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Reactive Molecular Dynamics Simulations to Understand Mechanical 

Response of Thaumasite under Temperature and Strain Rate Effects 

 

 

Shahin Hajilar †, Behrouz Shafei †,‡*, Tao Cheng §, and Andres Jaramillo-Botero §* 

† Department of Civil, Construction and Environmental Engineering, Iowa State University, Ames, IA 50011 
‡ Department of Materials Science and Engineering, Iowa State University, Ames, IA 50011 

§ Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125 

 

ABSTRACT 

Understanding the structural, thermal, and mechanical properties of thaumasite is of great interest to the 

cement industry, mainly because it is the phase responsible for the aging and deterioration of civil 

infrastructures made of cementitious materials attacked by external sources of sulfate. Despite its 

importance, the effects of temperature and strain rate on the mechanical response of thaumasite have 

remained unexplored to date. In this study, the mechanical properties of thaumasite are fully characterized 

using the reactive molecular dynamics (RMD) method. With employing a first-principles based reactive 

force field, the RMD simulations enable the description of bond dissociation and formation under realistic 

conditions. From the stress-strain curves of thaumasite generated in the x, y, and z directions, the tensile 

strength, Young’s modulus, and fracture strain are determined for the three orthogonal directions. During 

the course of each simulation, the chemical bonds undergoing tensile deformations are monitored to reveal 

the bonds responsible for the mechanical strength of thaumasite. The effect of temperature increase is found 

to accelerate the rate of bond breaking and consequently degradation of mechanical properties of 

thaumasite, while an increase in the strain rate leads to their slight enhancement.  
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2 

1. INTRODUCTION 

Thaumasite is a calcium silicate carbonate sulfate hydrate phase, known as the main product and indicator 

of thaumasite sulfate attack (TSA) in cementitious materials.1-4 Cementitious materials exposed to sulfate 

bearing solutions from outside environments, such as soil and water, show significant deterioration over 

time. This occurs through the attack of external sulfate ions to the calcium silicate hydrates (CSH), which 

are the main binding agents in ordinary and sulfate-resisting Portland cements. As a result of such chemical 

reactions, thaumasite is precipitated. The formation of thaumasite substantially reduces the binding capacity 

of the cement paste, transforming it into a mushy and incohesive mass.5 In addition, the replacement of 

CSH with thaumasite can cause significant stresses and strains, leading to the expansion of the paste, 

formation of cracks, and eventually spalling and degradation of civil infrastructures made of concrete.6 

While the TSA can be destructive at any finite temperature, it has been observed that the TSA is greatly 

accelerated at temperatures below 0 °C.7-8 To address the long-standing deterioration issues associated with 

the TSA to cementitious materials, an in-depth understanding of the structural, thermal, and mechanical 

properties of thaumasite is essential.  

Jacobsen et al.9 studied the thermal expansion of thaumasite between 130 and 298 K using single-crystal 

X-ray diffraction. Over this temperature range, no phase transition was observed and most structural units 

demonstrated positive thermal expansion coefficients. Moreover, it was revealed that contrary to the 

carbonate groups with zero thermal expansions, the sulfate tetrahedra and the silicate octahedra exhibit 

negative thermal expansions. The high-temperature study of the thaumasite’s structure was conducted by 

Martucci and Cruciani10. An in-situ, time-resolved synchrotron power diffraction between 303 and 1098 K 

was used for this purpose. It was observed that the cell parameters of thaumasite increased linearly with 

temperature up to 393 K. As a result of the complete removal of the crystallization water molecules, 

however, the crystalline structure of thaumasite collapsed at close to 417 K, turning it into an amorphous 

structure. By further increase of temperature, anhydrite and cristobalite crystalized at 953 K. In a separate 

effort, the structure of thaumasite was characterized in detail using single-crystal neutron diffraction and 

Raman spectroscopy by Gatta et al.11. The stability of the structure of thaumasite was attributed to the 

geometry of hydrogen bonds that connect the main structural units. This study found that by decreasing the 

temperature, although the hydrogen bonds become shorter, the sulfate tetrahedra expand, indicating a 

negative thermal expansion at the molecular level driven by the shrinkage of the hydrogen bonds between 

the [Ca3Si(OH)6.12H2O]4+ columns. Most recently, Scholtzová et al.12 performed Brillouin spectroscopy 

experiments and ab initio simulations to generate the full elasticity tensor of thaumasite. From the calculated 

elastic constants, the bulk, shear, and Young’s modulus, as well as Poisson’s ratio, of thaumasite were 

estimated. This is the only study, to our knowledge, that has characterized the mechanical properties of 
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thaumasite in the elastic range. There is, however, no evidence to understand the expansion, loss of strength, 

and crack formation in thaumasite observed in the experiments due to the TSA. The current study focuses 

on filling this critical research gap. 

Prior studies have demonstrated the capabilities of the reactive molecular dynamics (RMD) method to 

calculate the mechanical properties of cementitious crystalline materials.13-14 In this study, first-principles 

based ReaxFF RMD15 simulations are performed to investigate the mechanical characteristics of 

thaumasite. The ReaxFF force field from Liu et al.13 is used, albeit complemented with C-Ca bond 

interactions16-17 prepared using the GARFfield parameter optimization framework.13 To this end, the 

crystalline atomistic structure of thaumasite is built and then deformed uniaxially in the x, y and z directions 

of the simulation cell. Further to recording the stress-strain data, a chemical bond analysis is performed on 

the resulting atomistic trajectories to correlate the stretching of chemical bonds with the stresses obtained 

by the RMD simulations. From the stress-strain curves, the tensile strength, Young’s modulus, and fracture 

strain of thaumasite are determined. In the next step, an extensive set of RMD simulations are performed 

to investigate the sensitivity of the mechanical properties of thaumasite to temperature and strain rate 

effects. From the results generated at a wide range of temperatures and strain rates, the relationships 

between the tensile strength of thaumasite and these two important factors are identified. The outcome of 

this study contributes to enhance the understanding of the key mechanical properties of thaumasite under 

different thermal and loading conditions, which can be further used to develop constitutive models for 

cementitious materials at various length scales.    

2. COMPUTATIONAL DETAILS 

Crystalline Structure of Thaumasite. Thaumasite (Ca3[Si(OH)6.12H2O)].CO3.SO4) is a rare mineral, 

which has a hexagonal structure with 122 atoms in the unit cell and the space group of P63. Since more than 

half of the weight of this crystalline structure is from water and hydroxyl, thaumasite has a relatively low 

density of 1.88 g/cm3. The crystalline structure of thaumasite (Figure 1) was first determined by Edge and 

Tylor18 and later refined by other studies, such as Effenberger et al.19 and Gatta et al.11. Thaumasite is the 

only known mineral that possesses silicon atoms coordinated by six hydroxyl groups stable at (or close to) 

ambient pressure-temperature conditions. Using infrared spectra, Moenke20 was the first study that 

recognized that thaumasite contains octahedral silicon atoms. It was later confirmed by 29Si NMR 

spectroscopy that the silicon atoms in thaumasite are six-coordinated.21-22 This is a unique feature as other 

silicate minerals that make up the most of the earth’s crust contain silicon atoms coordinated to four oxygen 

atoms. The other two silica compounds that contain fully hydrated six-fold coordinated silicon atoms, 

however, have been found in the synthetic high-pressure phase D, MgSi(OH)2O4
 23-24 and MgSi(OH)6.

25 In 

thaumasite, six hydroxyl groups are coordinated to Si4+ and result in Si(OH)6
2- anions, which are balanced 
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by Ca2+ cations. These anions and cations are surrounded by twelve water molecules form columns of 

[Ca3Si(OH)6.12H2O]4+, which lay parallel to the c axis of the unit cell. These columns are interconnected 

only through hydrogen bonding with the SO4
2- and CO3

2- groups located in the interstitial positions in the 

channels between the columns. The sulfate and carbonate groups that neutralize the excess charge of the 

system alternate along the c axis of the unit cell and are fully ordered.  

Mechanical Properties from RMD Simulations. The RMD simulations are conducted using the large-

scale atomic/molecular massively parallel simulator (LAMMPS) package.26 The triclinic unit cell of 

thaumasite is built in the LAMMPS input format using the latest crystallographic data available in the 

literature.11 Since thaumasite crystallizes in a trigonal lattice (a, b, and c axes), the simulation cell is 

generated by extending the unit cell of thaumasite three times in the a, b, and c directions. The simulation 

cell of thaumasite contains a total of 3,294 atoms. The interatomic interactions in the study are described 

using the ReaxFF force field developed by van Duin et al.15 ReaxFF partitions the total energy of 

interactions similar to those found in classical non-reactive force fields, i.e., in valence, non-bonded, and 

H-bond terms, but it introduces bond-order dependencies on valence terms and additional potential energy 

corrections in the form of penalties or contributions to properly describe bond dissociation and formation 

under different environmental conditions. By using a bond length/bond-order relationship, smooth 

transitions from non-bonded to single, double and triple bonded systems, and vice versa, are obtained. 

Furthermore, charges are allowed to change as bonds are broken or formed. The van der Waals (vdW) 

interactions are included between all atoms, not just non-bonded ones, which allows the valence bonding 

interaction to be monotonically attractive. Since the vdW inner wall balances the bond attraction, all valence 

interactions depend on the bond order and go to zero as the bonds are broken. All parameters are obtained 

directly and systematically from quantum mechanics. The atomic charges calculated by the charge 

equilibrium (QEq) method27 are updated at each time step. The ReaxFF parameters used in this study were 

derived from Liu et al.13 extended and re-optimized to include all sulfur interactions using GARFfield.16-17 

To ensure the structural stability and conformity of the thaumasite model in ambient conditions, its 3×3×3 

super cell is equilibrated for 100 ps using an isobaric-isothermal (NPT) ensemble at 298 K and 0 atm at a 

time step of 0.25 fs. The final 50 ps of the equilibrated trajectory are used for computing the unit cell 

parameters. Convergence of a variety of parameters, including total energy and its components, lattice 

parameters, and volume, are particularly monitored and ensured. The equilibrated molecular structure of 

thaumasite is then used as the initial configuration for the characterization of the stress-strain behavior at 

both elastic and plastic regimes. 

Calculation of Elastic Properties at Finite Temperature and Pressure. The elastic constants of 

thaumasite are calculated from the linear relation between the stress and strain tensors within the limit of 
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infinitesimal deformation. In this study, the elastic constants are calculated from the 3×3×3 super cell of 

thaumasite equilibrated in the room temperature (298 K). The simulation cell is then subjected to twelve 

strain configurations, including three uniaxial tension/compression pairs and three shear pairs. Small 

deformations for each configuration have been applied to ensure that the strains remain in the elastic range. 

Each separate straining simulation is performed for 30 ps with a time step of 0.25 fs. The pressure of the 

system for the last 10 ps dynamics is recorded to obtain the elastic constants. During the course of straining, 

the positions of the atoms in the simulation cell are equilibrated in a microcanonical (NVE) ensemble 

coupled with a Langevin thermostat, which keeps the temperature at 298 K. Once the elastic constants are 

determined, the Voigt-Reuss-Hill (VRH) elastic properties of thaumasite are estimated following the 

method described in our previous studies.28-29 The ReaxFF calculated elastic properties are then compared 

with those of available in the literature.  

Evaluation of Stress-Strain Response. The equilibrated simulation cell of thaumasite is subjected to a 

range of uniaxial tensile strains along each of the three orthogonal x, y and z directions. During the 

infinitesimal deformation, a constant strain rate (i.e., 0.0005, 0.001, 0.005, and 0.001 ps-1) is applied to the 

simulation cell. The atoms in the simulation cell are then fully relaxed to fit within new dimensions. It must 

be noted that the directions perpendicular to the one under external strain are allowed to relax 

anisotropically, in order to capture the material’s Poisson ratio. This can be achieved by using the NPT 

ensemble equations of motion with NULL pressure in the deformation direction and 1.0 atm pressure in the 

other directions. The evolution of atomic stress in the molecular structure is recorded as a function of strain. 

The cell stress fluctuations induced by kinetic contributions are smeared by averaging the atomic stresses 

over a short time interval of 100 time steps. The straining procedure is repeated for all three Cartesian axes 

(x, y, and z) and continues until the maximum target strain of 25% is reached. The full set of stress and 

strain data are then used to generate the stress-strain curves for each strain direction. To examine the stress-

strain behavior, 1,000 strained conformers are recorded at equal intervals of the full strain range for further 

chemical bond and structural damage analyses. The chemical bond analysis is used to fully characterize the 

structural response of thaumasite under uniaxial strains. 

3. RESULTS AND DISCUSSION 

Structural Characteristics of Thaumasite. The cell parameters of thaumasite equilibrated over the course 

of 100 ps NPT-RMD at ambient temperature and pressure are reported in Table 1. The calculated unit cell 

parameters accurately reproduce the experimental values with a percentage of difference less than 4% for 

all cases. In addition to ambient temperature (298 K) equilibration, the cell parameters of thaumasite are 

further investigated at different temperatures. Since thaumasite dehydrates at temperatures above 380 K30, 
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the range of temperature considered in this study is 100-380 K. Figure 2 illustrates the volume and unit cell 

parameters of thaumasite at different temperatures within the established range. It can be observed that the 

thermal expansion of the a- and b-axis directions are very different from the c-axis direction. While the 

volume and a- and b-axis parameters expand by 2.38 and 1.19%, respectively, as temperature increases 

from 100 to 380 K, the c-axis parameters remains relatively unchanged. This is primarily due to the fact 

that thaumasite has strong ionic-covalent [Ca3Si(OH)6.12H2O]4+ columns along the c-axis direction. The 

main intercolumn supports in the a- and b-axis directions are the hydrogen bonds to the sulfate and 

carbonate groups, which expand with increasing temperature. On the other hand, the strong nature of Ca-O 

and Si-O bonds resist the temperature-induced expansion in the c-axis direction. Table 2 summarizes the 

mean thermal expansion coefficients of thaumasite within the temperature range considered in this study. 

The thermal expansion coefficient of thaumasite parallel to the column is relatively constant, and in some 

cases negative, when compared to that of the transverse direction (i.e., perpendicular to the columnar 

structures). This can be attributed to the negative thermal expansion of the silicate octahedra, observed in 

the past experimental tests.9 The thermal expansion coefficients of thaumasite change linearly over the 

temperature range of 100-380 K, which is consistent with the findings of Martucci and Cruciani.10  

Mechanical Properties of Thaumasite. Mechanical properties of thaumasite, including those associated 

with the elastic and plastic regimes, are presented and discussed in this section. Table 3 lists the elastic 

constants as well as the VRH elastic properties of thaumasite computed from the RMD simulations along 

with those obtained using Brillouin spectroscopy.12 It can be seen that the results from the NVT-RMD 

simulations are consistent with those reported in the literature. As expected, it is noted that C33 is slightly 

smaller than C11. This is because the strong covalent bonds that exist in the [Ca3Si(OH)6.12H2O]4+ columns 

result in a higher stiffness in the a-b plane. This is similar to the behavior observed for the thermal expansion 

of thaumasite.  

The direction sensitivity of the mechanical properties of thaumasite is further investigated by analyzing the 

full stress-strain curves in different directions. The simulated stress-strain curves of thaumasite under 

uniaxial tensile strains in the x/y and z directions at ambient temperature and pressure conditions are shown 

in Figure 3. Although thaumasite in the x/y directions is slightly more ductile than the z direction, the stress-

strain curves indicate that no noticeable plastic deformation takes place before the stress abruptly drops 

once the ultimate strength is reached. This confirms the brittle nature of structural response of thaumasite 

under tensile strain. While the stress-strain curves of thaumasite in the x/y and z directions have similar 

trends, there is a significant difference in the magnitude of the peak stress, often called ultimate strength, 

as well as fracture strain. In the x/y directions, an ultimate strength of 1.36 GPa is reached at a strain of 
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7.8%, while in the z direction, an ultimate strength of 3.89 GPa is obtained at a strain of 9.8%. This 

highlights that thaumasite is almost three times stronger in the z direction than in the x/y directions.  

The stress-strain behavior observed in different directions can be further justified using a chemical bond 

analysis. Figure 4 shows the changes in the normalized number of Ca-O, Si-O, S-O, C-O, and H-O bonds 

as a function of applied tensile strain in the x/y and z directions. In the x/y directions, the number of covalent 

Ca-O bonds decreases by increasing the applied tensile strain and increases when the minimum value is 

reached. This behavior is very much consistent with the stress-strain curve obtained for thaumasite in the 

x/y directions. Contrary to Ca-O, the number of S-O, Si-O and C-O bonds remains unchanged over the 

course of tensile straining until the structure collapses at a strain of 19%. This indicates that the Si-O, S-O, 

and C-O bonds do not have a significant contribution to the tensile strength of thaumasite in the x/y 

directions. On the other hand, in the z direction, the number of Ca-O, Si-O, S-O, and C-O bonds vary 

significantly. The z-axis is parallel to the direction of the strong [Ca3Si(OH)6.12H2O]4+ columns, which are 

connected to the sulfate and carbonate groups with an extensive network of hydrogen bonding. This leads 

to the higher strength of thaumasite in the z direction.  

Effect of Temperature Change on Mechanical Properties of Thaumasite. At any non-zero temperature 

and under no external forces, atoms in a solid still move due to the thermal oscillations around the 

equilibrium positions. Therefore, temperature is an important factor in evaluating the mechanical properties 

of materials given that vibrations lead to variations in bond strength. Here, separate sets of RMD 

simulations are performed to capture the sensitivity of the mechanical properties of thaumasite to 

temperature changes. The stress-strain curves of thaumasite under uniaxial tensile strains at different 

temperatures ranging from 100 to 380 K are shown in Figure 5. It can be seen that temperature exerts a 

substantial effect on the mechanical properties of thaumasite. With an increase in temperature, the tensile 

strength, Young’s modulus, and fracture strain of thaumasite decrease significantly (Figure 6). This 

behavior, which is referred to as thermal-softening effect, has been captured for a variety of materials, such 

as platinum nanowire31, silica glass32, polymer33, silicone34, and calcium hydroxide35 to name a few. By 

increasing the temperature from 100 to 380 K, the tensile strength, Young’s modulus, and tensile strain of 

thaumasite drop by approximately 59.2%, 37.5%, and 37.5% in the x/y directions, respectively, and by 

37.4%, 22.0%, and 32.1% in the z direction, respectively. Higher temperatures lead to an increase in the 

internal energy and entropy of bonds, both of which contribute to bond structures with lower than 

equilibrium bond orders. Moreover, since the equilibrium length of bonds is larger at higher temperatures, 

the bonds can faster reach their breaking length during the tensile straining process (Figure 7). As a result, 

the mechanical properties of thaumasite decreases drastically with increasing the temperature. 
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Effect of Strain Rate on Mechanical Properties of Thaumasite. According to the kinetic theory of solid 

fracture, strain rate may significantly affect the mechanical properties of solids.36 To capture the effect of 

strain rate on the mechanical properties of thaumasite, a number of strain rates ranging from 0.0005 to 0.01 

ps-1 are chosen. This range is within those reported in previous atomistic simulations associated with the 

mechanical characterization of materials.31-32,34,37 It must be noted that the selected strain rates are 

approximately three orders of magnitude faster than the dynamic or shock loads accessible through 

conventional experiments.38 The short integration time steps in molecular dynamics simulations (0.25 fs in 

this study) as well as the computational cost of calculating the interatomic forces enforce such limits on the 

strain rate. Figure 8 shows the stress-strain curves of thaumasite at different strain rates under uniaxial 

tensile strains at ambient temperature (298 K). The ultimate strength of thaumasite (and the proportionality 

limit) slightly increases with increasing strain rate, while the elasticity module seems to be independent of 

strain rate. By decreasing the strain rate from 0.01 to 0.0005 ps-1, the ultimate strength of thaumasite drops 

from 4.94 to 3.89 GPa in the z direction and from 1.72 to 1.36 GPa in the x/y directions. A similar trend is 

captured for the Young’s modulus and fracture strain of thaumasite (Figure 9). The fact that a lower strain 

rate results in a reduced mechanical strength has been demonstrated via macroscopic experiments for 

cementitious materials.39 Lower strain rates tend to increase the effect of thermal fluctuations that promote 

bond dissociation. Figure 10 confirms this postulate by showing the change in the number of chemical 

bonds in thaumasite strained with different rates. As strain rate decreases, the dissociation rate of bonds 

increases. Moreover, Figure 8 shows that at higher strain rates, a complete fracture requires a larger strain. 

This can also be inferred from the chemical bond analysis shown in Figure 10, which highlights as strain 

rate increases, a larger strain is needed for bonds to break. In other words, fast mechanical loading may 

reduce the probability of fracture.  

4. CONCLUSIONS 

The mechanical properties of thaumasite were fully characterized in this study for the first time using RMD 

simulations. The simulation results showed that the stress-strain relationships of thaumasite are 

substantially dependent on the direction of the applied strain. Thaumasite was found three times stronger 

in the z direction than in the x/y directions. This was because of the contribution of strong 

[Ca3Si(OH)6.12H2O]4+ columns that exist in the z direction. Bond analysis revealed that in the x/y directions, 

Ca-O bonds are the only bonds that resist tensile deformations. In the z direction, however, the contribution 

of Si-O, S-O, and C-O bonds must be recognized as well. This properly explains the significant difference 

observed in the mechanical strength of thaumasite in the three orthogonal directions. The effects of 

temperature change and strain rate on the mechanical properties of thaumasite were also investigated in 

detail. As temperature increases, the rate of chemical bond dissociation increases, which in turn results in 
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9 

a substantial reduction in the mechanical strength of thaumasite. On the other hand, a decrease in the strain 

rate favors larger atomic fluctuations accompanied with temperature-induced rearrangements, which 

resulted in a noticeable reduction in the mechanical strength of thaumasite.  
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Tables and Figures 

 

Table 1. Thaumasite cell parameters (1) calculated using ReaxFF and (2) obtained by Gatta et al.11 

experimental tests. 

 

Cell Parameters ReaxFF NPT-RMD  Experiment  Difference (%) 

a/b  (Å) 11.4048 11.0545 3.20 

c  (Å) 10.8245 10.4131 3.95 

 

 

 

 

Table 2. Mean thermal expansion coefficients of thaumasite at various temperature ranges.  

 

 100-200 K 200-298 K 298-380 K 100-380 K 

αV (×10-5 K-1) 8.50 7.10 9.94 8.50 

αa  (×10-5 K-1) 5.53 2.85 4.26 4.24 

αc  (×10-5 K-1) -2.57 1.39 1.39 -2.54 

 

 

 

 

 

Table 3. Elastic properties of thaumasite (1) calculated using ReaxFF and (2) obtained from Scholtzová et 

al.12 experimental tests.  

 

Elastic Properties ReaxFF NVT-RMD Experiment 

C11  (GPa) 41.26 59.9 

C12  (GPa) 32.88 34.3 

C13  (GPa) 25.98 24.1 

C33  (GPa) 65.84 61.4 

C44  (GPa) 8.77 13.9 

C66  (GPa) 5.44 12.8 

K (GPa) 35.33 38.4 

G (GPa) 8.31 14.5 

E (GPa) 23.12 38.6 

ν 0.39 0.33 
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13 

 

 

(a) 

 
(b) 

 
 

Figure 1. (a) Unit cell of thaumasite; (b) The crystal structure of Thaumasite viewed from (001). 

The color scheme is as follows: Blue: Silicon; Cyan: Calcium; Yellow: Sulfur, Brown: Carbon; Red: 

Oxygen; White: Hydrogen 
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Figure 2. Thermal expansion of thaumasite between 100 and 380 K.  

 

 
Figure 3. The stress-strain curves of thaumasite under tensile strains in the x/y and z directions. 
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(a) 

 
(b) 

 
 

Figure 4. Changes in the number of bonds during the dynamics of mechanical straining of thaumasite in 

the (a) x/y directions, and (b) z direction. 
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(a) (b) 

  
 

Figure 5. The stress-strain curves of thaumasite at different temperatures under uniaxial tensile strains in 

the (a) x/y directions, and (b) z direction. 
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(a) 

 
(b) 

 
(c) 

 
 

Figure 6. Mechanical Properties of thaumasite at different temperatures under uniaxial tensile strains in 

the x/y and z directions: (a) Tensile strength, (b) Young’s modulus, and (c) Fracture strain. 
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18 

 

(a) (b) 

  
(c) (d) 

  
 

Figure 7. Changes in the number of bonds during the dynamics of mechanical straining of thaumasite in 

different directions with various temperatures: (a) Ca-O bonds in the x/y directions, (b) Ca-O bonds in the 

z direction, (c) Si-O bonds in the z direction, and (d) C-O bonds in the z direction. 
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(a) (b) 

  
 

Figure 8. The stress-strain curves of thaumasite at different strain rates under uniaxial tensile strains in 

the (a) x/y directions, and (b) z direction.  
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(a) 

 
(b) 

 
(c) 

 
 

Figure 9. Mechanical Properties of thaumasite under uniaxial tensile strains with various strain rates in 

the x/y and z directions: (a) Tensile strength, (b) Young’s modulus, and (c) Fracture strain. 
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(a) (b) 

  
(c) (d) 

  
 

Figure 10. Changes in the number of bonds during the dynamics of mechanical straining of thaumasite in 

different directions with various strain rates: (a) Ca-O bonds in the x/y directions, (b) Ca-O bonds in the z 

direction, (c) Si-O bonds in the z direction, and (d) C-O bonds in the z direction. 
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