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Abstract

We consider a rank-based technique for estimating GARCH model parameters, some of which

are scale transformations of conventional GARCH parameters. The estimators are obtained by

minimizing a rank-based residual dispersion function similar to the one given in Jaeckel (1972).

They are useful for GARCH order selection and preliminary estimation. We give a limiting

distribution for the rank estimators which holds when the true parameter vector is in the interior

of its parameter space, and when some GARCH parameters are zero. The limiting theory is

used to show that the rank estimators are robust, can have the same asymptotic efficiency as

maximum likelihood estimators, and are relatively efficient compared to traditional Gaussian and

Laplace quasi-maximum likelihood estimators. The behavior of the estimators for finite samples

is studied via simulation, and we use rank estimation to fit a GARCH model to exchange rate

log-returns.
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1 Introduction

Observed time series processes frequently appear uncorrelated, yet exhibit volatility clustering. Volatil-

ity clustering is the tendency of observations relatively small in absolute value to be followed by other

small observations, and the tendency of observations relatively large in absolute value to be followed by

other large observations. Hence, these series appear uncorrelated, but dependent. Nonlinear models with

time-dependent conditional variances, most notably generalized autoregressive conditionally heteroskedastic

(GARCH) models, are often used to describe time series with these features. GARCH models were first

developed for modeling inflation rates (Engle, 1982; Bollerslev, 1986), and have also appeared for analyzing

the returns of exchange rates (Bollerslev, 1987; Engle and González-Rivera, 1991; Shephard, 1996) and stock

prices (Bollerslev, 1987; Shephard, 1996; Fan and Yao, 2003). Applications for GARCH models are not

limited to finance, however. Time series processes exhibiting GARCH-type behavior have also appeared, for

example, in speech signals (Abramson and Cohen, 2008), daily and monthly mean temperatures (Campbell

and Diebold, 2005; Romilly, 2005; Huang, Shiu, and Lin, 2008), wind speeds (Ewing, Kruse, and Thomp-

son, 2008), and atmospheric carbon dioxide concentrations (Hoti, McAleer, and Chan, 2005).

In this paper, we consider a rank-based technique for estimating GARCH model parameters, some of

which are scale transformations of conventional GARCH parameters. The rank (R) estimators are obtained

by minimizing the sum of mean-corrected model residuals weighted by a function of residual rank. They are

similar to the R-estimators proposed by Jaeckel (1972) for estimating linear regression parameters, and can

be used for GARCH order selection and preliminary estimation. As discussed in Jurec̆ková and Sen (1996),

R-estimators are, in general, robust and relatively efficient, and results in this paper indicate this is true in

the case of GARCH estimation. The technique is robust because the R-estimators are n1/2-consistent (n

represents sample size) under general conditions and, since the weight function can be chosen so that R-

estimators have the same asymptotic efficiency as maximum likelihood (ML) estimators, it is also relatively

efficient. In addition, R-estimation dominates traditional techniques such as Gaussian and Laplace quasi-

ML (QML) with respect to asymptotic efficiency. We, therefore, recommend that R-estimation be used

for preliminary GARCH estimation and order selection when the noise distribution is unknown. Once a

R-estimate has been found, corresponding model residuals can be used to identify an appropriate noise
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distribution, and then the conventional GARCH parameters can be estimated via ML.

Another rank-based technique for estimating the parameters of conditionally heteroskedastic processes

is given in Mukherjee (2007). However, the class of models considered in Mukherjee (2007) includes ARCH

but not GARCH models, and n1/2-consistency for the ARCH parameter estimates is established only when

the noise distribution has a finite fourth moment. While it is traditional to assume the noise distribution

is Gaussian when fitting an ARCH/GARCH model to an observed series, many series appear to have noise

distributions that are heavier-tailed than Gaussian (Bollerslev, 1987; Engle and González-Rivera, 1991;

Shephard, 1996; Fan and Yao, 2003). Given the many applications for GARCH models, it is, therefore,

important that robust statistical theory be developed. In this paper, we consider both ARCH and GARCH

models and show that, when the true parameter vector lies in the interior of the parameter space, higher-order

moment conditions are not required for the n1/2-consistency of R-estimators of ARCH model parameters.

The R-estimators are introduced in Section 2 and, in Section 3.1, we show that as sample size n → ∞,

they converge in distribution to the minimizer of a random quadratic function on a convex space. This

limiting result holds when the parameter vector lies in the interior of its parameter space, in which case it

follows that the estimators are asymptotically normal, and also when some GARCH parameters are zero,

and hence the parameter vector lies on the boundary of its parameter space. In Section 3.2, we show the

limiting distribution for the R-estimators can be used for GARCH order selection and confidence interval

estimation. Proofs of the lemmas used to establish the results of Section 3 are in the Appendix. The quality

of the asymptotic approximations for finite samples is studied via simulation in Section 4.1, and we use

R-estimation to fit a GARCH model to exchange rate log-returns in Section 4.2.

2 Preliminaries

A series {Xt}∞t=−∞ is a GARCH(p, q) process if

Xt = σtZt, (2.1)
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where {Zt} is a sequence of independent and identically distributed (iid) random variables with E{Zt} = 0

and Var{Zt} = 1, {σt} is a non-negative process satisfying

σ2
t = α00 +

p
∑

i=1

α0iX
2
t−i +

q
∑

j=1

β0jσ
2
t−j , (2.2)

and Zt is independent of {Xt−k, k ≥ 1} for every t (Bollerslev, 1986). The parameter α00 is positive, α0i, i ∈

{1, . . . , p}, and β0j , j ∈ {1, . . . , q}, are non-negative, and σ2
t represents Var{Xt|Xs, s < t}. When q = 0,

{Xt} is an ARCH(p) process (Engle, 1982). In the case of a GARCH(1, 1) process, E{ln(α01Z
2
t +β01)} < 0 is

necessary and sufficient for the stationarity and ergodicity of {Xt} (Nelson, 1990) and, for p ≥ 2 and q ≥ 2,

a stationary, ergodic solution to (2.1)–(2.2) exists if and only if the top Lyapunov exponent associated with

the (p+ q − 1)× (p+ q − 1) matrices {A0t}, where

A0t :=
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



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,

is negative (Bougerol and Picard, 1992). That is, {Xt} is stationary and ergodic if and only if γL :=

inf1≤t<∞[(t+ 1)−1E{ln ‖A00 · · ·A0t‖op}] < 0, where, for a matrix A, ‖A‖op represents the matrix operator

norm sup
x 6=0

(‖Ax‖/‖x‖), and ‖ · ‖ is the Euclidean norm. Note that γL can also be used to assess the

stationarity/ergodicity of a GARCH process for which p < 2 or q < 2 by setting α0i = 0 for p < i ≤ 2 and

β0j = 0 for q < j ≤ 2. Additionally, if
∑p

i=1 α0i+
∑q

j=1 β0j < 1, it can be shown that the process {Xt} is not

only stationary and ergodic, but also has finite variance α00/(1 −
∑p

i=1 α0i −
∑q

j=1 β0j) (Bollerslev, 1986).

We assume throughout that

A1. γL < 0,
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so that {Xt} is stationary and ergodic, but we do not assume the variance of {Xt} is necessarily finite.

Following Straumann (2005, page 76), so that the GARCH parameter values α00, α01, . . . , α0p, β01, . . . , β0q

are unique, we also assume

A2. there exists at least one i > 0 for which α0i > 0, α0p+β0q 6= 0, and the polynomials α0(x) :=
∑p

i=1 α0ix
i

and β0(x) := 1−∑q
j=1 β0jx

j have no common roots.

If we assume

A3. P(Zt 6= 0) = 1,

it follows from (2.1)–(2.2) that P(∩∞
t=−∞{X2

t > 0}) = 1. Therefore, we have ln(X2
t ) = ln(σ2

t /α00)+ln(α00Z
2
t )

or ln(α00Z
2
t ) = ln(X2

t )− ln(σ2
t /α00), with σ2

t /α00 = 1+
∑p

i=1(α0i/α00)X
2
t−i +

∑q
j=1 β0j(σ

2
t−j/α00), and, for

arbitrary values α0, α1, . . . , αp, β1, . . . , βq, we define

εt(θ) = ln(X2
t )− ln(σ̃2

t (θ)), t = 1, . . . , n, (2.3)

with

σ̃2
t (θ) :=







1, t = min{1, p− q + 1}, . . . , p,

1 +
∑p

i=1 θiX
2
t−i +

∑q
j=1 θp+j σ̃

2
t−j(θ), t = p+ 1, . . . , n,

(2.4)

and θ := (α1/α0, . . . , αp/α0, β1, . . . , βq)
′. Let θ0 = (α01/α00, . . . , α0p/α00, β01, . . . , β0q)

′ and εt = ln(α00Z
2
t ),

and note that {εt(θ0)}nt=p+1 closely approximates {εt}nt=p+1; the error is due to the initialization with ones

in (2.4). Since A1 implies
∑q

j=1 β0j < 1 (Bougerol and Picard, 1992, Corollary 2.3), θ0 is in the parameter

space Θ := [0,∞)p × {(x1, . . . , xq)
′ ∈ [0, 1)q : x1 + · · ·+ xq < 1}. Now suppose

A4. λ is a nonconstant and nondecreasing function from (0, 1) to IR.

For θ ∈ Θ, we introduce the R-function

Dn(θ) =

n∑

t=p+1

λ

(
Rt(θ)

n− p+ 1

)[

εt(θ)− ε(θ)
]

, (2.5)

where {Rt(θ)}nt=p+1 contains the ranks of the residuals {εt(θ)}nt=p+1 and ε(θ) := (n − p)−1
∑n

t=p+1 εt(θ).

Dn is similar to the R-function introduced in Jaeckel (1972) for estimating linear regression parameters.

We, however, consider a weighted sum of the mean-corrected {εt(θ)}nt=p+1, instead of a weighted sum of the
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residuals (as in Jaeckel, 1972), to avoid assuming
∑n

t=p+1 λ((t − p)/(n − p + 1)) = 0, which is required in

Jaeckel (1972). Note that, if {ε(t)(θ)}nt=p+1 is the series {εt(θ)}nt=p+1 ordered from smallest to largest, (2.5)

can also be written asDn(θ) =
∑n

t=p+1 λ((t−p)/(n−p+1))[ε(t)(θ)−ε(θ)] and, if λ := (n−p)−1
∑n

t=p+1 λ((t−

p)/(n− p+1)), Dn(θ) =
∑n

t=p+1[λ((t− p)/(n− p+1))− λ][ε(t)(θ)− ε(θ)]. Because it tends to be near zero

when the elements of {εt(θ)}nt=p+1 are similar and gets larger as the values of {|ε(t)(θ)−ε(θ)|}nt=p+1 increase,

Dn is a measure of the dispersion of the residuals {εt(θ)}nt=p+1. Given a realization of length n from (2.1),

{Xt}nt=1, we plan to estimate θ0 by minimizing Dn. Our motivation for using the residuals {εt(θ)}nt=p+1 is

that, given an appropriately chosen loss function, M-estimation with respect to {εt(θ)}nt=p+1 can be equivalent

to ML or QML estimation for GARCH model parameters (Muler and Yohai, 2008). Additionally, it is not

possible to estimate θ0 by minimizing the dispersion of the residuals {Xt/
√

σ̃2
t (θ)}nt=p+1, since the values of

{Xt/
√

σ̃2
t (θ)}nt=p+1 become more clustered about zero as the elements of θ increase. By Theorem 2.1, Dn

is a non-negative, continuous function on Θ. Choices for the weight function λ are discussed in Section 3.1.

Theorem 2.1. Assume A1–A4 hold. If, for θ ∈ Θ,

{
P1(θ), . . . , P(n−p)!(θ)

}
=
{
{ε1,p+1(θ), . . . , ε1,n(θ)} , . . . ,

{
ε(n−p)!,p+1(θ), . . . , ε(n−p)!,n(θ)

}}

contains the (n−p)! permutations of the sequence {εt(θ)}nt=p+1 (so, for j ∈ {1, . . . , (n−p)!}, t ∈ {p+1, . . . , n},

εj,t(θ) represents the (t− p)th element of permutation Pj(θ)), then

Dn(θ) = sup
j∈{1,...,(n−p)!}

n∑

t=p+1

λ

(
t− p

n− p+ 1

)[

εj,t(θ)− ε(θ)
]

.

In addition, Dn is a non-negative, continuous function on Θ.

Proof. Recall that Dn(θ) =
∑n

t=p+1[λ((t− p)/(n− p+1))−λ][ε(t)(θ)− ε(θ)], and let an(t) = λ((t− p)/(n−

p + 1)) − λ and zt(θ) = εt(θ) − ε(θ). The results of this theorem follow from the proof of Theorem 1 in

Jaeckel (1972), where properties are given for
∑n

t=p+1 an(t)z(t)(θ). �

We are, therefore, estimating θ0 = (α01/α00, . . . , α0p/α00, β01, . . . , β0q)
′ by minimizing the rank-based

residual dispersion function (2.5). Other robust GARCH estimation techniques considered in the literature,

M-estimation (Mukherjee, 2008; Muler and Yohai, 2008), least absolute deviations (Peng and Yao, 2003),

and QML corresponding to noise distributions other than Gaussian (Berkes and Horváth, 2004), are also not
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used to directly estimate η0 := (α00, α01, . . . , α0p, β01, . . . , β0q)
′. Those methods are used instead to estimate

(α00/c, α01/c, . . . , α0p/c, β01, . . . , β0q)
′, where c > 0 is unknown when the noise distribution is unknown.

Gaussian QML (Berkes, Horváth, and Kokoszka, 2003; Francq and Zaköıan, 2004) and ML (Berkes and

Horváth, 2004) can be used to directly estimate η0 but, because Gaussian QMLEs have a rate of convergence

slower than n1/2 when E{Z4
t } = ∞ (Hall and Yao, 2003) and the noise distribution is unknown in practice,

they are not robust techniques. Therefore, for estimating η0, we recommend that R-estimation be used as

a preliminary technique. Once a R-estimate θ̂R of θ0 has been found, an appropriate noise distribution can

be identified from the residuals {Xt/

√

σ̃2
t (θ̂R)}, which resemble {√α00Zt} when θ̂R is near θ0, and η0 can

be estimated via ML.

3 Asymptotic Results

3.1 Limiting Distribution for R-Estimators

Let f and F denote the density and distribution functions for ln(Z2
t ). In order to obtain the limiting

distribution for R-estimators of θ0, we make the following additional assumptions:

A5. F is strictly increasing and differentiable on IR.

A6. f is uniformly continuous on IR.

A7. The weight function λ is bounded and left-continuous on (0, 1).

We also consider the following conditions:

A8. θ0i > 0 for all i ∈ {1, . . . , p+ q}.

A9. The set {j : β0j > 0} 6= ∅, and ∏j0
i=1 α0i > 0 for j0 := min{j : β0j > 0}.

A10. EX4
t < ∞.

Finally, for values of θ = (θ1, . . . , θp+q)
′ ∈ Θ, we define the series {ε∗t (θ)} so that, for all t, ε∗t (θ) =

ln(X2
t )− ln(σ̆2

t (θ)) with

σ̆2
t (θ) = 1 +

p
∑

i=1

θiX
2
t−i +

q
∑

j=1

θp+j σ̆
2
t−j(θ).
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The sequence {ε∗t (θ)}nt=p+1 is a stationary (stationarity follows from Berkes, Horváth, and Kokoszka, 2003,

Section 2) approximation of the residuals {εt(θ)}nt=p+1. Note that {σ̆2
t (θ0)} = {σ2

t /α00} and {ε∗t (θ0)} =

{εt}, with {σ2
t } defined in (2.2) and εt = ln(α00Z

2
t ). Since

∑q
j=1 θp+j < 1 for θ = (θ1, . . . , θp+q)

′ ∈ Θ,

1/(1− θp+1x− · · ·− θp+qx
q) has a Laurent series expansion of the form

∑∞
j=0 cj(θ)x

j , where the coefficients

{cj(θ)}∞j=0 are geometrically decaying (Berkes, Horváth, and Kokoszka, 2003, Section 2). Because

∂σ̆2
t (θ)

∂θi
=







X2
t−i +

∑q
j=1 θp+j

(
∂σ̆2

t−j(θ)/∂θi
)
, i ∈ {1, . . . , p},

σ̆2
t+p−i(θ) +

∑q
j=1 θp+j

(
∂σ̆2

t−j(θ)/∂θi
)
, i ∈ {p+ 1, . . . , p+ q},

it follows that the first partial derivatives of ε∗t (θ) are given by

∂ε∗t (θ)

∂θi
=

−1

σ̆2
t (θ)

∂σ̆2
t (θ)

∂θi
=







−
(
∑∞

j=0 cj(θ)X
2
t−i−j

)

/σ̆2
t (θ), i ∈ {1, . . . , p},

−
(
∑∞

j=0 cj(θ)σ̆
2
t+p−i−j(θ)

)

/σ̆2
t (θ), i ∈ {p+ 1, . . . , p+ q}.

(3.1)

When θ = θ0,

∂ε∗t (θ0)

∂θi
=







−α00

(
∑∞

j=0 cj(θ0)X
2
t−i−j

)

/σ2
t , i ∈ {1, . . . , p},

−
(
∑∞

j=0 cj(θ0)σ
2
t+p−i−j

)

/σ2
t , i ∈ {p+ 1, . . . , p+ q}

(these are right derivatives when θ0i = 0), with
∑∞

j=0 cj(θ0)x
j = 1/(1 − β01x − · · · − β0qx

q). We are now

able to give the limiting distribution for R-estimators of θ0.

Theorem 3.1. If A1–A7 and either A8, A9 or A10 hold, then there exists a sequence of minimizers θ̂R ∈ Θ

of Dn(·) in (2.5) such that

n1/2
(

θ̂R − θ0

)
d→ ξ := argmin

u∈Λ(u−Y)′K̃Γ(u−Y), (3.2)

where Λ = Λ1×· · ·×Λp+q, with Λi = IR if θ0i > 0 and Λi = [0,∞) if θ0i = 0, Y ∼ N(0,Σ), Σ := J̃K̃−2Γ−1,

J̃ :=
∫ 1

0 λ2(x) dx − (
∫ 1

0 λ(x) dx)2, K̃ :=
∫∞

−∞ f(x) dλ(F (x)), and

Γ := E

{[
∂ε∗t (θ0)

∂θ
− E

{
∂ε∗t (θ0)

∂θ

}][
∂ε∗t (θ0)

∂θ
− E

{
∂ε∗t (θ0)

∂θ

}]′
}

.

The limiting random vector ξ is a unique, finite value almost surely.

Proof. By Lemma 5.4 in the Appendix, Sn(u) = Dn(θ0 + n−1/2u) − Dn(θ0)
d→ S(u) = u′N + K̃u′Γu/2

on C(Λ), where N ∼ N(0, J̃Γ) and C(Λ) is the space of continuous functions on Λ where convergence is
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equivalent to uniform convergence on every compact subset. The derivatives ∂ε∗t (θ0)/∂θi, i ∈ {1, . . . , p+ q},

have finite second moments (in the case of A8 this follows from the proof of Theorem 2.2(i) in Francq

and Zaköıan, 2004, and in the case of A9 or A10 this follows from the proof of Lemma 8 in Francq

and Zaköıan, 2007) so the matrix Γ exists, and, following the proof of Theorem 2.2(ii) in Francq and

Zaköıan (2004), Γ is positive definite. Consequently, since K̃ > 0 and Λ is a convex space, S(u) has a

unique minimum on Λ almost surely. Because n1/2(θ̂R − θ0) minimizes Sn(u), it follows from the proof of

Lemma 2.2 and Remark 1 in Davis, Knight, and Liu (1992) that n1/2(θ̂R − θ0)
d→ argmin

u∈ΛS(u). The

result of this theorem holds since N
d
= −K̃ΓY, which implies that argmin

u∈ΛS(u)
d
= argmin

u∈Λ(Y
′K̃ΓY−

2u′K̃ΓY + u′K̃Γu) = argmin
u∈Λ(u−Y)′K̃Γ(u−Y). �

If all parameter values are positive (ie., A8 holds), it follows from Theorem 3.1 that θ̂R is asymptotically

normal.

Corollary 3.1. If A1–A8 hold, then

n1/2
(

θ̂R − θ0

)
d→ Y ∼ N(0,Σ). (3.3)

Proof. This result follows from (3.2), since K̃Γ is positive definite and, under A8, Λ = IRp+q. �

Remark 1: Assumptions A5 and A6 are mild. They hold, for example, if Zt has a Laplace, logistic, N(0,1),

or rescaled Student’s t (rescaled to have unit variance) distribution.

Remark 2: As discussed in the proof of Theorem 3.1, given A8, A9 or A10, the derivatives ∂ε∗t (θ0)/∂θi,

i ∈ {1, . . . , p+ q}, have finite second moments. Since A8 is required for GARCH parameter estimates to be

asymptotically unbiased and normal, it is a standard assumption in the literature. Conditions A9 and A10

are similar to assumptions introduced by Francq and Zaköıan (2007), who derived the limiting distribution

for Gaussian QMLEs when some GARCH parameter values may be zero. In the absence of A8 and A9,

EX6
t < ∞, instead of A10 (EX4

t < ∞), is required for the n1/2-consistency of the Gaussian QMLEs, however

(Francq and Zaköıan, 2007). Note that α01 > 0 and β01 > 0 are sufficient for A9.
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Remark 3: When a parameter vector may lie on a boundary of its parameter space, it is standard for

estimators to converge in distribution to the minimizer of a random quadratic function on a convex space

(D.W.K. Andrews, 1999). Francq and Zaköıan (2007) show this is true for Gaussian QMLEs of GARCH

model parameters. The form of the limiting distribution for θ̂R in (3.2) is, therefore, to be expected. Let

the vector (Y1, . . . , Yp+q)
′ contain the Gaussian random elements of Y ∼ N(0,Σ). If only the jth element

of θ0, θ0j , equals zero and all other elements of θ0 are positive, it follows from (3.2) that n1/2(θ̂j,R − θ0j) =

n1/2θ̂j,R
d→ YjI{Yj ≥ 0} (I{·} represents the indicator function), so θ̂j,R is asymptotically half-normal in

this case.

Remark 4: If f , the density function for ln(Z2
t ), is almost everywhere differentiable on IR, using integration

by parts, it can be shown that K̃ = −
∫∞

−∞
f ′(x)λ(F (x)) dx = −

∫ 1

0
[f ′(F−1(x))/f(F−1(x))]λ(x) dx. In

practice, these integrals can be easier to evaluate than
∫∞

−∞ f(x) dλ(F (x)).

Remark 5: Let fZ represent the density function for the iid noise process {Zt} and, for

η = (η0, η1, . . . , ηp+q)
′ ∈ (0,∞) × Θ, let ε†t (η) = ln(X2

t ) − ln(σ2
t (η)) with σ2

t (η) = η0 +
∑p

i=1 ηiX
2
t−i +

∑q
j=1 ηp+jσ

2
t−j(η) ∀t. From Berkes and Horváth (2004), under general conditions which include A8, ML

estimators of η0 = (α00, α01, . . . , α0p, β01, . . . , β0q)
′ are asymptotically normal with mean η0 and covariance

matrix 4n−1τ2A−1, where τ2 = (E{[1 + Ztf
′
Z(Zt)/fZ(Zt)]

2})−1 and A = E{[∂ε†t(η0)/∂η][∂ε
†
t(η0)/∂η]

′}.

Using the delta method (see, for example, Rao, 1973, pages 387–388), the corresponding estimators of θ0,

θ̂ML := (α̂1,ML/α̂0,ML, . . . , α̂p,ML/α̂0,ML, β̂1,ML, . . . , β̂q,ML)
′, are asymptotically Gaussian with mean θ0

and covariance matrix 4n−1τ2BA−1B′, where B is the (p+ q)× (p+ q + 1) Jacobian matrix

B =



























−α01/α
2
00 1/α00 0 · · · 0 0 · · · 0

−α02/α
2
00 0 1/α00 · · · 0 0 · · · 0

...
...

...
. . .

...
...

. . .
...

−α0p/α
2
00 0 0 · · · 1/α00 0 · · · 0

0 0 0 · · · 0 1 · · · 0

...
...

...
. . .

...
...

. . .
...

0 0 0 · · · 0 0 · · · 1



























.

For any p and q, matrix algebra can be used to show that BA−1B′ = Γ−1 and, therefore, under assumptions
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A1–A8, the asymptotic relative efficiency (ARE) for R-estimation with respect to ML is 4τ2J̃−1K̃2.

If the weight function λ is proportional to −f ′(F−1(x))/f(F−1(x)), then J̃−1K̃2 =

E{[f ′(ln(Z2
t ))/f(ln(Z

2
t ))]

2} (Jurec̆ková and Sen, 1996, Section 3.4). In addition, since f(x) =
√
exfZ(

√
ex)

when the distribution for Zt is symmetric about zero, it can be shown that f ′(ln(Z2
t ))/f(ln(Z

2
t )) = [1 +

Ztf
′
Z(Zt)/fZ(Zt)]/2 in the symmetric case. Consequently, when the distribution for Zt is symmetric about

zero and a weight function

λf (x) ∝ −f ′(F−1(x))/f(F−1(x))

is used, J̃−1K̃2 = E{[1 + Ztf
′
Z(Zt)/fZ(Zt)]

2}/4 = (4τ2)−1 and, if A1–A8 hold, R-estimation has the same

asymptotic efficiency as ML.

Remark 6: When Zt ∼ N(0, 1), the optimal weight function λf (x) ∝ [Φ−1((x + 1)/2)]2 − 1, where Φ

represents the standard normal distribution function. Hence, J̃−1K̃2 = (4τ2)−1 when Zt ∼ N(0, 1) and

λ(x) = [Φ−1((x + 1)/2)]2 − 1. However, the function λN (x) := [Φ−1((x + 1)/2)]2 − 1 does not satisfy

assumption A7, since it is unbounded as x → 1, so limiting results (3.2) and (3.3) do not necessarily

hold for R-estimates obtained using λN . Bounded weight functions closely approximating λN which do

satisfy the assumptions can, however, be found. For example, let λm,N (x) = λN (x)I{0 < x ≤ 1 − 1/m}+

λN (1 − 1/m)I{x > 1 − 1/m}, with m ≥ 2. This weight function satisfies assumptions A4 and A7 and, as

m → ∞, λm,N converges pointwise to λN on (0, 1). In addition, J̃m :=
∫ 1

0 λ2
m,N (x) dx− (

∫ 1

0 λm,N (x) dx)2 →
∫ 1

0
λ2
N (x) dx− (

∫ 1

0
λN (x) dx)2 and K̃m :=

∫∞

−∞
f(x) dλm,N (F (x)) →

∫∞

−∞
f(x) dλN (F (x)). Therefore, in the

case of Gaussian noise, large m ≥ 2 can be chosen so that R-estimation with weight function λm,N has

essentially the same asymptotic efficiency as ML.

Gaussian ML estimators of GARCH model parameters are also consistent when the noise distribution

is non-Gaussian (Francq and Zaköıan, 2004), and when all parameter values are positive and E{Z4
t } < ∞,

Gaussian QMLEs of η0 are asymptotically normal with mean η0 and covariance matrix n−1(E{Z4
t }−1)A−1

(Berkes and Horváth, 2004; Francq and Zaköıan, 2004). It follows that the corresponding estimators of θ0,

θ̂GML := (α̂1,GML/α̂0,GML, . . . , α̂p,GML/α̂0,GML, β̂1,GML, . . . , β̂q,GML)
′, have a limiting normal distribution

with mean θ0 and covariance matrix n−1(E{Z4
t } − 1)BA−1B′ = n−1(E{Z4

t } − 1)Γ−1, so the ARE for R-

estimation with respect to Gaussian QML is (E{Z4
t } − 1)J̃−1K̃2. The rate of convergence for Gaussian
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Distribution for Noise {Zt} ARE
Laplace 1.221
logistic 1.118
N(0, 1) 1.000

t3 ∞
t5 2.321
t7 1.341
t9 1.167
t12 1.082
t15 1.049
t20 1.026
t30 1.011

Table 3.1: AREs for R-estimation with λ(x) ≈ λN (x) with respect to Gaussian QML.

QMLEs is slower than n1/2 when E{Z4
t } = ∞, however (Hall and Yao, 2003). Since E{Z4

t } < ∞ is not

required for the n1/2-consistency of θ̂R, R-estimation is more robust than traditional Gaussian QML.

In Table 3.1 we give the values of ARE (E{Z4
t }− 1)J̃−1K̃2 (rounded to the nearest three decimal places)

when the weight function is λm,N with m large (ie., λ(x) ≈ λN (x)) and the noise distribution is Laplace,

logistic, N(0,1), and rescaled t with various degrees of freedom. Note that, in the case of rescaled t3 noise,

we have an ARE of ∞, since in this case E{Z4
t } = ∞ and so Gaussian QMLEs have a rate of convergence

slower than n1/2. Since all AREs in Table 3.1 are greater than or equal to one, with equality only when

the noise distribution is Gaussian, R-estimation is not only more robust than Gaussian QML, but also

tends to be more efficient. In the case of R-estimation for linear model parameters, R-estimation with the

weight function that is optimal for Gaussian noise is always at least as asymptotically efficient as Gaussian

QML (Chernoff and Savage, 1958; Gastwirth and Wolff, 1968; see Hettmansperger and McKean, 1998, for

discussion). As can be seen in Table 3.1, this is true in the case of GARCH parameter estimation for

commonly used noise distributions, but it is possible for (E{Z4
t } − 1)J̃−1K̃2 to be much less than one

when λ(x) ≈ [Φ−1((x + 1)/2)]2 − 1, however (for example, when ln(Z2
t ) ∼ N(µ = −0.125, σ2 = 0.25),

(E{Z4
t } − 1)J̃−1K̃2 = 0.787).

Remark 7: R-estimation is also relatively efficient when compared to more robust GARCH estimation

techniques. To demonstrate, in Table 3.2, we give AREs for R-estimation with weight function λt7(x) :=

[7{F−1
t7 ((x+1)/2)}2− 5]/[{F−1

t7 ((x+1)/2)}2+5], where Ft7 represents the distribution function for rescaled

t7 noise, with respect to (A) Laplace QML (Berkes and Horváth, 2004; Mukherjee, 2008), (B) rescaled
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ARE
Distribution for Noise {Zt} (A) (B) (C) (D)

Laplace 0.986 1.014 2.053 1.233
logistic 1.013 1.002 2.097 1.139
N(0, 1) 1.094 1.041 2.607 0.958

t3 1.411 1.052 1.551 ∞
t5 1.058 1.005 1.867 2.489
t7 1.029 1.000 2.040 1.400
t9 1.028 1.002 2.147 1.198
t12 1.036 1.007 2.250 1.093
t15 1.043 1.011 2.315 1.050
t20 1.053 1.017 2.383 1.016
t30 1.064 1.024 2.454 0.991

Table 3.2: AREs for R-estimation with weight function λt7 with respect to (A) Laplace QML, (B) rescaled

Student’s t7 QML, (C) least absolute deviations, and (D) Gaussian QML.

Student’s t7 QML (Muler and Yohai, 2008), and (C) the least absolute deviations estimation technique

proposed by Peng and Yao (2003) involving log-transformed GARCH residuals. The weight function λt7 is

optimal when the noise distribution is rescaled Student’s t7 and satisfies assumptions A4 and A7. Under

general conditions, which include A8, estimators (A)–(C) are asymptotically normal and n1/2-consistent for

(α00/c, α01/c, . . . , α0p/c, β01, . . . , β0q)
′, for different values of c > 0. These techniques can, therefore, also

be used to obtain n1/2-consistent and asymptotically normal estimators of θ0. For the noise distributions

considered in Table 3.2, R-estimation with weight function λt7 is more efficient than Laplace QML for all

distributions except Laplace, and R-estimation uniformly dominates rescaled Student’s t7 QML and least

absolute deviations with respect to asymptotic efficiency. AREs for R-estimation with weight function λt7

with respect to Gaussian QML are also given in Table 3.2 (column (D)). Since, when compared to other

techniques, R-estimation with weight function λt7 performs well for light, medium, and heavier-tailed noise

distributions, we recommend that it or R-estimation with a similar weight function be used in practice when

the noise distribution is unknown. The weight function λt7 is plotted in Figure 3.1, along with λN . Note

that λt7(x) and λN (x) are fairly similar except near x = 1.

Remark 8: The Wilcoxon weight function λW (x) = 2x− 1 is also shown in Figure 3.1. When estimating

linear regression or linear time series model parameters via R-estimation, it is generally the recommended

weight function when the noise distribution is unknown, since the corresponding R-estimators tend to be
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Figure 3.1: The weight functions λt7 , λN , and Wilcoxon weight function λW .

relatively efficient (see, for example, Hettmansperger and McKean, 1998, Andrews, Davis, and Breidt, 2007,

and Andrews, 2008). In the case of linear model estimation, λW is the optimal weight function when the

noise distribution is logistic and, for R-estimation of GARCH model parameters, λW is optimal when ln(Z2
t )

is logistic. R-estimation with the Wilcoxon function is not relatively efficient for GARCH models with

commonly used noise distributions, however. To demonstrate, in Table 3.3, we give AREs for R-estimation

with the Wilcoxon function with respect to R-estimation with weight function λt7 . All AREs are less than

one.

Remark 9: For estimating η0 = (α00, α01, . . . , α0p, β01, . . . , β0q)
′, an alternative to using Gaussian QML or

ML with a noise distribution resembling the empirical distribution for R-estimation residuals is to estimate

α00 via α̂0 := n−1
∑n

t=p+1 exp(εt(θ̂R)) and then let η̂ = (α̂0, α̂0θ̂1,R, . . . , α̂0θ̂p,R, θ̂p+1,R, . . . , θ̂p+q,R)
′. Since

α̂0 = n−1
n∑

t=p+1

exp(εt(θ̂R)) = n−1
n∑

t=p+1

X2
t

σ̃2
t (θ̂R)

= n−1
n∑

t=p+1

α00Z
2
t

σ2
t /α00

σ̃2
t (θ̂R)

(3.4)

and, using the proof of Lemma 5.8 in Berkes, Horváth, and Kokoszka (2003), it can be shown that the

right-hand side of (3.4) equals n−1
∑n

t=p+1 α00Z
2
t + op(1), α̂0

P→ α00. By Theorem 3.1, θ̂R
P→ θ0 =

(α01/α00, . . . , α0p/α00, β01, . . . , β0q)
′, and so η̂ is consistent for η0. From Theorem 3.1 and Corollary 3.1,

we have the limiting distributions for θ̂i,R, i = p + 1, . . . , p + q, and when E{Z4
t } < ∞, it can be shown
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Distribution for Noise {Zt} ARE
Laplace 0.760
logistic 0.736
N(0, 1) 0.634

t3 0.911
t5 0.801
t7 0.753
t9 0.727
t12 0.703
t15 0.690
t20 0.676
t30 0.662

Table 3.3: AREs for R-estimation with the Wilcoxon function with respect to R-estimation with weight

function λt7 .

that n1/2(α̂0 − α00)
d→ α00(ξ

′E{∂ε∗t (θ0)/∂θ} + Ỹ ) and, for i ∈ {1, . . . , p}, n1/2(α̂0θ̂i,R − α0i)
d→ α00ξi +

α0i(ξ
′E{∂ε∗t (θ0)/∂θ} + Ỹ ), with the random vector ξ as defined in equation (3.2), Ỹ ∼ N(0,Var{Z2

t })

independent of ξ, and ξi denotes the ith element of ξ. It follows that, if A1–A8 hold and E{Z4
t } < ∞,

then n1/2(α̂0 − α00)
d→ N(0, α2

00[(E{∂ε∗t (θ0)/∂θ})′ΣE{∂ε∗t (θ0)/∂θ} + Var{Z2
t }]) and, for i ∈ {1, . . . , p},

n1/2(α̂0θ̂i,R − α0i)
d→ N(0,C′

iΣCi + α2
0iVar{Z2

t }), where

Ci := ( 0, . . . , 0,
︸ ︷︷ ︸

i−1 times

α00, 0, . . . , 0
︸ ︷︷ ︸

p+q−i times

)′ + α0i E

{
∂ε∗t (θ0)

∂θ

}

.

However, as is the case for Gaussian QMLEs of η0, when E{Z4
t } = ∞, the estimators α̂0 and α̂0θ̂i,R,

i ∈ {1, . . . , p}, can be shown to have a rate of convergence slower than n1/2, so this is not a robust technique.

3.2 Order Selection and Interval Estimation

To use Theorem 3.1 to make inferences about θ0, estimates of K̃ and Γ are needed. Since λ is determined

by the practitioner, J̃ is known. For estimating Γ, we propose using

Γ̂n :=
1

n

n∑

t=p+1

[

∂εt(θ̂R)

∂θ
−
(

1

n

n∑

s=p+1

∂εs(θ̂R)

∂θ

)][

∂εt(θ̂R)

∂θ
−
(

1

n

n∑

s=p+1

∂εs(θ̂R)

∂θ

)]′

,

with {εt(θ)} as defined in (2.3). Since θ̂R
P→ θ0, by the proofs of Lemmas 11 and 12 in Francq and

Zaköıan (2007), Γ̂n
P→ Γ. A consistent estimator for K̃ is given in the following theorem.

Theorem 3.2. Consider the empirical distribution function F̂n(x) := (n− p)−1
∑n

t=p+1 I{εt(θ̂R) ≤ x} and
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the kernel density estimator

f̂n(x) :=
1

bnn

n∑

t=p+1

κ

(

εt(θ̂R)− x

bn

)

, (3.5)

where κ is a uniformly continuous, differentiable kernel density function on IR such that κ′ is uniformly

continuous on IR and
∫
|x ln |x||1/2|κ′(x)| dx < ∞, and the bandwidth sequence {bn} is chosen so that bn

P→ 0

and b2n
√
n

P→ ∞ as n → ∞. If A1–A7 and either A8, A9 or A10 hold, then

K̂n :=

∫ ∞

−∞

f̂n(x) dλ(F̂n(x)) =

n∑

t=p+1

f̂n

(

ε(t)(θ̂R)
) [

λ

(
t− p

n− p

)

− λ

(
t− p− 1

n− p

)]

P→ K̃.

Proof. Let fε and Fε denote the density and distribution functions for εt = ln(α00Z
2
t ). By Lemma 5.5 in the

Appendix, supx∈IR |f̂n(x)−fε(x)| P→ 0 and, using the Glivenko-Cantelli theorem, supx∈IR |F̂n(x)−Fε(x)| P→ 0.

As a result, K̂n
P→
∫∞

−∞ fε(x) dλ(Fε(x)) by the proof of Theorem 4.5.3 in Koul (2002). Since fε(x) =

f(x− ln(α00)) and Fε(x) = F (x− ln(α00)), K̃ =
∫∞

−∞ fε(x) dλ(Fε(x)), and so the proof is complete. �

It follows that Σ̂n := J̃K̂−2
n Γ̂

−1

n is consistent for Σ = J̃K̃−2Γ−1. Note that the Gaussian and Student’s

t densities satisfy the conditions for the kernel density function κ in Theorem 3.2.

For GARCH order selection, we can test null hypotheses of the form

H0 : θ0i1 = · · · = θ0im = 0, (3.6)

with 1 ≤ i1 < · · · < im ≤ p+ q. Following Corollary 3.1, a corresponding Wald test statistic is given by

Wn := n(Wθ̂R)
′(WΣ̂nW

′)−1Wθ̂R, (3.7)

where W = [wj,k] is the m × (p+ q) matrix with w`,i` = 1 for ` ∈ {1, . . . ,m} and wj,k = 0 otherwise. The

limiting distribution for Wn under H0 is given in the following theorem. This limiting distribution has a

simple form when we are testing the nullity of just one parameter.

Theorem 3.3. Under (3.6), if A1–A7 and either A9 or A10 hold, then Wn
d→ W̃ := ξ′W′(WΣW′)−1Wξ

as n → ∞, with ξ as defined in (3.2). If m = 1 and θ0j > 0 for j 6= i1, then W̃
d
= V 2I{V ≥ 0} with

V ∼ N(0, 1).
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Proof. By Theorem 3.1, under these conditions, n1/2Wθ̂R
d→ Wξ. Since Σ̂n

P→ Σ, it follows that Wn
d→ W̃ .

If m = 1 and θ0j > 0 for j 6= i1, following Remark 3, Wξ = ξi1 = Yi1I{Yi1 ≥ 0} with Yi1 ∼ N(0,Σi1,i1)

(Σi1,i1 represents element i1, i1 of Σ), so W̃ = Σ−1
i1,i1

Y 2
i1
I{Yi1 ≥ 0} d

= V 2I{V ≥ 0}. �

Therefore, assuming θ0j > 0 for j 6= i1, we can reject the null hypothesis H0 : θ0i1 = 0 at level of

significance α < 1/2 if Wn > χ2
1,1−2α, where χ2

1,1−2α represents the 1 − 2α quantile of the chi-squared

distribution with one degree of freedom. Finding a critical value for testing the nullity of multiple parameters

θ0i1 , . . . , θ0im is not as simple, since, in general, the distribution for the limiting random variable W̃ under H0

depends on the values of the other model parameters and the distribution for the iid noise {Zt}. However,

one can examine the distribution for Wn under H0 in practice by simulating GARCH series of length n with

parameter vector θ∗ = (θ∗1 , . . . , θ
∗
p+q)

′, with θ∗j = 0 for j ∈ {i1, . . . , im} and θ∗j = θ̂j,R otherwise, and iid noise

following the empirical distribution for R-estimation residuals, and then obtaining the corresponding values

for Wn.

Test statistics for testing the nullity of GARCH model parameters using Gaussian QMLEs are considered

in Francq and Zaköıan (2009). Limiting results in Francq and Zaköıan (2009) require E{Z4
t } < ∞, however.

In contrast, when A9 holds, higher-order moment conditions are not required for the limiting result in

Theorem 3.3.

Although parameter estimation for the ARCH(p) model with θ01 = · · · = θ0p = 0 is not considered in

this paper since A2 is not satisfied, our results can be used to show that, under H0 : θ01 = · · · = θ0p = 0,

if E{Z4
t } < ∞, then Wn

d→ W̃ = ξ′Σ−1ξ, where, in this case, ξ = (Y1I{Y1 ≥ 0}, . . . , YpI{Yp ≥ 0})′,

Y = (Y1, . . . , Yp)
′ ∼ N(0,Σ), and Σ = J̃K̃−2(Var{Z2

t })−1I (I represents the identity matrix). It follows

that, under these conditions, Wn
d→ V 2

1 I{V1 ≥ 0} + · · · + V 2
p I{Vp ≥ 0}, where V1, . . . , Vp are iid N(0,1).

Consequently, R-estimation and the Wald test statistic (3.7) can be used to identify ARCH-type conditional

heteroskedasticity in an observed time series. However, because E{Z4
t } < ∞ is required, this technique

is just as robust as more traditional Gaussian likelihood-based techniques (see Francq and Zaköıan, 2009).

Therefore, in practice, the rank-based Wald test statistic is most useful for choosing between GARCH models

of different orders that are under consideration for an observed conditionally heteroskedastic series. Once

appropriate GARCH model orders p and q have been identified, confidence intervals for the elements of θ0
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can be obtained using the limiting normal result in Corollary 3.1 and the consistent estimate Σ̂n of Σ.

4 Numerical Results

4.1 Simulation Study

In this section, we give the results of a simulation study to assess the quality of the asymptotic approximations

for finite samples. First, for each of 1000 replicates, we simulated a GARCH(1,1) series with parameters

α00 = 0.01, α01 = 0.5, and β01 = 0.4, and found the R-estimate θ̂R of θ0 = (0.5/0.01, 0.4)′ = (50, 0.4)′

by minimizing Dn in (2.5). To reduce the possibility of the optimizer getting trapped at local minima, we

used 100 starting values for each replicate. Starting values for α1 and β1 = θ2, with α1 + β1 < 1, were

randomly chosen, and then, since α1 + β1 < 1 implies Var{Xt} = α0/(1 − α1 − β1), we used the values of

α1/[s
2
X(1−α1−β1)], where s

2
X represents sample variance for {Xt}nt=1, for the starting values of θ1 = α1/α0.

We evaluated Dn at each of the 100 candidate values and then reduced the collection of initial values to the

three with the smallest values of Dn. Using these three initial values as starting points, we found optimized

values by implementing the Nelder-Mead algorithm (Nelder and Mead, 1965). The optimized value for which

Dn was smallest was chosen to be θ̂R. By Corollary 3.1, in this GARCH(1,1) case, θ̂R is asymptotically

normal with mean θ0 and covariance matrix n−1Σ = n−1J̃K̃−2Γ−1, with

Γ = Var

{
∂ε∗t (θ0)

∂θ

}

= Var













α00(
∑∞

j=0 β
j
01X

2
t−1−j)/σ

2
t

(
∑∞

j=0 β
j
01σ

2
t−1−j)/σ

2
t













.

Confidence intervals for the elements of θ0 were, therefore, constructed using the asymptotic normality and

Σ̂n, the consistent estimator of Σ. For the kernel density estimator (3.5), we used the standard Gaussian

kernel density function and, because of its recommendation in Silverman (1986, page 48), we used bandwidth

bn = 0.9n−1/5min{sε, IQRε/1.34}, where sε and IQRε represent sample standard deviation and interquartile

range for {εt(θ̂R)}nt=p+1.

Results of these simulations, for N(0,1) and rescaled t3 noise, and weight functions λt7(x) = [7{F−1
t7 ((x+

1)/2)}2 − 5]/[{F−1
t7 ((x + 1)/2)}2 + 5] and λW (x) = 2x − 1, are given in Tables 4.1 and 4.2. We show the

empirical means, standard deviations, and percent coverages of nominal 95% confidence intervals for the
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Asymptotic Empirical
std. dev. mean std. dev. % coverage

n mean (N(0,1), t3) (N(0,1), t3) (N(0,1), t3) (N(0,1), t3)
250 θ1 = α1/α0 = 50 19.6, 25.3 48.3, 52.0 20.2, 28.6 85.4, 89.0

θ2 = β1 = 0.4 0.104, 0.158 0.378, 0.369 0.124, 0.178 92.6, 91.0
500 θ1 = α1/α0 = 50 13.9, 17.9 50.3, 49.8 14.4, 17.8 91.7, 91.0

θ2 = β1 = 0.4 0.073, 0.112 0.389, 0.385 0.079, 0.122 94.8, 95.1
2000 θ1 = α1/α0 = 50 6.93, 8.94 49.8, 50.4 7.00, 8.83 94.1, 95.6

θ2 = β1 = 0.4 0.037, 0.056 0.398, 0.399 0.038, 0.057 96.6, 97.6

Table 4.1: Empirical means, standard deviations, and percent coverages of nominal 95% confidence intervals

for R-estimates of GARCH model parameters. The N(0,1) and rescaled t3 noise distributions and weight

function λt7(x) = [7{F−1
t7 ((x+ 1)/2)}2 − 5]/[{F−1

t7 ((x + 1)/2)}2 + 5] were used.

Asymptotic Empirical
std. dev. mean std. dev. % coverage

n mean (N(0,1), t3) (N(0,1), t3) (N(0,1), t3) (N(0,1), t3)
250 θ1 = α1/α0 = 50 24.6, 26.5 52.0, 52.9 32.9, 30.6 87.5, 88.5

θ2 = β1 = 0.4 0.130, 0.166 0.375, 0.377 0.148, 0.185 93.2, 92.1
500 θ1 = α1/α0 = 50 17.4, 18.7 51.2, 51.9 19.5, 21.3 91.1, 92.9

θ2 = β1 = 0.4 0.092, 0.117 0.389, 0.395 0.102, 0.120 94.2, 96.9
2000 θ1 = α1/α0 = 50 8.70, 9.37 50.0, 50.7 8.79, 9.57 94.4, 95.5

θ2 = β1 = 0.4 0.046, 0.059 0.397, 0.395 0.046, 0.060 97.6, 96.7

Table 4.2: Empirical means, standard deviations, and percent coverages of nominal 95% confidence intervals

for R-estimates of GARCH model parameters. The N(0,1) and rescaled t3 noise distributions and Wilcoxon

weight function λW (x) = 2x− 1 were used.

R-estimates of θ0. The asymptotic means and standard deviations are also given in Tables 4.1 and 4.2. We

see that the R-estimates appear nearly unbiased, and the asymptotic standard deviations fairly accurately

reflect the true variability of the estimates, so R-estimation with weight function λt7 is more precise than

R-estimation with the Wilcoxon weight function. We also see that the confidence interval coverages are close

to the nominal 95% level, especially when n = 2000. Normal probability plots show that the R-estimates

are approximately normal, particularly for large n.

We also ran simulations to assess the accuracy of the asymptotic approximations in the case of one null

parameter value, by fitting GARCH(2,1) and GARCH(1,2) models to GARCH(1,1) series with θ0 = (50, 0.4)′.

When θ0j = 0, we obtained the Wald statistic (3.7) for testing H0 : θ0j = 0 and compared it to χ2
1,0.9 = 2.706,

the level 0.05 critical value for testing the nullity of one parameter assuming all other parameters are positive.
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Empirical
mean std. dev. % Wald stats. > 2.706

n (N(0,1), t3) (N(0,1), t3) (N(0,1), t3)
250 θ1 = α1/α0 = 50 41.7, 42.3 21.2, 26.3

θ2 = α2/α0 = 0 7.15, 10.6 8.97, 14.5 16.2, 7.0
θ3 = β1 = 0.4 0.296, 0.273 0.171, 0.207

500 θ1 = α1/α0 = 50 43.9, 43.8 15.5, 19.0
θ2 = α2/α0 = 0 4.87, 7.62 6.16, 9.58 13.7, 11.4
θ3 = β1 = 0.4 0.326, 0.307 0.124, 0.164

2000 θ1 = α1/α0 = 50 46.9, 46.6 7.72, 10.0
θ2 = α2/α0 = 0 2.66, 3.79 3.35, 5.00 9.1, 9.4
θ3 = β1 = 0.4 0.369, 0.359 0.053, 0.082

250 θ1 = α1/α0 = 50 51.2, 52.0 22.5, 28.9
θ2 = β1 = 0.4 0.297, 0.276 0.148, 0.188
θ3 = β2 = 0 0.060, 0.080 0.095, 0.127 9.9, 7.1

500 θ1 = α1/α0 = 50 49.9, 51.6 14.5, 18.8
θ2 = β1 = 0.4 0.337, 0.312 0.109, 0.144
θ3 = β2 = 0 0.039, 0.059 0.065, 0.094 7.9, 8.3

2000 θ1 = α1/α0 = 50 50.1, 50.4 7.11, 9.13
θ2 = β1 = 0.4 0.368, 0.356 0.054, 0.081
θ3 = β2 = 0 0.020, 0.030 0.030, 0.044 5.9, 6.5

Table 4.3: Empirical means, standard deviations, and the percentages of Wald statistics above 2.706 for R-

estimates of GARCH model parameters. The N(0,1) and rescaled t3 noise distributions and weight function

λt7(x) = [7{F−1
t7 ((x+ 1)/2)}2 − 5]/[{F−1

t7 ((x + 1)/2)}2 + 5] were used.

Empirical means and standard deviations for the estimates, and the percentages of Wald statistics above

2.706 are given in Tables 4.3 and 4.4. The R-estimators appear consistent in both the GARCH(2,1) and

GARCH(1,2) cases, and the test sizes are close to the nominal 0.05 level, particularly when n is large.

4.2 GARCH Modeling

In Figure 4.1(a), we give the daily log-returns for the Japanese yen to U.S. dollar exchange rate for January 4,

1993–December 31, 2002. Sample autocorrelation functions for these data, {Xt}2514t=1 , and their absolute

values and squares are given in Figure 4.1(b)–(d) with the bounds ±1.96/
√
2514, approximate 95% confidence

bounds for the sample correlations assuming the observations are iid (see, for example, Brockwell and Davis,

1991, Section 7.2). Since the log-returns {Xt} exhibit volatility clustering and appear uncorrelated but

dependent, a GARCH model appears appropriate for this series. To find a suitable fitted model, we replaced

the seventeen values ofXt = 0 with Xt = 10−8 (a very slight alteration of the series which allows us to assume
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Empirical
mean std. dev. % Wald stats. > 2.706

n (N(0,1), t3) (N(0,1), t3) (N(0,1), t3)
250 θ1 = α1/α0 = 50 41.6, 43.7 26.2, 29.9

θ2 = α2/α0 = 0 8.48, 10.8 10.9, 14.0 7.9, 3.4
θ3 = β1 = 0.4 0.279, 0.286 0.191, 0.219

500 θ1 = α1/α0 = 50 43.6, 45.2 18.7, 20.9
θ2 = α2/α0 = 0 6.44, 7.82 8.17, 10.2 13.2, 9.1
θ3 = β1 = 0.4 0.314, 0.308 0.146, 0.169

2000 θ1 = α1/α0 = 50 46.8, 46.5 9.61, 10.2
θ2 = α2/α0 = 0 2.91, 3.95 4.00, 5.48 7.9, 8.4
θ3 = β1 = 0.4 0.365, 0.360 0.071, 0.083

250 θ1 = α1/α0 = 50 54.6, 56.0 42.7, 33.7
θ2 = β1 = 0.4 0.288, 0.271 0.167, 0.201
θ3 = β2 = 0 0.078, 0.090 0.124, 0.141 7.6, 8.1

500 θ1 = α1/α0 = 50 51.3, 52.3 18.5, 19.9
θ2 = β1 = 0.4 0.326, 0.318 0.128, 0.156
θ3 = β2 = 0 0.050, 0.063 0.083, 0.100 8.0, 8.6

2000 θ1 = α1/α0 = 50 50.5, 50.6 8.84, 9.44
θ2 = β1 = 0.4 0.363, 0.351 0.070, 0.085
θ3 = β2 = 0 0.026, 0.032 0.039, 0.047 6.0, 7.1

Table 4.4: Empirical means, standard deviations, and the percentages of Wald statistics above 2.706 for R-

estimates of GARCH model parameters. The N(0,1) and rescaled t3 noise distributions and Wilcoxon weight

function λW (x) = 2x− 1 were used.
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Figure 4.1: (a) The daily log-returns for the Japanese yen to U.S. dollar exchange rate for January 4, 1993–

December 31, 2002, with sample autocorrelation functions for (b) the log-returns, (c) their absolute values,

and (d) their squares.
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Figure 4.2: Sample autocorrelation functions for the (a) absolute values and (b) squares of the GARCH(1,1)

residuals obtained via R-estimation.

A3 and compute {ln(X2
t )}), and fit low order ARCH/GARCH models to the data via R-estimation with

weight function λt7(x) = [7{F−1
t7 ((x+1)/2)}2− 5]/[{F−1

t7 ((x+1)/2)}2+5]. ARCH(1) and ARCH(2) models

were not appropriate, since those residuals were dependent, but, as is often the case with log-returns series,

GARCH(1,1) residuals appeared independent. To demonstrate, in Figure 4.2, we give sample autocorrelation

functions for the absolute values and squares of the residuals {Xt/

√

σ̃2
t (θ̂R)} from the GARCH(1,1) fitted

model; note that the values of {Xt/

√

σ̃2
t (θ̂R)} resemble {Xt/

√

σ2
t /α00} = {√α00Zt} when θ̂R is close to

the true parameter vector θ0. The corresponding R-estimates for the GARCH(1,1) parameter values are

θ̂1 = α̂1/α0 = 45274 and θ̂2 = β̂1 = 0.9388, with approximate 95% confidence intervals (20793, 69755) and

(0.9170, 0.9606). Higher order GARCH(2,1) and GARCH(1,2) models were also considered, but low values

of the Wald test statistic led us to fail to reject the null hypotheses H0 : α02/α00 = 0 and H0 : β02 = 0 at

the 0.05 level of significance. This analysis, therefore, indicates that a GARCH(1,1) model is suitable for

the exchange rate log-returns.

We then considered using ML to fit a GARCH(1,1) model to the data and obtain individual esti-

mates for α00 and α01. A kernel estimate of the density for the standardized GARCH(1,1) residuals, ie.

{Xt/

√

σ̃2
t (θ̂R)} standardized to have variance one, is given in Figure 4.3(a), along with the N(0,1) den-

sity. Since the distribution for the residuals appears roughly symmetric, but more peaked and heavier-
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Figure 4.3: Kernel estimate of the density for the standardized GARCH(1,1) residuals with (a) the N(0,1)

density function and (b) the rescaled t5.266 density function.

tailed than Gaussian, we considered modeling the GARCH(1,1) noise distribution as rescaled Student’s t.

The ML estimate of degrees of freedom is 5.266 and, in Figure 4.3(b), it can be seen that the kernel

density estimate for the standardized residuals and the t5.266 density are close, so it appears reasonable

to model the log-returns series as GARCH(1,1) with iid rescaled t5.266 noise. Corresponding ML esti-

mates of the model parameters are α̂0 = 9.632 × 10−7, α̂1 = 0.04356, and β̂1 = 0.9393, and, using the

theory of Berkes and Horváth (2004), approximate 95% confidence intervals for the parameter values are

(4.310×10−7, 14.953×10−7), (0.02663, 0.06050), and (0.9176, 0.9610). Note that the ML estimate for β01 and

the corresponding confidence interval are nearly the same as those obtained via R-estimation, even though

no specific distributional information was used for R-estimation. Also, α̂1/α̂0 = 45231, which is quite close

to the R-estimate of θ01 = α01/α00.

Finally, to verify that the rescaled t5.266 distribution is suitable for the fitted GARCH(1,1) noise process,

we used the ML residuals and the Kolmogorov-Smirnov test described in Koul and Ling (2006) to test this

null hypothesis. The test statistic Kn equals 1.194 and, via simulation, we found a corresponding p-value of

0.409. We, therefore, failed to reject H0 (the noise distribution is t5.266) at the 0.05 level of significance, and

so this test result indicates that the rescaled t5.266 distribution is appropriate.
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Appendix

This section contains proofs of the lemmas used to establish Theorems 3.1 and 3.2. Assume conditions

A1–A7 and either A8, A9 or A10 hold throughout. To begin, note that following (2.3)–(2.4), the first partial

derivatives for the residuals {εt(θ)}nt=1 are given by ∂εt(θ)/∂θi = −[∂σ̃2
t (θ)/∂θi]/σ̃

2
t (θ), i ∈ {1, . . . , p + q},

with

∂σ̃2
t (θ)

∂θi
=







0, t ≤ p,

X2
t−i +

∑q
j=1 θp+j

(
∂σ̃2

t−j(θ)/∂θi
)
, t ∈ {p+ 1, . . . , n}, i ∈ {1, . . . , p},

σ̃2
t+p−i(θ) +

∑q
j=1 θp+j

(
∂σ̃2

t−j(θ)/∂θi
)
, t ∈ {p+ 1, . . . , n}, i ∈ {p+ 1, . . . , p+ q}.

And we let

∂ε(θ)

∂θ
=

1

n− p

n∑

t=p+1

∂εt(θ)

∂θ
and

∂ε∗(θ)

∂θ
=

1

n− p

n∑

t=p+1

∂ε∗t (θ)

∂θ

(recall that the partial derivatives ∂ε∗t (θ)/∂θi, i ∈ {1, . . . , p+ q}, are given in (3.1)).

Lemma 5.1. As n → ∞,

1√
n

n∑

t=p+1

λ(Fε(εt))

[

∂εt(θ0)

∂θ
− ∂ε(θ0)

∂θ

]

d→ N ∼ N(0, J̃Γ),

where εt = ln(α00Z
2
t ) and Fε represents the distribution function for εt.

Proof. By the proof of Lemma 12 in Francq and Zaköıan (2007), n−1/2
∑n

t=p+1 |∂εt(θ0)/∂θi−∂ε∗t (θ0)/∂θi| P→

0 for any i ∈ {1, . . . , p+ q}. It, therefore, suffices to show that

1√
n

n∑

t=p+1

λ(Fε(εt))

[

∂ε∗t (θ0)

∂θ
− ∂ε∗(θ0)

∂θ

]

=
1√
n

n∑

t=p+1

[λ(Fε(εt))− E {λ(Fε(εt))}]
[

∂ε∗t (θ0)

∂θ
− ∂ε∗(θ0)

∂θ

]

=
1√
n

n∑

t=p+1

[λ(Fε(εt))− E {λ(Fε(εt))}]
[
∂ε∗t (θ0)

∂θ
− E

{
∂ε∗t (θ0)

∂θ

}]

−
(

1√
n

n∑

t=p+1

[λ(Fε(εt))− E {λ(Fε(εt))}]
)(

∂ε∗(θ0)

∂θ
− E

{
∂ε∗t (θ0)

∂θ

})

(5.1)

converges in distribution to N. By the central limit theorem, n−1/2
∑n

t=p+1 [λ(Fε(εt))− E{λ(Fε(εt))}] d→

N(0, J̃) and, since {∂ε∗t (θ0)/∂θ} is stationary ergodic with E|∂ε∗t (θ0)/∂θi| < ∞ ∀i (Francq and Zaköıan, 2007),
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∂ε∗(θ0)/∂θ
P→ E{∂ε∗t (θ0)/∂θ}. Hence, (5.1) equals

1√
n

n∑

t=p+1

[λ(Fε(εt))− E {λ(Fε(εt))}]
[
∂ε∗t (θ0)

∂θ
− E

{
∂ε∗t (θ0)

∂θ

}]

+ op(1). (5.2)

Equation (5.2) converges in distribution toN by the central limit theorem for martingale differences (Billings-

ley, 1961). �

Lemma 5.2. For any T ∈ (0,∞), as n → ∞,

sup
u∈Λ, ‖u‖≤T

∣
∣
∣
∣
∣

1√
n

n∑

t=p+1

u′

[

λ

(

Rt

(
θ0 + n−1/2u

)

n− p+ 1

)

− λ(Fε(εt))

][

∂εt(θ0)

∂θ
− ∂ε(θ0)

∂θ

]

− K̃u′Γu

∣
∣
∣
∣
∣

(5.3)

is op(1). (Recall that Λ = Λ1 × · · · × Λp+q, with Λi = IR if θ0i > 0 and Λi = [0,∞) if θ0i = 0.)

Proof. If Rt,n(u) := Rt(θ0 + n−1/2u) and V∗
t,n := ∂εt(θ0)/∂θ − ∂ε(θ0)/∂θ, then (5.3) can be expressed as

sup
u∈Λ, ‖u‖≤T

∣
∣
∣
∣
∣

1√
n

n∑

t=p+1

u′

[

λ

(
Rt,n(u)

n− p+ 1

)

− λ(Fε(εt))

]

V∗
t,n − K̃u′Γu

∣
∣
∣
∣
∣
.

Because the weight function λ is left-continuous and K̃ =
∫∞

−∞ fε(x) dλ(Fε(x)) =
∫ 1

0 fε(F
−1
ε (y)) dλ(y), (5.3)

equals

sup
u∈Λ, ‖u‖≤T

∣
∣
∣
∣
∣

∫ 1

0

(

1√
n

n∑

t=p+1

u′

[

I

{
Rt,n(u)

n− p+ 1
≤ y

}

− I {Fε(εt) ≤ y}
]

V∗
t,n + fε(F

−1
ε (y))u′Γu

)

dλ(y)

∣
∣
∣
∣
∣
,

which is bounded above by

sup
u∈Λ, ‖u‖≤T, y∈(0,1)

∣
∣
∣
∣
∣

1√
n

n∑

t=p+1

u′

[

I

{
Rt,n(u)

n− p+ 1
≤ y

}

− I {Fε(εt) ≤ y}
]

V∗
t,n + fε(F

−1
ε (y))u′Γu

∣
∣
∣
∣
∣

(5.4)

× [λ(1)− λ(0)]. (5.5)

Equation (5.4) is op(1); a related result is obtained in Andrews (2008, proof of Lemma 5.5) in the case of

rank-based estimation for autoregressive-moving average models and a similar proof can be used here, so we

omit the details. Since λ is bounded, the proof of this lemma is complete. �

Next consider the mixed partial derivatives of {εt(θ)}nt=1:

∂2εt(θ)

∂θi∂θj
=

1

σ̃4
t (θ)

(
∂σ̃2

t (θ)

∂θi

∂σ̃2
t (θ)

∂θj
− σ̃2

t (θ)
∂2σ̃2

t (θ)

∂θi∂θj

)

, i, j ∈ {1, . . . , p+ q},
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with

∂2σ̃2
t (θ)

∂θi∂θj
=







0, i, j ∈ {1, . . . , p},

∂σ̃2
t+p−j(θ)

∂θi
+
∑q

k=1 θp+k
∂2σ̃2

t−k(θ)

∂θi∂θj
, i ∈ {1, . . . , p}, j ∈ {p+ 1, . . . , p+ q},

∂σ̃2
t+p−j(θ)

∂θi
+

∂σ̃2
t+p−i(θ)

∂θj
+
∑q

k=1 θp+k
∂2σ̃2

t−k(θ)

∂θi∂θj
, i, j ∈ {p+ 1, . . . , p+ q},

for t ∈ {p+ 1, . . . , n}, and ∂2σ̃2
t (θ)/(∂θi∂θj) = 0 for t ≤ p. Let

∂2ε(θ)

∂θ∂θ′ =
1

n− p

n∑

t=p+1

∂2εt(θ)

∂θ∂θ′ .

Lemma 5.3. For any T ∈ (0,∞), as n → ∞,

sup
u,v∈Λ, ‖u‖,‖v‖≤T

∣
∣
∣
∣
∣

1

n

n∑

t=p+1

u′λ

(

Rt

(
θ0 + n−1/2u

)

n− p+ 1

)[

∂2εt(θ0 + n−1/2v)

∂θ∂θ′ − ∂2ε(θ0 + n−1/2v)

∂θ∂θ′

]

u

∣
∣
∣
∣
∣

P→ 0.

Proof. For any i, j ∈ {1, . . . , p+ q}, the sequence {∂2ε∗t (θ0)/(∂θi∂θj)} of mixed partial derivatives of {ε∗t (θ)}

at θ = θ0 is stationary, ergodic with E|∂2ε∗t (θ0)/(∂θi∂θj)| < ∞ and n−1
∑n

t=p+1 |∂2εt(θ0)/(∂θi∂θj) −

∂2ε∗t (θ0)/(∂θi∂θj)| P→ 0 (Francq and Zaköıan, 2007). Following Lemma 5.1, it can therefore be shown that

sup
u∈Λ, ‖u‖≤T

∣
∣
∣
∣
∣

1

n

n∑

t=p+1

u′λ(Fε(εt))

[

∂2εt(θ0)

∂θ∂θ′ − ∂2ε(θ0)

∂θ∂θ′

]

u

∣
∣
∣
∣
∣

P→ 0,

and following Lemma 5.2,

sup
u∈Λ, ‖u‖≤T

∣
∣
∣
∣
∣

1

n

n∑

t=p+1

u′

[

λ

(

Rt

(
θ0 + n−1/2u

)

n− p+ 1

)

− λ(Fε(εt))

] [

∂2εt(θ0)

∂θ∂θ′ − ∂2ε(θ0)

∂θ∂θ′

]

u

∣
∣
∣
∣
∣

P→ 0.

Since

sup
v∈Λ, ‖v‖≤T

1

n

n∑

t=p+1

∣
∣
∣
∣
∣

∂2εt(θ0 + n−1/2v)

∂θi∂θj
− ∂2εt(θ0)

∂θi∂θj

∣
∣
∣
∣
∣

P→ 0 ∀i, j ∈ {1, . . . , p+ q}

(see Francq and Zaköıan, 2007, proof of Lemma 11), the proof is complete. �

Now, for u ∈ Λ and δ1, δ2 ∈ [0, 1], let

Ũn(u, δ1, δ2) =

n∑

t=p+1

λ

(

Rt

(
θ0 + n−1/2δ1u

)

n− p+ 1

)[

εt

(

θ0 +
δ2u√
n

)

− ε

(

θ0 +
δ2u√
n

)]

−
n∑

t=p+1

λ

(

Rt

(
θ0 + n−1/2δ1u

)

n− p+ 1

)[

εt

(

θ0 +
δ1u√
n

)

− ε

(

θ0 +
δ1u√
n

)]
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and

Ṽn(u, δ1, δ2) =
n∑

t=p+1

λ

(

Rt

(
θ0 + n−1/2δ2u

)

n− p+ 1

)[

εt

(

θ0 +
δ2u√
n

)

− ε

(

θ0 +
δ2u√
n

)]

−
n∑

t=p+1

λ

(

Rt

(
θ0 + n−1/2δ2u

)

n− p+ 1

)[

εt

(

θ0 +
δ1u√
n

)

− ε

(

θ0 +
δ1u√
n

)]

.

Using Taylor series expansions,

Ũn(u, δ1, δ2)

=

n∑

t=p+1

λ

(

Rt

(
θ0 + n−1/2δ1u

)

n− p+ 1

)[

εt

(

θ0 +
δ2u√
n

)

− ε

(

θ0 +
δ2u√
n

)

− εt(θ0) + ε(θ0)

]

−
n∑

t=p+1

λ

(

Rt

(
θ0 + n−1/2δ1u

)

n− p+ 1

)[

εt

(

θ0 +
δ1u√
n

)

− ε

(

θ0 +
δ1u√
n

)

− εt(θ0) + ε(θ0)

]

=
δ2 − δ1√

n

n∑

t=p+1

u′λ

(

Rt

(
θ0 + n−1/2δ1u

)

n− p+ 1

)[

∂εt(θ0)

∂θ
− ∂ε(θ0)

∂θ

]

+
δ22
2n

n∑

t=p+1

u′λ

(

Rt

(
θ0 + n−1/2δ1u

)

n− p+ 1

)[

∂2εt(θ
∗
n(u, δ1, δ2))

∂θ∂θ′ − ∂2ε(θ∗
n(u, δ1, δ2))

∂θ∂θ′

]

u

− δ21
2n

n∑

t=p+1

u′λ

(

Rt

(
θ0 + n−1/2δ1u

)

n− p+ 1

)[

∂2εt(θ
∗
n(u, δ1, δ1))

∂θ∂θ′ − ∂2ε(θ∗
n(u, δ1, δ1))

∂θ∂θ′

]

u (5.6)

and, similarly,

Ṽn(u, δ1, δ2)

=
δ2 − δ1√

n

n∑

t=p+1

u′λ

(

Rt

(
θ0 + n−1/2δ2u

)

n− p+ 1

)[

∂εt(θ0)

∂θ
− ∂ε(θ0)

∂θ

]

+
δ22
2n

n∑

t=p+1

u′λ

(

Rt

(
θ0 + n−1/2δ2u

)

n− p+ 1

)[

∂2εt(θ
∗
n(u, δ2, δ2))

∂θ∂θ′ − ∂2ε(θ∗
n(u, δ2, δ2))

∂θ∂θ′

]

u

− δ21
2n

n∑

t=p+1

u′λ

(

Rt

(
θ0 + n−1/2δ2u

)

n− p+ 1

)[

∂2εt(θ
∗
n(u, δ2, δ1))

∂θ∂θ′ − ∂2ε(θ∗
n(u, δ2, δ1))

∂θ∂θ′

]

u, (5.7)

where the values of θ∗
n(u, ·, ·) lie between θ0 and θ0 + n−1/2u. The functions Ũn and Ṽn are used in the

proof of Lemma 5.4.

Lemma 5.4. For u ∈ Λ, let Sn(u) = Dn(θ0 + n−1/2u) − Dn(θ0) and S(u) = u′N + K̃u′Γu/2, where

N ∼ N(0, J̃Γ). Then Sn(·) d→ S(·) on C(Λ), the space of continuous functions on Λ where convergence is

equivalent to uniform convergence on every compact subset.
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Proof. Let u ∈ Λ and suppose m is any positive integer. Since

Sn(u) = Dn

(

θ0 + n−1/2u
)

−Dn(θ0) =
m∑

k=1

[

Dn

(

θ0 +
ku

m
√
n

)

−Dn

(

θ0 +
(k − 1)u

m
√
n

)]

,

we have
m∑

k=1

Ũn

(

u,
k − 1

m
,
k

m

)

≤ Sn(u) ≤
m∑

k=1

Ṽn

(

u,
k − 1

m
,
k

m

)

(5.8)

by Theorem 2.1. Using (5.6), (5.7), and Lemmas 5.1, 5.2, and 5.3,




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















Ũn

(
u, 0, 1

m

)

...

Ũn

(
u, m−1

m , 1
)

Ṽn

(
u, 0, 1

m

)

...

Ṽn

(
u, m−1

m , 1
)























d→























1
mu′N+ 0

m2 K̃u′Γu

...

1
mu′N+ m−1

m2 K̃u′Γu

1
mu′N+ 1

m2 K̃u′Γu

...

1
mu′N+ m

m2 K̃u′Γu










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
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







on IR2m. Hence, 





∑m
k=1 Ũn

(
u, k−1

m , k
m

)

∑m
k=1 Ṽn

(
u, k−1

m , k
m

)







d→







u′N+ m−1
2m K̃u′Γu

u′N+ m+1
2m K̃u′Γu







on IR2. For any ε > 0, there exists an integer m large enough so that u′N + (m − 1)/(2m)K̃u′Γu and

u′N+(m+1)/(2m)K̃u′Γu are both in an ε-neighborhood of S(u) = u′N+ K̃u′Γu/2. Thus, for any u ∈ Λ,

Sn(u)
d→ S(u). It can be shown similarly that all finite-dimensional distributions of Sn(·) converge to those

of S(·).

Using (5.8) and an argument in Andrews (2003, pages 84–86), it can be shown that

limδ→0+ lim supn→∞ P(sup
u,v∈K, ‖u−v‖≤δ |Sn(u) − Sn(v)| > η) = 0 for any η > 0 and any compact sub-

set K ⊂ Λ. Therefore, Sn(·) is tight on C(K) for any compact set K ⊂ Λ. It follows that Sn(·) d→ S(·) on

C(Λ) by Theorem 7.1 in Billingsley (1999). �

Lemma 5.5. Under the conditions of Theorem 3.2, supx∈IR |f̂n(x)− fε(x)| P→ 0 as n → ∞.

Proof. If, for x ∈ IR, fn(x) := (bnn)
−1
∑n

t=p+1 κ([εt−x]/bn), then supx∈IR |fn(x)−fε(x)| P→ 0 by Theorem A

in Silverman (1978). Using a proof similar to that of Lemma 16 on page 88 of Andrews (2003), it can be

shown that supx∈IR |f̂n(x) − fn(x)| P→ 0, and so this lemma holds. �
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