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1. Recipe for the Universe 

All the popular models for structure formation are based on three key 
ingredients: (a) a model for the background universe (b) some mechanism 
for generating small perturbations in the early universe and (c) specification 
of the nature of the dark matter. 

The background universe is usually taken to be a Friedmann model 
with an expansion factor a{t). Such a model is completely specified if the 
composition of the energy density and the Hubble constant are specified. 
We will take Ho = lOO/i k m s " 1 M p c - 1 and express the energy density 
of the various species in terms of the critical density pc = (3HQ/8KG) = 

1.88/r2 X 1 0 ~ 2 9 g c m " 3 , by writing pi = Ω{ρ0 for the i t h species. From various 
observations, we can impose the following constraints: (i) 0.01 lh~2 ^ Ω# & 
0.016/i" 2 (ii) O v a c £ 0.8 (iii) ~ 0.007/i (iv) ilR = 4Mh~2 χ 1 0 " 5 (v) 
i^total = Ω ^ 0.3. Theoretical models strongly favor Ω = 1 and it is usual 
to invoke either a cosmological constant and/or nonbaryonic dark matter 
to achieve this (e.g. Carney & Latham 1987, Pagel 1991). We shall denote 
by &>DM the total contribution due to all nonbaryonic energy densities. 

Models for structure formation also need to assume that small pertur-
bations in the energy density existed at very early epochs. These pertur-
bations can then grow via gravitational instability leading to the struc-
tures we see today. In most of the models these perturbations are gen-
erated by processes which are supposed to have taken place in the very 

early universe (say, at ζ ^ 1 0 1 8 ) . Inflationary models - which are probably 
the most successful ones in this regard - can produce density perturba-
tions with an initial power spectrum P[n(k) — Ak. Since each logarith-
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mic interval in k space will contribute to the energy density an amount 
A2

p(k) = da2/d(lnk) = (k3P(k)/2^) we find that A2

p oc k4 for Ρ ex k. 

The contribution to the gravitational potential from the same range will 
be Α2

φ = A2

p(9H$/4k4a2) which is independent of k if A2

p oc k4. Such 
a "scale-invariant" spectrum is produced in some other seeded models as 
well. All these models need to be fine-tuned to keep the amplitude A of the 
fluctuations small up to, say, ζ 10 3 . 

Given a Friedmann model with small inhomogeneities described by a 
power spectrum P(k^z-m) at a high redshift ζ = z m , we can predict unam-

biguously the power spectrum P(fc, zjji) at the epoch of decoupling ζρ « 10 3 . 
This is because the perturbations at all relevant scales are small at ζ ^ ζρ 

and we can use linear perturbation theory during this epoch. The shape 
of the spectrum at ζ = zry will not be a pure power law since the gravita-
tional amplifiction is wavelength-dependent. In general, the power at small 
scales is suppressed (relative to that at large scales) due to various physical 
processes and the exact shape of the spectrum at ζ = z^ depends on the 
kind of dark matter present in the universe. In a universe dominated by 
"hot dark matter" particles of mass m ~ 30eV, the power per logarithmic 
interval in k — space, A(k) = (k3P(k)/2n2)1/2, is peaked at k = fcmax = 0.11 
M p c ~ 1 ( m / 3 0 e V r ) and falls exponentially for k > fcmax. Hence, in these mod-
els, the scale k = fcmax will go nonlinear first and smaller structures have to 
form by fragmentation. If the universe is dominated by "cold dark matter" 
particles with mass m £ 35GeV, then A(k) is a gently increasing func-
tion of k for small k. If we set P(k) cx kn locally, the index η changes 
from 1 at k~l £ 200/i~ 1 Mpc to Oatfc - 1 ~ 1 0 / i _ 1 M p c and to about ( - 2 ) at 
k - 1 ~ lh~l Mpc. In such models small scales will go nonlinear first and 
the structure will develop hierarchically (e.g. Padmanabhan 1993). 

The situation is more complicated if two different kinds of dark matter 
are present or if the cosmological constant is nonzero. The presence of 
the cosmological constant adds to the power at large scales but suppresses 
the growth of perturbations at small scales. Similar effects take place if 
a small fraction of the dark matter is hot and the bulk of it is cold (eg. 
Ω Η Ο Μ — 0.2,Ωα£>Μ ~ 0.8). In both the cases there will be more power 
at large scales and less power at small scales, compared to standard CDM 
model. The spectrum A(k) is still a gently increasing function of k and 
small scales go nonlinear first. 

The fact, that one can compute the power spectrum at ζ ~ ZD analyt-
ically, allows one to predict large scale anisotropies in C M B R unambigu-
ously in any given model. Comparing this prediction with the anisotropy 
observed by COBE one can fix the amplitude A of the power spectrum. 
For a wide class (Padmanabhan 1992) of the models, A(k) ^ 1 0 " 3 ( A : i ) 2 

with L ~ (24 ± 4 ) / i " 1 Mpc for k~l £ 8 0 / r 1 Mpc. For CDM like mod-
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els the function A(k) flattens out at larger k and is about unity around 
k~l ~ 8h~l Mpc. In pure HDM models, A(k) has a maximum value of 
Am ~ 0A2h-2(m/30eV)2 at km ~ 0 .11Mpc- 1 (m/30eV r ) and decreases ex-
ponentially at k ^ km. 

The evolution of the power spectrum after decoupling (for ζ < z^) is 
more difficult to work out theoretically. In general, the power spectrum 
grows in amplitude (preserving the shape), as long as the perturbations 
are small (e.g. Padmanabhan 1993). In this case, we can write A(k,z) = 

[f(z)/f(z£))]A(k,ZD) for ζ < ZD. For example, in CDM models with Ω = 
l,f(z) = (1 + z ) " 1 ; thus A(k) grows by a factor 10 3 at all scales between 
the epoch of decoupling (ζρ ~ 10 3 ) and the present epoch (z — 0 ) , if 
we assume that linear theory is valid at all scales. The resulting Ao(k), 

obtained by linear extrapolation, is often used to specify the properties of 
the models. This spectrum correctly describes the power at large scales 
(say, k ' 1 £ 3 0 / i - 1 Mpc) where Δ 0 £ 0.1. The "density contrast" a(R) 

measures the rms fluctuations in mass within a randomly placed sphere of 
radius R; up to factors of order unity, σ(Κ) ~ A(k ~ Ä " 1 ) in hierarchical 
models. For most of the, COBE normalized, CDM-like models σ ( Α ) « 1 
around R « 8h'1 Mpc. Clearly linear theory cannot be trusted at smaller 
scales. 

There are two major difficulties in understanding the physics at these 
small scales. Firstly, the true power Atrue(k) of dark matter will be larger 
than Ao(k) due to nonlinear effects which are difficult to model analytically. 
Since dark matter particles interacts only through gravity, it is, of course, 
possible to study the formation of dark matter structures by numerical 
simulations. But to gain insight into the dynamics, it will be helpful to 
have simple analytic models explaining the N-body results. 

Secondly, it is important to understand gas dynamical processes before 
one can compare theory and observations at small scales. Since baryons 
can dissipate energy and sink to the minima of the dark matter potential 
wells, the statistical properties of visible galaxies and dark matter halos 
could be quite different. The situation is further complicated by the fact 
that in hierarchical models, considerable amounts of merging takes place 
at small scales. It is usual to quantify our ignorance at these scales by 
a 'bias' (acronym for 'Basic Ignorance of Astrophysical Scenarios') factor 
b and write £ g a i ( 0 = b2^mass(r). Such a parametrization is useful only if 
b is independent of scale and morphology of galaxies. This seems to be 
somewhat unlikely. Since small scale observations are based on galactic 
properties, while theoretical calculations usually deal with underlying mass 
distribution, any scale (or morphology) dependence of b could play havoc 
with predictive power of the theory. 

Recently some amount of progress has been achieved as regards the first 
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aspect, viz, understanding nonlinear clustering of dark matter (Hamilton 
et al. 1991, Nityananda & Padmanabhan 1994, Bagla & Padmanabhan 
1993, Padmanabhan et al. 1995). This approach is based on the relationship 
between the mean correlation function ξ(χ,α) and the mean relative pair 
velocity v(x,a). These quantities are related by an exact equation. 

where F = In [x3(l + £)] -> A = Ι η α , Χ = Ina; and h = —(v/àx). The char-
acteristics of this equation shows that, as the evolution proceeds, power 
from a large scale / is transferred to smaller scales up to χ = 1(1 + £)-1/3. 

By analyzing the behavior of h, it is possible to express £ (# ,a ) in terms 
of the mean correlation function in the linear theory, £ L ( ^ Ö ) - It turns out 
that: ξ(α,χ) = <2[£ζ,(α,/)] n with / 3 = x3(l + ξ) where Q = η = 1 for 
£_L < 1.2; Q = 0.7,n = 3 for 1.2 ^ £ L < 6.5 and Q = 11.7, η = 1.5 for 
£ L ^ 6.5. This relation shows that ξ is steeper than ξι. 

Unfortunately, no such simple pattern exists in the dynamics of baryons 
coupled to dark matter. The gas dynamical processes introduce several 
characteristic scales into the problem and the evolution becomes quite com-
plicated. The only reliable way of probing these systems seems to be through 
massive hydro simulations which are still at infancy. 

It is clear from the above discussions that our theoretical understand-
ing is best at large scales ^ 30/ i" 1 Mpc) where linear theory is valid, 
Δο(&) is well determined and baryonic astrophysical processes are not im-
portant. At the intermediate scales ( 3 / i _ 1 M p c ^ ^ 3 0 / i _ 1 Mpc) , it is 
not too difficult to understand the dark matter dynamics by some approx-
imation but the baryonic physics begins to be nontrivial. At still smaller 
scales, (A: - 1 ^ 3 / i _ 1 Mpc) there is considerable uncertainty in our theoreti-
cal predictions. We shall now turn to the observational probes of the power 
spectrum at different scales. 

2. Probing the power spectrum 

One of the direct ways of constraining the models is to estimate the density 
contrast a0\>s(R) from observations at different scales and compare it with 
the theoretically predicted values. Fortunately, we now have observational 
probes covering four decades of scales from 1 0 " 1 Mpc to 10 3 Mpc. We shall 
discuss the probes of different scales in decreasing order. 

2.1. NEAR HORIZON SCALES: (300 - 3000) H ^ M P C 

These scales are so large that the best way to probe them is by studying 

the M B R anisotropy at angular scales which correspond to these linear 
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scales. Since a scale L subtends an angle 0(L) = l°(L/100h 1 Mpc) at 
ζ ~ zD, the (AT/Τ) observations at (3° - 30°) probe these scales. The 
COBE-DMR observations (Smoot et al. 1992) of (AT/T)rms and (AT/T)Q 

allow one to obtain the following conclusions: (i) σ ( 1 0 3 Λ _ 1 M p c ) ~ 5 X 10~ 4 

(ii) The power spectrum at large scales is consistent with P m ( & ) ~ Ak 

and, if we take Ω = 1„ then A 1 / 4 = (24 ± 4)h~x Mpc (iii) In this range, 
a(R) £ (24 ± Ah~l M p c / Ä ) 2 . 

2.2. VERY LARGE SCALES : (80 - m)H~L MPC 

2.2.1. CMBR probes: 

These scales span (0.8° —3°) in the sky at ζ ~ zr>- Several ground based and 
balloon-borne experiments to detect anisotropy in M B R probe this scale. 
For example, the UCSB South Pole experiment (Schuster et al. 1993) has 
reported a preliminary 'detection' of (ATjT) ~ 10~ 5 at 1.5° scale, and a 
95% confidence level bound of (AT/T) < 5 X 1 0 " 5 . This translates into the 
constraint of σ ( 1 0 2 / ι _ 1 Mpc) ^ 5 X 10~ 2 . 

The angular anisotropy of C M B R is dominated by the gravitational po-
tential wells of dark matter at large scales. However, at θ ~ 1° baryonic 
process affect the pattern of anisotropy significantly. The precise deter-
mination of degree scale anisotropy can, therefore, help in distinguishing 
between different models (White, Scott & Silk 1994). 

2.2.2. Galaxy surveys: 

Some galaxy surveys, notably CfA2 survey and pencil-beam surveys probe 
scales which are about 1 0 2 / i _ 1 Mpc in depth (Broadhurst et al. 1990, Vo-
geley et al. 1992). Unfortunately, the statistics at these large scales is not 
good enough for one to obtain <r(Ä) directly from these surveys. 

2.3. LARGE SCALES : (40 - 80) H~L MPC 

2.3.1. CMBR probes: 

The scales correspond to OMBR — (24' — 48') and are probed by the experi-

ments looking for small angle anisotropies in MBR. The claimed detection 

(Cheng et al. 1994) by MIT-MASM of ( Δ Τ / Γ ) * (0.5 - 1.9) χ 1 0 " 5 at 

θ ~ 28', if confirmed, will give a bound of a(50h~1 Mpc ) ^ 0.3. 

2.3.2. Galaxy Surveys: 

Several galaxy surveys, in particular the IRAS-QDOT and A P M surveys, 
give valuable information about this range (Rowan-Robinson et al. 1990, 
Efstathiou et al. 1990, Saunders et al. 1991). The angular correlation of 
galaxies, measured by A P M survey is ω(θ) ~ (1 - 5 ) Χ 1 0 " 3 at θ ~ 14°. This 
corresponds to σ ( 5 0 / ι _ 1 Mpc) = 0.2. What is more important, these surveys 

https://doi.org/10.1017/S007418090023091X Published online by Cambridge University Press

https://doi.org/10.1017/S007418090023091X


60 T. PADMANABHAN 

can provide valuable information about the shape of the power spectrum in 

this range if we assume that galaxies faithfully trace the underlying mass 

distribution. 

2.3.3. Large scale velocity field: 

Using distance indicators which are independent of Hubble constant, it 

is possible to determine the peculiar velocity field v(R) of galaxies up to 

about 8 0 / i - 1 Mpc or so. The motion of these galaxies can be used to map 

the underlying gravitational potential at these scales. Careful analysis of 

observational data shows (e.g. Dekel 1994) that v(40h~1 Mpc) ~ (388 ± 6 7 ) 

kms" 1 and v(60h~1 Mpc) ~ (327 ± 82) kms" 1 . From these values it is 

possible to deduce that σ ( 5 0 / ι _ 1 Mpc ) ~ 0.2. These observations also allow 

us to determine the value of the parameter ( 0 ° - 6 / & I R A S ) where 6IRAS is the 

bias factor with respect to IRAS galaxies. One finds that ( 0 0 , 6 / & I R A S ) — 
1.28^0^9 which implies that if Ω = 1, then &i R A s = A N D I F ^IRAS = 

1 then Ω = 1 .51ÎJ$. 

2.3.4. Clusters and voids: 
The cluster-cluster correlation function and the spectrum of voids in the 
universe can, in principle, tell us something about these scales. Unfortu-
nately, the observational uncertainties are so large that one cannot yet 
make quantitative predictions. 

2.4. INTERMEDIATE SCALES : (8 - 40)J/" 1 MPC 

2.4.1. Galaxy Surveys: 

The galaxy-galaxy correlation function £ g g = [ r / 5 . 4 / i _ 1 M p c ] ~ 1 , 8 is fairly 
well determined at these scales. Direct observations suggest that c r g a i (8 / i _ 1 

Mpc) ~ 1 but the σοΜ and <7 g a i at these scales can be quite different because 
of possible biasing. 

2.4.2. Cluster Surveys: 

There have been several attempts to determine the correlation function of 
clusters of different classes. It is generally believed that £ c c ~ (r/L)'1'8 with 
L ~ 25f t - 1 Mpc. The index η — 1.8 is fairly well determined though the 
scale L is not; in fact, L seems to depend on the richness class of the cluster. 
The quantity (^cc /^gg) 1 ^ 2 can be thought of as measure of the relative bias 
between cluster and galaxy scales. Observations suggest (Dalton et al. 1992, 
Nicol et al. 1992, Bahcall k West 1992, Postman et al. 1992) that this 
quantity depends on the cluster class and varies in the range (2 — 8) . The 
observational uncertainties are still quite large for this quantity to be of 
real use; but if the observations improve we will have valuable information 
from f c c . 
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2.4.3. Abundance of rich clusters: 

The scale R = 8 / i _ 1 Mpc contain a mass of 1.2 Χ 1013Wi^M@. When 
this scale becomes nonlinear, it will reach an overdensity of about 6 ~ 

178, or - equivalently - it will contract to a radius of Rf ~ ( 8 / i - 1 Mpc) 
/ ( 1 7 8 ) 1 / 3 ~ 1 .5Λ - 1 Mpc. A mass of 1O 1 5 M0 in a radius of 1.5 Mpc is a good 
representation of Abell clusters we see in the universe. This implies that the 

observed abundance of Abell clusters can be directly related to a(8h~1 Mpc) . 
Several people have attempted to do this (White et al. 1993); the final 
results vary depending on the modeling of Abell clusters, and give a(8h~x 

Mpc) ~ ( 0 . 5 - 0 . 7 ) . Since a g a i ( 8 / i _ 1 M p c ) - 1, this shows that b ~ ( 1 . 2 3 - 2 ) 
at 8h-1 Mpc. 

It is possible to give this argument in a more general context (Subra-
manian & Padmanabhan 1994). Suppose that the contribution to critical 
density from collapsed structures with mass larger than M is Ω ( Μ ) , at a 
given redshift z. Then one can show that 

Ω ( Μ ) = erfc *c(l + *) 
V2a0(M) 

where 6C = 1.68 and erfc(x) is the complementary error function. The Abell 
clusters (at ζ = 0) contribute in the range Ω ~ (0.001 — 0.02). Even with 
such a wide uncertainty, we get a c i u s ~ (0.5 — 0.7). 

2.5. SMALL SCALES : (0 .05 - δ ) ^ " 1 MPC 

These scales correspond to structures with M s m o o t h — (3 Χ 10 8 — 1.2 X 
1Ο1 5)Ω/&5οΜ0 and we have considerable amount of observational data cov-
ering these scales. Unfortunately, it is not easy to make theoretical predic-
tions at these scales because of nonlinear, gas dynamical, effects. 

2.5.1. Epoch of galaxy formation: 

Observations indicate that galaxy-like structures have existed even at ζ ~ 3. 
This suggests that there must have been sufficient power at small scales to 
initiate galaxy formation at these high redshifts. Unfortunately, we do not 
have reliable estimate for the abundance of these objects at these redshifts 
and hence we cannot directly use it to constrain a(R). 

2.5.2. Abundance of quasars: 

The luminosity function of quasars is fairly well determined up to ζ « 4. If 
the astrophysical processes leading to quasar formation are known, then the 
luminosity function can be used to estimate the abundance of host objects 
at these redshifts. Though these processes are somewhat uncertain, most 
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of the models for quasar formation suggest that we must have σ(0.5/ι 1 

Mpc) £ 3. 

2.5.3. Absorption systems: 

The universe at 1 ζ 5 is also probed by the absorption of quasar 
light by intervening objects. These observations suggest that there exist 
significant amounts of clumped material in the universe at these redshifts 
with neutral hydrogen column densities of Nui — ( 1 0 1 5 — 1 0 2 2 ) c m ~ 2 . We 
can convert these numbers into abundances of dark matter halos by mak-
ing some assumptions about this structure. We find that (Subramanian & 
Padmanabhan 1994) in the redshift range of ζ ~ (1.7 — 3.5) damped Lyman 
alpha systems contribute a fractional density of Ωχ,ν ~ (0.06 — 0.23). This 
would require σ ( 1 0 1 2 Μ © ) ~ (3 - 4.5). 

2.5.4. Gunn-Peterson bound: 

While we do see absorption due to clumped neutral hydrogen, quasar spec-
tra do not show any absorption due to smoothly distributed neutral hydro-
gen. Since the universe became neutral at ζ ZD ~ 10 3 , and since galaxy 
formation could not have made all the neutral hydrogen into clumps, we 
expect the IGM to have been ionized sometime during 5 ζ 10 3 . It 
is not clear what is the source for these ionizing photons. Several possible 
scenarios (quasars, massive primordial stars, decaying particles etc.) have 
been suggested in the literature though none of these appears to be com-
pletely satisfactory. In all these scenarios, it is necessary to form structures 
at ζ ^ 5 so that an ionizing flux of about J = 10~ 2 1ergs c m ~ 2 s _ 1 H z " 1 sr" 1 

can be generated at these epochs. Once again, it is difficult to convert this 
constraint into a firm bound on σ though it seems that σ(0Μ-χ Mpc) £ 3 
will be necessary. 

3. Gravitational lensing and large scale structure 

In the above discussion we have not taken into consideration the constraints 
imposed by gravitational lensing effects on the structure formation models. 
This aspect will be discussed in detail in the other articles in this volume; 
here we shall contend ourselves with a brief mention of the possibilities. 

Gravitational lensing probes the gravitational potential directly and can 
provide valuable information at very different scales. At the largest scales 
(R ~ 10 3 Mpc) lensing can be used to probe the geometry of the universe. 
For example, it is possible to put firm bounds on the energy contributed 
by cosmological constant from such considerations. 

At intermediate scales ( R ~ 50 Mpc) lensing has the potential of pro-

viding information about the power spectrum of fluctuations which are in 
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the quasilinear phase. In principle the distortion of images can be inverted 
to obtain this information, though in practice this is extremely difficult. 

At smaller scales, the "weak lensing" - leading to arcs and arclets at 
cluster scales - is already providing a clue to the mapping of dark matter 
distribution in clusters. On the other hand, direct optical and X-ray ob-
servations provide us information about the distribution of visible matter 
in clusters. The combination of these techniques should give us valuable 
information as regards the dynamical processes which separated baryons 
from dark matter. 

At still smaller scales, galactic potentials have the capacity to produce 
multiple images of distant sources. The statistics of these multiple images 
depends crucially on the core radii of the galaxies, which in turn depends 
sensitively on the structure formation models. The absence of significant 
number of multiple images with large angular separations puts severe con-
straints on models for structure formation. The analytic modeling of non-
linear dark matter clustering described earlier could be used to strengthen 
these constraints still further. 

4. Scorecard for the models 

The simplest models one can construct will contain a single component of 
dark matter, either cold or hot. Such models are ruled out by the observa-
tions. The HDM models, normalized to COBE result will have maximum 
power of Am 9£ 0 . 4 2 / r 2 ( r a / 3 0 e V ) 2 at k = km = 0.11 Mpc-^m/eOeV). In 
such a case, structures could have started forming only around (1 + zc) = 

( A m / 1 . 6 8 ) = h^(m/30eV)2 or at zc = 0. We cannot explain a host of 
high-2 phenomena with these models. The pure CDM models face a differ-
ent difficulty. These models, normalized to COBE, predict as — 1, which is 
too high compared to the bounds from cluster abundance. When nonlinear 
effects are taken into account, one obtains £ g g oc r~2'2 for h = 0.5 which is 
too steep compared to the observed value of £ g g oc r~ 1 , 8 . In other words, 
CDM models have wrong shape for f ( r ) to account for the observations. 

The comparison of the CDM spectrum with observations suggests that 
we need more power at large scales and less power at small scales. This 
is precisely what happens in models with both hot and cold dark mat-
ter or in models with nonzero cosmological constant. These models have 
been extensively studied during the last few years, and they fare well as far 
as large and intermediate scale observations are concerned. However, they 
have considerably less power at small scales compared to CDM model. As 
a result, they do face difficulties (Subramanian & Padmanabhan 1994) in 
explaining the existence of high redshift objects like quasars. For example, 
a model with 30% HDM and 70% CDM will have σ 0 . 5 ~ 1.5; to explain 
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the abundance of quasars comfortably one needs σο.5 ^ 3.0. To explain 

the abundance of damped Lyman alpha systems one requires still larger 

values of about σο.5 ~ 4 or so. Demanding that σ ( 1 0 1 2 Μ Θ ) > 2 [which is 

equivalent to saying that 1O 1 2 M0 objects must have collapsed at a redshift 

of zu = (2/1.68) - 1 ^ 0.2] will completely rule out this model. Simi-

lar difficulties exist in models with cosmological constant. Notice that all 

models are normalized using COBE results at very large scales. Hence the 

severest constraints are provided by observations at smallest scales, since 

the "lever-arm" is longest in that case. 

The comparison of models show that it is not easy to accommodate all 

the observations even by invoking two components to the energy density. 

(These models also suffer from serious problems of fine-tuning). By and 

large, the half-life of such quick-fix models seem to be about 2-3 years. 

One is forced to conclude that to make significant progress it is probably 

necessary to perform a careful, unprejudiced analysis of: (a) large scale ob-

servational results and possible sources of error and (b) small scale baryonic 

astrophysical processes. 
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