required observations serving to check the
theory of van der Waals concerning mixtures of two substancesn,
Kuenen presented a paper which was awarded the prize'. Inthis work
Kuenen analyzes the mode of variation of the fold devised by van
der Waals to make the general form of the surface ¢ conform with
the phenomenon of retrograde condensation. He shows that the

form of the dew curve must be
that represented by Fig. 2. This
curve rises from left to right to
the point M(9,7) ; it then rises
further, from right to left, up to
the point Z(®,T) where it term-
inates. At temperatures above 9
no condensation is possible; at
temperatures below ® only nor-
mal condensation can appear, and
. finally, at temperatures between
Sand ®a normal condensation

o
e 4 7 followed by retrograde condensa-
FiG. 2.

Ve
Phocaa Zz

S Leeo s

ZI

tion is observed.

The point M (3, n), which had already figured in my exposition,
received from Kuenen the name of point of critical confact ; the point
Z(®,%), which I had not considered at all, is called the poiné of
folding. 'These terms are chosen because of the parts played by
these points in the surface of van der Waals. Kuenen made definite

P, Kuenen. Metingen betreffende het opperolak van van der Waals voor
mengsels van Koolzuur en chlormethyl. Proefschrift. Leiden (1892). Measure-
ments relating to the surface of van der Waals for mixtures of carbonic acid
and methyl chloride. Arch. néerl. 26 (1892).
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the idea of the point of folding by remarking' that iz this point the
liquid mixture and the gaseous mixtuve become identical.

One is led in fact, by generalization of the theories relative to
the continuity of the liquid and gaseous states, to conclude that the
two functions £,(s,/1, 7°) and 7,(s,II, 7") are two branches of the same
multiform analytic function ; and that thisis also true of the functions
£(s,J1,T) and F,(s, II,7). In every point (§,2,0) ofa given ¢rit-
‘fcal line, the two functions f, and /&, unite and are then prolonged in
a single function ; the two functions 7, and £, unite likewise to be
prolonged in a single analytic function. In the (7, II)-plane the
critical line of the space is projected as a plane critical line uniting
the critical point C, of the pure fluid 1, (s=o0), with the critical point
C, of the pure fluid 2,(s=c ). I 'developed® in 1893 this notion of
the critical line and proposed, as a consequence, to give the name
critical point, of the gaseous mixture of the composition X, to the
point Z (2, @) where the dew curve of this mixture terminates,—to
the point termed by Kuenen the point of folding.

How, now, does the dew line vary when the concentration X of
the gaseous niixture varies from #
zero to infinity ? I have supposed
that, for every concentration X,
X,, sufficiently near zero or infin-
ity, the dew curve rises continu-
ously from left to right as do
the curves X, X', X X', of the
figure 3 ; for such a concentration
the retrograde condensation could
not appear. This phenomenon
would appear only for the con-
centrations Z comprised between
a lower limit ¥, and an upper
limit Y, ; to such a concentration would correspond a dew curve like
ZZ'. 'To the two limiting concentrations ¥, and YV, there would

Fic. 3.

‘Kuenen. /. ¢. No. 42.

2P, Duhem. Dissolutions et mélanges. Troisiéme Mémoire : Les mélanges
doubles. Chap. 2and 3. Travaux et Mémoires des Facultés de Lille. No. 13.
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correspond dew curves Y,Y 'n ¥,Y', which would cut the critical
line in points Y, Y, where they would have vertical tangents,

. Kuenen' has shown that this shape of the dew curves is not in
conformity with the geometric theory of van der Waals ; that what-
ever the composition X of the gaseous mixture, the dew curve has
the shape which is assigned in Fig. 3totheline ZZ’, such that for every
composition of this mixture the retrograde condensation is observa-
ble. He has sought to demonstrate, further, that this view follows-
from the principles posited by me ; to supply this demonstration he
has proceeded much as follows : —

He remarks very justly at the outset that to the dew curve of
the gaseons mixture having the concentration X—z. ¢., the curve in-
dicating at each temperature 7 the pressure II under which the
mixture ceases to be homogeneous or comniences to be so—one must
join the boiling curve of the liquid mixture of the concentration X,
7. e., the curve which indicates under what pressure /7 at each tem-
perature 7 the liquid homogeneous mixture of the concentration X
can be in equilibrium with an indefinitely small gaseous bubble.

The equation of the boiling line is then obtained by the pro-
cedure which yields the equation of the dew line; it suffices to per-
mute the functions /, and /, as well as the functions f,and 7~,. If
it be recollected that the functions £, and /7, are but two distinct de-
terminations of two multiform analytic functions, and that the same
is true of the two functions f, and 7, it is seen that the dew line of a
_gaseous mixture having the concentration X and the boiling line of
a liquid mixture of the same concentration X are but two different
branches of the same curve, and it is seen further that these two
branches must meet at the same point of the critical line C,C,.
Kuenen has succeeded in deducing frqm my formulas that the dew
line and the boiling line must have the same tangent at this critical
point. ‘

Do these two lines meet at the critical point so as to formn a single
analytic line, ov are they mutually tangent in suck wise as together fto
form a curve whose critical point is a cusp ? DBoth hypotheses are
admissible.

Kuenen. On the Condensation of a Mixture of two Gases. Communica-
tions from the Laboratory of Physics at the University of Leiden. No. 13 (1894).
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Of these two hypotheses Kuenen adopts the first. The critical
line C,C, is then, as can easily be shown, tangent to the two lines,
the dew curve and the boiling curve, at the point where the latter
meet. ‘The dew line X} and the boiling line Z} form thus a curve
as represented by Fig. 4.

In the region X¥C, the mixture in equilibrium is in the state
of homogeneous vapor, in the,
region situated beyond the crit-
ical line C,C, it is in the state of
homogeneous gas, in the region
C,YZ it.is in the state of homo-

l'p

geneous liquid, and in the re- .
gion XYZ, finally, it is partly in ' Y
the state of vapor, partly in that
of liquid.

When the concentration X
tends toward zero or towards in-
finity the two branches of the
curve, XV, Z7, tend towards each other in such wise as to ap-
proach either the curve [7C, of the vapor pressures of the liquid
1, or the curve VV,C, of the vapor pressures of the 1iquid 2 ; each of
these curves must be considered in the actual problem as a dowuble
line, playing at the same time the parts of dew line and of boiling
line. One of the two lines, Z¥, XV, must, in a part of its extent,
be met twice by a same ordinate ; Kuenen admits that this property
belongs always to the line X'V, now if this were true tke phenom-
enon of vetrograde condensation could -be observed for every concentra-
tion of the gaseous mixture between zervo and infinity.

This conclusion of Kuenen is seen to rest upon two assumptions
which are not above objection, for the recent experiments made by
this physicist' on the liquefaction of mixtures of ethane and of per-
oxid of nitrogen relate to a case where the dew line and the boiling
line lie too close together for it to be possible to draw from the exper-

=

..Q'XN

4 Fa

Fic. 4.

Kuenen. On the Condensation and the Critical Phenomena of Mixtures of
Ethane and Nitrous Oxide. Communications from the Laboratory of Physics of
the University of Leiden. No. 16 (18g5). Phil. Mag. [5] 40, 173 (1895).
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iments any very positive conclusion either for or against the exist-
ence of a cusp at the junction of the two. Now, if the dew line and
the boiling line do meet to form a cusp, my hypothesis concerning
the form of the dew lines would be perfectly admissible.

It has therefore seemed to me to be worth while to investigate
whether the general theorems which I have established concerning
double mixtures will not furnish a means of elucidating the comn-
tested points of this problem ; the results which I have reached, and
which are set forth in the present paper, confirm Kuenen’s view—
much to my gratification.

§ 2. CONDENSATION AND RETROGRADE CONDENSATION

Let us consider the critical line of a mixture of two bodies 1
and 2 ; this line connects the critical point C,('T,,®,) of the fluid 1 with
the critical point C,(%,,®,) of the fluid 2.

We shall suppose, in the first place, that, whatever be the concen-
tration of the mixture, its critical pressure will lie between the critical
pressures, T, and 2, of the fAuids 1 and 2. .

There is nothing necessary in this hypothesis, but it holds good
in every case which has been experimentally studied. If a mixture
should be found whose behavior does not accord with it, the follow-
ing reasoning must, for that mixture, be replaced by analogous but
more complicated expressions.

We shall not make an analogous hypothesis concerning the
critical temperatures of mixtures, experiment in fact, supplies mix-
tures whose critical temperatures lie below the critical temperatures
of the component fluids ; such is, according to Dewar', a mixture
of CO, and C,H, and, according to Kuenen’, a mixture of NO, and
C,H,.

The hypothesis just formulated is contained, at least in so far
as all particular consequences are concerned, ‘in the following
hypothesis, which likewise is true for all mixtures yet experiinent-
ally studied, and which is taken as the point of departure of the
reasoning to be adduced :

Theve exists one and only one mixture of the two fluids r and 2

Proc. Roy. Soc. 30, 543.
2Communications from the Laboratory of Leiden. No. 16, page 21,
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having for its critical pressure a certain pressure L lying between ‘:I‘l
and X

We designate the concentration of this mixture by X (‘2) and its
critical temperature by &('2) ; ®X(T) and @(T) are, accordmg to the
foregoing hypothesis, uniform functions of 2.

There exists an analytic function, continuous but multiform, of
the three variables x, [T, 7,—say ¢ (x, [T, 7”)—which coincides, accord-
ing to the case, either with the function f,(x,1I, 7°) or with the func-
tion /£, (x,1I,7). Let us select a constant pressure X, lying be-
tween ®, and I, and examine the manner in which the function
(%, 2, 7") varies with the concentration x and the temperature 7.

At temperatures 7, above
®('1), the mixture of the con-
centration x is homogeneous,
whatever value x may have ;
if the pressure® and the tem-
perature 7 are maintained
constant, the function y=—=,
(x,2,7") is 'a coustantly and
continuously decreasing func- :
tion of x, represented, from x FIc. 5. _
=o0tox=+o, byananalyticcurve such as &,¢, (Fig. 5).

At temperatures below ©('2) it can happen that the mixture hav-
ing the gross concentration x separates into two layers, the one
liquid the other gaseous, of different concentrations ; for an assigned
value 7 of the temperature, the pressure ¥ remaining fixed, the con-
centration &§ of the liquid layer and the concentration X of the gas-
eous layer have deterniinate values.

In certain cases the two preceding propositions must be replaced .

5’FW¢;

P
El
|
1 N
! 1
! 1
1
' '
} |
'
1 \
L J
x X

by those obtained through interchanging the words: femperatures
above O(L), and temperatures below G(2). We shall commence by
studying the case just defined, which shall be ternied the First Case ;
we shall then pass to the inverse or Second Case.
Suppose, to fix our ideas, that

2, >0,
we admit then that continually

X>&.
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When X varies from o to &, the function #,(x,2,7") coincides with
the function #,(x,2,7"); when x varies trom X to + «, the function
#,(x,2,7T) coincides with the function £ (x,%, 7). If it be observed
that
-j;(X,‘;P, T) = E(g,‘i, 7y,

it is seen that the first branch of the function is represented by the
descending curve /, /7 (Fig. 5) and that its second branch is repre-
sented by the descending curve A/, the two points M, with the
abscissa &, and /V with the abscissa X, have the same ordinate.

Finally, if the temperature 7" is equal to ©(2), the curve rep-
resented by the equation

y=1.(x2,6)

is a curve ¥ ¢, (Fig. 5), which falls continuously from left to right,
save at the point 2, with the abscissa & (), where it presents a
point of inflection with a horizontal tangent.

Thus, under the given pressure X, at each temperature 7, there
is an entirely determinate curve

y=%(x77),
which may be termed the Isotherm relative to the temperature 7.

If for the curve
y=V¥,(x2,7),
there be substituted that represented by the equation
y=Y¥(x3,7)+G(T),

where G(7") is an arbitrary function of the temperature 7, there is
obtained a new curve which is deduced from the first by displace-
ment of all its points, in the direction parallel to Oy, through the
same distance G( 7). One can evidently make disposition of the
function G'(7°) in such manner that the isotherms which correspond
to any two different temperatures may have no common point at a
finite distance, and that to the temperatures 7,7, 7",

all lying below ®(2) and arranged in order of increasing magnitude,
there correspond straight lines N, M'N'M"N", . . . whose
ordinates are also arranged in the order of increasing magnitude (Fig.
6). Such a disposition greatly facilitates the discussion, it shall be
supposed in the following to be always realized. '
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T'he curve which is the locus of the points M, W', M, .
and that which is the locus of the points NV, V' N”, . . . termi-
nate at the point 2, from analogy with the teachings of the theory
of the continuity of the liquid
and gaseous states, regarding ’
the isotherms of a single fluid,
we are led to admit the following
hypothesis—upon which this en-
tire discussion rests :

HyrorHuESsIS.—7he curve
which is the locus of the points

MM M, . . . and that
which is the locus of the points
N, N N" . . . havein P F16. 6.

a common tangent parallel to Ox,—they extend each other.

The line uP» formed by these two curves (Fig. 6) possesses re-
markable properties.

1st. ‘Take a point #, whose abscissa is x, #n the region
¥,Pu. Through this point there passes a line

y=¥.(x2,T),

corresponding to a certain temperature 7°; wunder the pressure 2, at
the temperature T, the mixture having the total concentration x is in
the homogencous liguid state.

2d. Take a point =, whose abscissa is x, in the region vPib,.

Through this point there passes a line
y=1x,3,7),

corresponding to a certain temperature 7°; under the pressure 2, at
the temperature T, the mixture with the total concentration x is in the
homogeneouns gaseous state. .

3d. Take finally a point p, whose abscissa is x, in the interior
region of the curve uPv. Through this point draw :iparallel to Ox
this line will meet the curve wPv in two points ¥, &, where termi-
nate two branches of the same curve

y=9,(x,2,7),
corresponding to a certain temperature 7. This curve corresponds
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to a certain temperature 7. Under the pressure 3, at the tempera-
ture T, the mixture of the fotal concentration x is partly in the liguid
state and partly in that of vapor.
The foregoing propositions can be enunciated briefly in the
statement that, wnder the pressure I,
1st.  Every point of the vegion W,Pu represents a homogeneous
liguid state ;
od.  Euwery point of the region W, Pv represents a state of homo-
geneous vapor ; ‘
3d.  Euvery point of the region uPv represents a heterogeneous
state.
Let us consider the part of the curve uP» (Fig. 7) in the neigh-
borhood of the point 7, whose abscissa is X ().
We will take a value x,, of
x, in the neighborhood of X (2)
and above it, from the abscissa x,
we will draw a parallel to Oy ,
P this parallel meets the curve uPv
at a point V, which belongs to the
isotherm for a certain tempera-
\ ture 7,, lower than ©(2). Ac-
: cording to the preceding theor-
5 ems, 7, << ®(2) and T will be
% = @ the abscissa and the ordinate of
F16. 7. a point of the dew line of the
mixture having the concentration x, > X(®?). Further, if we set

y

T
!
|
I
!
1
1
'
1
1
|
L

0

o] SNSRI

XP=1Y, x, N=y,
the ratio
Y—y,
X —x,
will be indefinitely small. But it is clear that ( ¥—y.,) is, in general,
of the same order of magnitude as [®(2)—7}], in such wise that
the ratio
ON)—7,
X (D)—x,

will be indefinitely small.
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We will take, next, a value x, of x, near to (%), and less
than &(2) ; at the abscissa x, we will draw a parallel to Oy ; this
parallel meets the curve uPv in a point A belonging to the isotherm
for a certain temperature 7, lower than ®(2). According to the
preceding theorems, 7, << ©(ZT) and ¥ will be the abscissa and ordi-
nate of a point of the boiling line of the mixture having the concen-
tration x, <X X(2). One readily sees, further, that the ratio

O)—7,

X(2)—x,
is indefinitely small. It will be seen that these theorems involve the
correctness of the propositions under discussion.

Let us take (Fig. 8) the
temperature axis as axis of ab-
scissas and the pressure axis as
that of ordinates; let C(©®,2) be
a point of the critical line, cor- M o
responding to the value ¥ of the .
concentration. From the point C, |
we will draw a parallel 2C to :
the temperature axis. That part |
of this line 2C lying beyond the , +
point C meets, in the neighbor- Fic. 8.
hood of the point C, neither the dew line nor the boiling line
for a mixture whose concentration lies near &. On the con-
trary, from every point J7, near to the point C on the line ®C and
lying to the left of the point C; there passes a dew line for a mixture
of the concentration x,, greater than & and very near it ; and a boil-
ing line for a mixture & of the concentration x,, less than % and
very near it ; furthermore the two ratios

T

MC MC

El —_——
x,—X x—X

tend towards zero when the point 47 tends towards the point C.
Without further extending this demonstration it may be

remarked that to every value ¥ of the concentration there corre-

sponds one and but one point C of the critical line, and the reverse ;
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when & varies continuously from zero to unity the point C traverses
the critical line from the point C, the critical point of the pure fluid 1,
to the point C,, the. critical point of the pure fluid 2. If (7, be
two points lying near the critical line, corresponding to the values

G "/__: -
%, %7, of the concentration ; the ratio :CTE”A will tend, in general,

towards a finite limit when the two points C,C’ tend to come
together,
On the other hand we have supposed that
Q>0

and also that there exists one and but one mixture having for its
critical pressure some pressure € lying between ¥, and 2,; it
results from this, as is readily seen, that if the concentration of the
mixture rises continuously from zero.to one, the critical pressure
increases continuously from 2, to 2.

These preliminaries settled
let us cousider a pressure 2 ly-
ing between I, and 1, ; the con-
stant ordinate T parallel to O7
(Fig. g) meets the critical line in
one and but one point C, which
is the critical point of a mixture
having the concentration &.

Let us takea point /7 indefin-

itely near the point C and lying

7 to'the right of it. Through this
Fre. 9. point passes the dew line of the

mixture with the concentration «x,, indefinitely near to X, and

ua

]

greater than &

After what has just been shown, the mixture with the concen-
tration x, will have as critical point a point y,, with an ordinate ¥,
greater than €. The line y,C will be an element of the critical line,
and the line ¥, /7 an element of the dew line, of the mixture having
a concentration x,.

The ratio x—/”_C—% is infinitesimal ; and, on the other hand, it has
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. oxa—% i . MC
been shown that the ratio = is finite ; but the ratio —— is
]/1 . yl

then infinitesimal. ‘Therefore the dew line MC of the mixture having
@ concentration x, is tangent to the critical line y C, at the critical point
v, of this mizxture, and, furthermore, the dew line falls as it sets out
Jrom ifs point of contact with the cviticalline. Since X is any concen-
tration whatever, and since the same is true of the concentration x,,
which lies indefinitely near it, the preceding theorem is general. It
may be demonstrated in an analogous manner that fhe dew line of
any mixiure whatever is tangent to the critical line at the critical point
of this mixture, and that the dew line rises as it leaves this point.

These theorems involve the
correctuess of the propositions /7
advanced by Kuenen, the dew
line and the bhoiling line of a
mixture with an assigned concen-
tration meet at and continue to-
gether from the point where they
touch the critical line.

At temperatures far from the
critical temperature the dew line M R
and the boiling line both rise
from left to right, and the boil-
ing line of the mixture having a
given concentration lies above
the dew line of this mixture ; one
must conclude that together they
form in general a line having the O i T
aspect represented in Fig. 10. FI1G. 10.

This line can have at ¢ a tangent parallel to the axis 07, and
at R a tangent parallel to the axis OF. The critical point C can not
lie upon the branch of the curve M, for, in setting out from this
point, the dew line rises and the boiling line falls, which is contrary to
what has just been demonstrated ; only two cases therefore can ap-
pear: either the critical point lies between the points O and &, or it
lies upon the branch VA&,




294 P. Duhem

A.—The critical point C lics between the points Q and R (Fig. 11).

Let us suppose that the mixture be compressed at constant tem-
perature.  If the temperature is lower than the critical temperature ©,
the mixture is at first entirely in the gaseous state ; when the pres-
sure becomes equal to the ordinate of the dew line, the first drop of
liquid appears ; that portion of the mixture which is in the liquid
state increases with the pressure ; ‘when the pressure becoines equal
to the ordinate of the boiling line the mixture is entirely in the
liquid state ; it then remains hotmogeneous however great the pres-
sure may become.

If the temperature lies be-
tween the critical temperature ©
and the abscissa 7 of the point
R, the mixture is at first in the
state of a homogeneous gas ;
when the pressure becomes equal
to the first ordinate of the dew
line the first drop of liquid ap-
pears ; that fraction of the mix-
ture which is in the liquid state
is at first an increasing function
of the pressure; it then passes
through a maximum and be-
comes a decreasing function of
the pressure ; when the pressure
becomes equal to the second ordinate of the dew curve, the last drop
of liquid disappears; the mixture remains then in the state of homo-
geneous gas however great the pressure may become. This is the
experimental result of Cailletet.

If the temperature is greater than the abscissa T of the point R
the mixture will vemain homogeneous under all pressures.

Let us now suppose Zfial the mixture be taken in a homo-
geneous liquid state and that it be healed under constant pressure.

If the pressure is less than the critical pressure 2, the mixture
will remain at first in the state of a homogeneous liquid ; when the
temperature becomes equal to the abscissa of the boiling line the
first bubble of gas will appear ; that fraction of the mixture which

Vzg

Fic. 11.
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is in the gaseous state will increase with the temperature ; at the
moment when the temperature becomes equal to the abscissa of the
dew line the last trace of liquid will disappear; the mixture will
then remain homogeneous at all temperatures.

If the pressurc lies between the critical pressurve X and the ordi- -
nate w of the point Q the mixture will remain at first in the state of
a homogeneous liqguid. When the temperature becomes equal to
the first abscissa of the boiling line, the first bubble of gas will ap-
pear ; that fraction of the mixture which is in the gaseous state is at
first an increasing function of the temperature; it passes then
through a maximum and becomes a decreasing function ; when the
‘temperature becomes equal to the second abscissa of the boiling
line the last trace of gas disappears; the mixture then remains
homogeneous at all temperatures.

If the pressuve is greafer than the orvdinate w of the point Q the
mixture is homogeneous at all temperatures.

B.——The critical point C lies upon the branch NR (Fig. 12).

Let us suppose that the
mixture be compressed at con-
stant temperature,

If the temperature is lower
than the critical temperature
®, the mixture is at first in
the state of a homogeneous

o

gas; when the. pressure be- | M
comes equal to the ordinate
of the dew line, the first drop
of liquid appears; that frac- N
tion of the mixture which is in
the liquid state iy an increas-
ing function of the pressure ;
when the pressure becomes
equal to the ordinate of the boiling line the mixture is entirely
in the liquid state ; it remains then homogeneous under all pressures.

If the temperature lies belwecn the critical temperature © and the
abscissa T of the point R, the mixture, under low pressures, is in
the state of a homogeneous gas; at the moment when the point

Q

S

o}

T
FiG. 12,
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(7, II) leaves the critical line it passes without discontinuity into
the state of a homogeneous liquid ; the pressure, continuing to rise,
becomes equal to the first ordinate of the boiling line, and at this
instant the first bubble of gas appears ; that fraction of the mixture
‘which is in the gaseous state is at first an increasing function of the
pressure ; it passes next through a maximum and then becomes a
decreasing function of the pressure; when the pressure beconies
equal to the second ordinate of the boiling curve, the mixture is
again entirely in the liquid state; it remains then homogeneous
under all pressures,

If the temperature is higher than the abscissa v of the point R the
mixture remains homogeneous under all pressures. '

If the mixture be heated under constant pressure the phenomena
observed will be the same as those noted under A.

Let us pass now to the Second Case, as defined upon page 287
without repeating, for this case, the reasoning which has been de-
veloped concerning the first. It will suffice to indicate the result to
which the reasoning leads : :

The dew line and the boil-
ing line meet at the critical point
in such wise as to prolong each oth-
ery further, the dew line in selting
out from the critical point vises,
while the boiling line descends
and, finally, af the critical point
these two lines are tangent fo the

/4

critical line.

Let us consider (Fig. 13) the
line QRN formed by the boil-
ing line and the dew line. Ac-
cording to the foregoing propo-
sition the critical point C lies cer-
tainly upon the branch 47Q.

Let it be supposed that the gaseous mixture is compressed at a
constant lemperature; exactly the same pherniomenon will be observed
as under the first case, A.

Suppose however that the system is heated under a constant pres-

F1G. 13.
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sure. If the constant pressure is less than the critical pressure 2, the
mixture is at first entirely in the liquid state ; the temperature rises
and reaches a value equal to the abscissa of the boiling line, and at
this moment the first bubble of gas appears; that fraction of the
mixture which is in the gaseous state increases with the tempera-
ture ; when the temperature becomes equal to the abscissa of the
dew curve the last trace of liquid disappears from the system, which
then remains in the state of a homogeneous gas.

If the constant pressure lies between the critical pressure L and the
ordinate mw of the point Q, the mixture is at first homogeneous and
gaseous ; the temperature, rising, reaches a value equal to the first
abscissa of the dew curve, and at this moment a drop of liquid ap-
pears in the system ; the mass of the liquid is at first an increasing
function of the temperature ; it passes then through a maximum
and becomes a decreasing function ; when the temperature becomes
equal to the second abscissa of the dew line the last trace of liquid
disappears from the system, which then rémains in the state of a
homogeneous gas. [f the constant pressure is greater than the ordi-
nate w of the point (), the mixture remains homogeneous at all tem-
peratures.

The three arrangements represented in the figures 11, 12 and
13 are realized for the mixture of ethane and of nitrous oxid recent-
ly studied by Kuenen ; one has to do with either one or another of
these arrangements according to the value of the concentration.

It should be remarked, however, that these results can not be
deduced solely from the general theorems concerning double mix-
tures, they require in addition a special hypothesis which has here
been carefully emphasized.

It seems to me that these considerations, joined to the researches
of van der Waals, to those of Kuenen and to my own early investi-
gations, clear up completely the peculiarities which appear in the
liquefaction of a mixture of two gases.

Sept. 7, 1896.



