CHARACTERISTIC MULTIPLIERS
AND STATIONARY INTEGRALS
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In this note some rudimentary results about the characteristic multi-
pliers of periodic solutions of differential equations are given which sup-
plement those given by Poincaré [2], Chapitre IV, and by Wintner [4].

Motivation was supplied by some recent numerical computations of
Bartlett [1] who found many periodic solutions of the restricted 3-body
problem with the following property: at the periodic solution the energy
integral assumes a value which is an extremum with respect to the values
which it assumes at nearby periodic solutions of the same family.

1. Preliminaries

Our results will refer to an autonomous differential equation

(1) & = f(z)

in which the given function f is assumed tc¢ be of class C™V) on an open set
S lying in R™ or C™ (the spaces of n-tuples of real or complex numbers
respectively). A solution z is to be defined on some interval of the real line
R and its range is to be a subset of S.

We shall use the letter @ throughout to denote a family {¢, : y € J}
of periodic solutions of (1) where J is an open interval of R. We shall
suppose that no ¢, is an equilibrium (i.e. constant) solution of (1) and we
shall use 7(y) to denote the primitive period (> 0) of ¢,,.

By saying that the family @ of periodic solutions is smooth we shall
mean that

(a) the mapping (y,?) — é,(¢) is of class CV on the product space
JXR;
(b) the function 7, the period along the family, is differentiable on J.

{(Mr. W. A. Coppel remarks that, in view of the implicit function theorem,
if (a) is satisfied then continuity of the function 7 is sufficient to ensure its
differentiability.)
As a notational convenience we shall suppose that 0 e J and shall
377

https://doi.org/10.1017/51446788700005450 Published online by Cambridge University Press


https://doi.org/10.1017/S1446788700005450

378 Arthur R. Jones [2]

single out the member ¢, of the family for a distinguished réle. Relative
to ¢, the equations of variation of (1) are

(2) & = 8f(¢o)2

where Jf denotes the Jacobian matrix of the function f.

The monodromy matriz I' of ¢, is defined as X (r(0)) where X is the
fundamental matrix of solutions of (2) which satisfies the initial condition
X (0) = I, I being the unit matrix. The eigenvalues of I' are called the
characteristic multipliers of the periodic solution ¢,.

Let g be a function from the region S, on which f is defined, into the
reals and let g be of class CV. If for each solution z of (1) the composite
function g(x) is constant we shall say that g is a (conservative) integral of
(1). For any family @ of periodic solutions of (1) we shall denote the
function

y > g($,) by g

and we shall refer to it as the infegral g along the family ®@. By saying that
the integral g is nontrivially stationary along the family @ at ¢, we shall
mean that

3) Vg(&) # 0 and £4(0) =0

where V is the gradient operator, - denotes differentiation as usual and where
& is some point in the range of the function ¢,, say & = ¢,(0).

Note that if (1) is a Hamiltonian differential equation and g is its
energy integral then the first condition of (3) follows from the fact that
¢ 1s not an equilibrium solution.

If » = 1 the first condition in (3) is inconsistent with the assumption
that ¢, is not an equilibrium solution. The results which follow are therefore
significant only when » = 2,

2. Statement and discussion of results

THEOREM 1. If the differential equation (1) admaits an integral g which
1s nontrivially stationary along a smooth family ®@ of periodic solutions of (1)
at ¢, then

(@) the period v along D is stationary at ¢,,
or
(b) ¢o has at least 3 of its characteristic multipliers equal to 1.

In the case » = 2 the alternative (a) is the only possible conclusion,
of course.

Note that if (1) is a Hamiltonian differential equation, each of its
periodic solutions has characteristic multipliers which occur in reciprocal
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pairs (see, e.g., Wintner [5], § 151) so that the alternative (b) in the con-
clusion of Theorem 1 may be replaced by:

do has at least 4 characteristic multipliers equal to 1.
Next, a slightly weakened version of Theorem 1:

THEOREM 2. Let @ be a smooth family of periodic solutions of (1) and
suppose that

(@) the period along @ is nowhere stationary,
(b) every member of @ has at most 2 characteristic multipliers equal to 1.

Then for every integral g of (1) such that Vg is nowhere zero, the function gq
(the corresponding integral along the family) is one-one.

Theorem 2 is weaker, for conservative Lagrangian systems, than the
following result which is stated in § 100 of Wintner’s book [5]:

(%) Along a (suitably smooth) family of periodic solutions of a conservative
Lagrangian system, the period is a (single-valued) function of the energy.

At the crux of the proof of () given by Wintner, however, there is a fallacy
and () itself is false — except perhaps for systems with one degree of
freedom — a counterexample being given below in Section 4. Theorem 2
is proposed as a replacement for ().

Our final theorem provides a partial converse of Theorem 1:

THEOREM 3. Let ¢y be a periodic solution of (1) with at least 3 of its
characteristic multipliers equal to 1. If the matriz I'—I (I' the monodromy
matrix of ¢y} has rank n—1, then every integral g of (1) is stationary at ¢,
along any smooth family of periodic solutions to which ¢, belongs.

Some interest attaches to the conditions imposed on I" in the above
theorem as they are sufficient to ensure that ¢, does in fact belong to a
(locally unique) smooth family of periodic solutions. This follows by a
straightforward application of Poincaré’s ‘“‘continuity method” (as ex-
pounded for example in Siegel [3], § 19) to ¢, as generating solution.

Theorem 3 may be of some use in the numerical search for periodic
solutions, for example by providing information about the Jordan normal
forms of monodromy matrices — information which would probably be
unobtainable by the standard methods of numerical analysis.

3. Proofs

Two lemmas will be used. The first gives some more or less classical
results which relate the monodromy matrix of a periodic solution to various
derivatives, while the second is a result of linear algebra concerning the
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orthogonality of eigenvectors and a generalization of it may be published
later.
We use the dash ’ to denote transposition of matrices.

LemMA 1. Let {¢,:y € J} be a smooth family of periodic solutions
of (1) and for each real t let u(t) be the derivative at 0 of the function y — ¢, (¢).
The monodromy matriz 1" of ¢, then satisfies the relations

F‘ﬁo(o = ‘ﬁo
(4) T'u(0) = u 0)—r (0)¢, (0)
[Ve($6(0))I'T = [Vg(¢(0)) '

where, in the last equation, g is assumed to be an integral of (1).

Proor. By the superposition principle, if z is a solution of the equations
of variation (2) then

(5) I'x(0) = z(z(0)).

Now each of the functions ¢, and % is a solution of the equations of variation
(Wintner [5], §§ 148, 149) and moreover

w(t) = p(t)—1t(0)e(0) o (t)

where y as well as ¢, has the period (0). If in turn @, and » are substituted
in (5) in place of x and periodicity is used, then the first and second equations
in (4) are obtained, respectively.

Finally note that the function (£, f) — [Vg(¢,(f))]'¢ is a (nonconser-
vative) integral of (2) (Wintner [56], § 87) and from this fact and the
periodicity of ¢, follows the last equation in (4).

LemMmA 2. Let A be a complex matrix of order n (= 2) with p of its eigen-
values equal to O and let the Jordan normal form of A be represented either by a
block diagonal matrix

(6) [ e

where Cy is nonsingular and where C, is the p-th order matrix

0 _
0 0
, 10
(6"
0
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or by C, itself when p = n. If x, y, z are column vectors satisfying the equations

(7 Az =0, Ay==z, A'z=0
then y'z = 0 when p > 2; but y'z = 0 when p = 2 provided that x 5= O and
z2#0.

Proor. Let B be the nonsingular matrix which reduces 4 to Jordan
normal form C = B7'4B and put 4 = Bz, v = Bly, w = B’z. The
equations (7) are then equivalent to

(8) Cu=0, Cv=u, Cw=0,
and moreover
9 yz=vB'(B)w=1vw.

Since the matrix C has the form (6) or (6') it is possible to solve the
equations (8) for the components #,, v, w; (1 <7 = u) of the vectors «,
v, w to get the solutions:

u;, =0 for 1#£p (1 =7 =n);
v,,=u, and v;=0 for 1£p, 1Fp—1 (1 =i=<n);
w, =0 (2=7=mn)

From (9) and the solutions just obtained it is clear that

(10) yz2=7vw=vw,

and hence that ¥’z = 0 unless p = 2.
On the other hand if p =2 and 2 £ 0, and z % 0 then % £ 0, w # 0
and so v,_; # 0, w; # 0. From (10) it now follows that ¢’z + 0.

ProoF oF THEOREM 1. Suppose, contrary to the conclusion of Theorem 1,
that the monodromy matrix I" of ¢, has less than 3 eigenvalues equal to 1
and that #(0) 5= 0. Lemma 1 then shows that I" has exactly 2 eigenvalues
equal to 1 and that I'—TI has as Jordan normal form (6) or (6’) with p = 2.

The first hypothesis of Lemma 2 is therefore satisfied with 4 = I'—1I.
The remaining hypotheses of Lemma 2 are satisfied by the choice

g = —t(0)$o(0), y=u(0), z=Vg(h(0)),

where %(0) is the derivative at 0 of the function y — ¢.(0). Since %(0) # 0
and ¢, is not an equilibrium solution, z # 0; and from the first of (3) follows
z # 0. Lemma 2 now gives ¥’z # 0.

Now the integral along the family, g4, is the composite function
y — £($,(0)). The chain rule gives therefore

(11) §0(0) = [Vg(¢o(0)]'»(0) = 2"y # 0.
This contradicts the hypothesis of Theorem 1.
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ProoF oF THEOREM 3. The conditions imposed ensure that I'—I has
Jordan normal form (6) or (6’) with # > 2. Now let @ be a smooth family
of periodic solutions of (1) containing ¢, and let z, y, z be defined as in the
proof of Theorem 1. Application of Lemma 2 gives y'z = 0 and hence, by
use of the chain rule as in (11), £4(0) = 0 as required.

4. Counterexample for (x)

To obtain a counterexample for the statement () mentioned in Section
2 consider the system with Lagrangian function defined by

L@, g,z y) = 3(@+5%) +2(@*+y*)
which corresponds to the equations of motion
= —tw(e g2, = —dy(etyr)t
For each y > 0 this system admits the periodic solution given by
z(t) = ycos (2ty~%), y(t) = ysin (26y72).

The period of this solution is clearly zwy? while its energy is easily verified
to be 0.

The family of periodic solutions obtained by variation of y now gives
the desired counterexample, the period and energy along the family being
strictly monotonic and constant, respectively.
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