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ON SOME DEGENERATE PARABOLIC EQUATIONS I

TADATO MATSUZAWA

§ 1. Introduction

Let Ω, I be open intervals in Rx = (— oo < x < oo), Rt = (— oo < t

< oo) respectively. For a function a(x, t) e C°°(Ω x /), consider the partial

differential operator

(1.1) L = ^L d

dt dx

A sufficient condition of Nirenberg and Treves (cf. [7]) for the operator
(1.1) to be hypoellipticυ in Ω x / is expressed as follows:

(1.2) for all x e Ω, the function t —• Im a(x, t) has only zeros of even
order less than or equal to 2ΰ in the interval 7. (£ interger, ^ 0).

This is necessary and sufficient condition when a(x, t) is analytic in
Ω χl.

Motivated by this fact, we shall consider the hypoellipticity of a
degenerated parabolic operator defined in Ω X /:

dt dx2 dx

where a(x,t), b(x,t), c(x,t) eC°°(Ω x I) and satisfy the following con-
ditions.

(1.4) Re a(x, t) ^ 0 i n f i x / ,

(1.5) for all xeΩ, the function t—>Rea(x,t) has only zeros of even
order less than or equal to 2£ in the interval /,

(1.6) |Imα(α,ί)| ^ CRea(x,t) i n f i x / ,

Received December 11, 1972.
D The operator P is said to be hypoelliptic, if any distribution u is infinitely differ-

entiable in every open set where Pu is infintely differentiate.
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58 T. MATSUZAWA

(1.7) |Im ax(x, t)\ ̂  C[Re a(x, tψ2 i n f i x / ,

(1.8) I b(x, t)\ ̂  C[Re α(α, 0]1/2 i n f i x / ,

where C denotes a positive constant.
Our aim is to construct the parametrices of the operator P. To do

so, we shall mainly rely upon the procedure of [4], [5] and the theory
of pseudo-differential operators developped in [1], [2]. Main result is
the following.

THEOREM 1.1. Suppose the operator (1.3): P satisfies the conditions
(1.4) ~ (1.8) then the operator P is hypoellίptίc in Ω X I.

EXAMPLE. The operator

— _ (tu + x 2 m ) — + i(te + x m ) — + 1, £,m i n t e g e r s > 0 ,
dt dX2 dx

satisfies the conditions (1.4) ~ (1.8) in a neighborhood of the origin.
At the end of § 6, we shall give the other examples of the operators

for which our method can be applied.

§ 2. Preliminary lemmas

We prepare the useful lemmas derived from the recent results of
Nirenberg and Treves.

LEMMA 2.1. (cf. [7], Lemma 3.1 and [6], part I). Under the con-
ditions (1.4) and (1.5), for any compact set K c Ω x / there exists a
constant C > 0 such that

(2.1) I Re ax(x, t) \ ̂  C(Re a(x, t))1/2 (x, t)eK.

L E M M A 2.2. (cf. [7], L e m m a C. 1, •••) Under the conditions (1.4)

and (1.5), for any compact set K c Ω X / there exists a constant d > 0
such that

(2.2) δ(t - tffM ^ Re Γ a{x, τ)dτ ,

where (x, t), (x, t') e K and V <* ί.

§3 Formal construction of the parametrices

Our aim is to construct approximate solutions (parametrices) of the
equation
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PARABOLIC EQUATIONS I 59

PXitE{x, y, t, if) = δ(x-y,t- f) .

For v(y, V) e CS"CRJ,«O we set

(3.1) v(ξ, t') = (2π)-^e-^v(y, t')dy, ξeR(.

Assume a parametrix of P can be written in the following form

(3.2) [Jfv](x, t) = £ (Γ e^K(x,ξ t, t')v(ξ, t')dήdf

for v(y, t') e C^(Ω x /) and (x, t) e Ω x /. Hereafter we put I = (Γt <
ί < Γ2). We have, by a formal computation,

P[Xv](x,t) = f Γ e'̂ ΓA. - α(x,ί)(A + if)1

j Txj-co Lot \ oX I

+ b(x, t) U- + ίή + c(x, t)λκ(x, ξ t, t')ύ(ξ, t')dξdt'

+ Γ e«βίK(a!,f;t,tOβ(f,ίOdf|,'-,,
J —CO

from where we arrive at the following Cauchy problem:

(3.3) ΓA - a(x, t) [4- + iξ)2 + Hx, f)(-jL + iξ) + c(x, t)]
Idt \dx I \dx I J

-K(x, f t, tθ = 0 in Ω x Rζ x A ,

Δ = {(ί, V)',Tλ<V <t< T2},

(3.4) it(a?,f;i,tOU, = 1,

(3.5) JΪ(a;,f;ί,ίO| = 0 if ί7 > t.

As a first approximation of the solution of this problem we take KQ(x, ξ
t, tθ as follows:

(3.6) LλK, = f— + a{x, t)ξ2]κ0(x, f t, tθ = 0 i n f l x ^ x J ,
L at J

(3.7) Xo(s,£;MOU' = l ,

(3.8) X0(α;, f ί, *01 = 0 if t < V .

The solution KQ can be written explicitely:
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60 T. MATSUZAWA

(3.9) K9(x,ξ;t,tf) =
exp - Γ a(x,

J t'

dτ) in Ω x Rξ x Δ ,

Next we set

L2 = - 2 i

Δ = {(«, «0 2\ < t' ^ t < Γ2},

0 if t < «'.

,t)-

+ if b(x, t) + c(x, t) in Ω x Rξ x I.

We define Kj(x9ξ\t9t
r), j = 0,1,2, •••, recurcively as the solutions of

the following problem:

(3.10) ΓA + a(x, f)?]κJ+1(x9 ξ ί, ίθ - -L2Kj(x, ξ t,
Lot J

», f t, ίθ = 0 if t < t 7 .

V)

(3.11)

(3.12) tf

Apparently we have

(3.13) KJ+ι(x, ξ t, ίθ = - £ exp ( - J | α(α, Ofdr) L ^ a j , f s,

= - ί KQ(x, ξ ί, s)L2Kj(x, ξ s, f )ds
J v

in β x Rς x Δ .

According to the formula (3.2), we set

[Λ>](a, t) - £ y^e^ff/α, f ί, tf)ϋ(ξ, t')dήdt',

= 0,1,2, . . . ,

for v(y, ίθ e Cj°(β x /). A direct computation shows that

(3.14) P[(JΓO + Xλ + + Jf>](x, t)

- v(x, t) + Γ Γ eML2Kj(x9ξ;t9tr)ϋ(S9tf)dξdtf.
J Γi J - oo

Symbolically we have

(3.140
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PARABOLIC EQUATIONS I 6 1

This formula suggests us the method of construction of the parametrices.

We shall study the properties of Kj(x, ξ t, tf) as a symbol of a pseudo-

differential operator with parameter (£, £')•

§4. Principal symbol

κjLx,ς\t,tn.
We recall some notations:

Ω an open interval in Rx = (—oo < x < oo),

I = (ϊ\ < t < Γ 2),

J = {( t , t / ) ;Γ 1 < t ' < t < Γ2},

J = { ( ί , t ' ) ; Z \ < ί ' ^ ί < T2},

DEFINITION 4.1. (cf. [2], Definition 1.1.1.) Let m,/?, δ be real num-

bers with 0 <, p^l, 0 ̂  3 ̂  1. Then we denote by S™β(fl X 22e) the

set of all a = a(x, ξ) e C°°(β x Rζ) such that for every compact set K c Ω

and all integers a,β (^ 0) the estimate

(4.1) \DiD ξaίx, ξ)\ ^ CatβtK(X + |£|)"->«+", a; e X, f e R\,

is valid for some constant CaiβίK. The elements of S™δ are called symbols,

of order m and type p,δ. We set

m

Obviously >S )̂δ(β x Rξ) is a Frechet space with the topology defined

by taking as seminorms the best constants CβtβiK in (4.1).

DEFINITION 4.2. Let J be a subset of Rt x Rt,. We denote by

S\A S™8(Ω X β f)) the set of all K(x, ζ t, V) such that

K(x,ξ;t,t')eS™δ(Ω x Rξ)

for every (ί, t') e ̂ 4 and continuous with respect to parameter (ί, t') in

J . For an integer p ^ 0 we say that

X(a, f t, ίθ e ̂ U S»,(fl x ̂ ) )

if ΰ ^ ^ M O G Γ U S / β x ^ ) ) for all , O^j^p, where D't,»

denotes a differential operator of the form
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62 T. MATSUZAWA

We set

β{A S?£Ω\x Rζ)) = Π **U S^Ω X Λ f)).

After some shrinking of the sets Ω and / (rewrite them Ω and /)
we have

PROPOSITION 4.1. For αni/ ε > 0 we have

<4.2) ffo(s, £ t, tθ e <?(J S-(fl X Λ,)) Π Π <^tf S^/%+1)(β X Rξ)),

(4.3) \{K0(x, ξ t, tθ - D(l + |5|)-sl =J 0 m β x β f as 111',

(4.4) ID

in Ω X Rξ as 11 t;, i/ 2p < α.

(z> means uniform convergency.)

Proof. We may assume

(2.20 3(ί - ί 0 M + 1 ^ Re Γα(^,τ)dτ , (x,t,if)sΩχΔ
if

for some δ > 0. (See Lemma 2.2.) That is, we have

ί(t _ fθw+1f2 ^ Re Γ α(a?, τ)f 2dτ , (x,ξ;t,tf)eΩ x Rξ x 2 .

Eemembering that

ί exp (— f α(x, τ)ξ2dτ\ (x, ξ t, V) e fl x β f x Δ

{ 0 ί < V ,

we see

Kofef U O e ^ S-ifl χ ί { » .

Next we shall prove

(4.5) Ko e Π ^PW S\$fi2M){Ω x β,)), ε > 0

in several steps,
(i) We have

(4.6) \K0(x, f t, tθ| ^ 1 in Ω x Λ€ x 2 ,

(4.7) |(X0(aj, f t, tθ - Dd + If |)"sl zj 0 in β x Λe as 11 f .
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PARABOLIC EQUATIONS I 63

In fact, for any compact set Ξ c Rξ we have

K0(x, ξ t, tθ zX 1 in Ω x Ξ as 1j V .

Hence we have (4.7) for any ε > 0.

(ii) Let # be a positive integer. We shall study Da

ζKQ{x, ξ t, ί') =

(da/dξa)KQ(x,ξ ί, ί7) which is expressed as a linear combination of terms

(4.8) (Π Df^aix, τ)ξ2dή .KQ(x, ξ ί, ίθ ,

0 < α ^ ^ 2, α ( 1 ) + - + aU) + =a.

Kewrite (4.8) as follows:

(4.9) Π \Df'\ a{x,τ)ξ2dτ) K<){x,ξ;t,t')'''i'' '

For a factor with aU) = 1 we see by (1.6)

Γ / 1 P \ I
)f \ ah' ' )\

ct / i fί
^ 2C\ξI"1 Re a(x, τ)ξ2dτ exp — —

Jί' \ aif

For a factor with aU) = 2 we see

rt / 2 f* '
2 α(#, τ)dr exp a(x,τ)ξ2dτ

if \ ait'
P 7 / 2 Cc

We use the same symbols C, C7, to express the different constants.

Thus we have

(4.10) \Da

ξKQ(x9ξ MO I ̂  Cβ(l + |f|)~a i n β χ β f χ j .

Furthermore, as in the step (i), from (4.6), (4.8) and (4.10) we have

(4.11) \Da

ξKo(x,ζ; t, £0(1 + If | ) a " e | =t 0 in β X Rζ as ί | ί7

for any β > 0.

(iii) For a positive integer β, Dβ

xK0 = (dβ/dxβ)K0(x, ξ ί, ί7) is expressed

as a linear combination of terms
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64 T. MATSUZAWA

(4.12)

0 <C β0) βa) + + θ 0 ) +

As in the step (ii) rewrite (4.12) as follows:

(4.13) Γ exp (—

First we investigate a factor with βU) — 1:

(4.14) \\x(x,τ)ξ2dτ-exv l-—^

By virtue of (1.7) and Lemma 2.1 we have

I P oβ(a;, τ)ζ2dτ ^ Cf2 Γ (Re a(x, τ))1/2dτ

Hence by using Lemma 2.2 we have

(4.15) |(4.14)| ^ C"(l

Next consider a factor with β°"> ^ 2:

ΪD^a(x,
Jt'

τ)ξ2dτ ^ C|2(ί - V)

= j 8

(Γ B,ea(x,τ)ξ2dτ\
1/2

Hence we have as above

(4.16) Γ Dί'fia(x,
β Jf

Ψj) ^ 2).

Thus we have for any β > 0

(A ΛΠ\ I Γ)β Tf (Ύ> £' -f f-'Λl <Γ Γ Π _L \&ϊ\(βx2i)/(2t+i) |« Π V P v Λ
V^t.X ι^ IU X J\ .Q\JU 9 ζ y Ί/y v ) I ^ OV-L ~t~ IC \) *•*•* " A ^ f A ^*

Furthermore as in (i), from (4.12) and (4.17) we have

in Ω X β ? as 11 ί'

for any e > 0.
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(iv) We shall study Dβ

xD
a

ξK0(x, ξ t, V) (a + β > 0) which is expressed
as a linear combination of terms

(4.19) (Π D^Df* Γ a(x, τ)ξ2dτ) -KQ(x, ξ t, t')
\ij Jt' )

0 ^ a(ί) ^ 2 , 0 < βW + a{i\ Σ ψ» + a{ί)) =

There are three cases in the factors in (4.19): a(ί) = 0, α(ί) = 1 and
tf(ί) = 2.

(a) For the factors with aH) = 0, we have examined in the step (iii).
(b) For the factors with aa) = 1 we have to examine the cases

β^ = 1 and β^ ^ 2.
(b.l) Case α(ί) = 1, β<» = 1:

By using this inequality we have as before

(4.20) ^ CO- + |f D

(b.2) Case a{ί) = 1, pj) ^ 2:

,τ)dτ ^ C | f | ( ί - ί O

By using this inequality we have

(4.21) D^DX aίx,τ)?dτ K$+w«"+» ^ C(l + \ξ^^/<u*»-ι
J t'

in Ω x Rζ x A .

(c) For the factors with a{i) = 2 we also have to examine the cases
β(j) = 1 and βφ ^ 2.

(c.l) Case a{ί) = 2, θ(^ = 1:
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ax{x, τ)dτ ^ Cit - tf)in [ Γ Re a(x, τ)dτ
\Jt'

1/2

Thus we have

(4.22) DXD\ f a(x, τ)ξ2dτ ^ C(l +

in Ω x Rζ x Δ .

(c.2) Case a{ί) = 2, β<» ^ 2 :

^ Cit - if)

from where we have

(4.23)

in Ω x Rς x Δ .

Combining all the above investigation we have finally

(4.24) \DίDa

ζKQ(x,ξ MO I ̂  Cβ,,(l + |£|)(^w)/<"+«- in β x β, x J

for all integers α, /? Ξ̂  0.

Furthermore from (4.19) and (4.24) we have

(4.25) \DίD"ξK0(x,ξ; ί,f)

in β x i?^ as t [ V

for any ε > 0, (β + a > 0).

(d) From (4.19), (4.24) we can easily see

(4.26) \D\

in Ω x Rξ x Δ .

Furthermore, since 0 ^ αU) <Ξ 2 in (4.19) and by the proof of (4.25), we

have for any ε > 0

(4.27)

if 2p < a.

\Dlt,D
β

xD
a

ξK0(l

in Ω x Rξ as t [ if
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Thus the proof of Proposition 4.1 is completed.

PROPOSITION 4.2. The oscillatory integral (cf. [2]):

(4.28) Xl%, y, ί, t') = - * Γ e'<*-™X0(3, f t, ϊ)dξ

defines a function in C°°(W), W = {(x,y,t,tf)eΩ X Ry X / x I ; \ x — y\ +

\t-V\>0}.

Proof. By definition Jίro(x,y,t,t') = 0 for V > t. By (4.12) we can

see

(4.29) \Dlt.DΪDi(e«*-™KQ(x,ξ ί, «0)|

^ Cβf^fP(l + |f |)-+^+»P exp (-ίf 2 (t - tT+1)

if t7 < t.

Hence JΓ0(^, 3/, t, f) is infinitely differentiable in {(#, 7/, t,f) e Ω x Ry x Γ

χl;\t- t'\>0}.

On the other hand, ii x Φy> t ^ f, we have (in the oscillatory sense)

(a? - y)WJίx9 y, t, tf)

= Γ ( l
J -00 \ t, g

= ( - D - Γ e ( 4 ^
J -00 \ I σζ

By Proposition 4.1 it is obviously verified that

lim Dftt,DϊD;(x - yy#lx, y, t, tθ = 0
ί l ί '

if 2p + (jS X 2£)/&£ + 1) + α < — 1. This completes the proof since /

is arbitrary.

PROPOSITION 4.3. Let Jfo(x,y,t,t') be as in Proposition 4.2. Then

X'Q(x,y9t,t
r) is regular in (y,t') as well as in (x,f).

Proof, (i) For v = v(y, V) e C^(RV X I) consider the integral

ί Xlx, y, t, t'My, t')dydt'
J ByXl

( (J" e*"KJ.x, ξ t, t')v{ξ, f)dή dt'.

By using the fact that
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and by Proposition 4.1 we can see this integral defines a function in

C~(ΩX X /,).

(ii) To prove the regularity in (y, tf) we need the following lemma.

LEMMA 4.4 (cf. [1], Lemma 2.3.) Let Ω be an open set in R™. Let

<ι(x, ξ)eS™δ(Ω x R%) and v(x) e CQ(Ω). Then we have

<4.30) \{eίxξa(x,ξ)v(x)dx

where N is an arbitrary positive integer.

Now let ψ(x, t) e C^(Ω x /) and consider the integral

ί tf,(χ, y, t9 t')ψ(χ, t)dx
J Ω

(x, ξ t, tT)dή ψ(», t)dx

We set

F0(ξ ί, ίθ = jewK0(x9 ξ t, t')ψ(x, t)dx .

Then by Lemma 4.4 and Proposition 4.1 we have F0(ξ; t, tf) e S(Δ\ S~°°).

Whence we have

ί XJLx, y, t, t')φ(x, t)dxdt
J ΩXI

= Γ T r» ff,(f t, t')dξdt e C°(RV x It.).
J t' J -oo

This completes the proof of Proposition 4.3. (cf. Lemma 5.2.)

§ 5. Symbols

Kj(x, ξ t, tf), j — 0,1,2, . We recall some notations:

K0(x,ξ;t,t') = \
exp ί — a(x, τ)ξ2dτ

\ J f

0 t<t'
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A = — + a{x, t)ξ2,
dx

L2 = -2ίa(x, t)ς4- ~ CL(X9 f)-^ + b(x, t)-d

dX dx2 dX

+ ίξb(x, t) + c(x, t),

For y = 0,1,2,. .

τz , . , , A ( Γ exp ( - [a(x, τ)ξ2dτ) L2Kj(x, ξ s, tOds ,

( o t^ϊ.

PROPOSITION 5.1. For any ε > 0 it holds that

(5.1) Kj(x, £ t, tθ e Π <̂ W SlΰfaH^HΩ X i2e)), ^ = 0,1,2,

(5.2) IDf^ D J D j K / l + \ξ|)(-^2^)/(2^i)-2p+α+o /2(2.-M))-£| - j 0

m Ω X Rξ as t\tf, if 0 <^ p < j .

Proof. As in the proof of Proposition 4.1 we shall prove in several
steps. We shall start by showing that

, ξ ί, tθ e *°α S ^ ; ^ U 2 x Rς)), / = 0,1,2, . . . .

Assuming the case /, we shall show the case j + 1. The reasoning is
very similar to the proof of Proposition 4.1 so we shall only give a
sketch.

(i) We have

(5.3) \KJ+I(x,ξ t, to I ̂  C(l + \ξ\y-u+vmw+i» in Ω x Rζ x A ,

and

(5.4) |Ki+1(α,f; t,tθ(l + If |)W+D/OCM+I»-.| ^ 0

in fl x ^ as ί 1 f

for any ε > 0.

For example, we shall examine a term in the integral of Kj+1:

I ΞΞ I Γ exp ( - Γα(a, τ)f2dτ)if 5(x, s)JK/ί», ? s, t;)ds
\J t' \ Js I

exp ί-

^ Cί(l + |f|)(-^/ίa(M+1))Γ exp (-ϊtRea(xfτ)ξ2dτ)(Eea(x,s)ξψ2ds9
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Γ exp ( - P Re a(x, τ)ξ2dτ\ (Re a(x, s)ξψ2ds

^ (Γ exp ( - P Re a(x, τ)ξ2dτ\ Re a(x, s)ξ2ds

• IP exp ί- Γ Re α(α, r)f2drj dsY* = 11 x 777 ,

772 = 1 - exp I- Γ Re α(x, r)f2dr) ^ 1,

7772 = Γ (ί - s)'-«^2(ί - s)1'2 exp ί- Γ Re a(x,τ)ζ2dt)ds

^ Γ (ί - s)<-1)/2ds sup (ί - s)1/2 exp f- Γ Re a(x, τ)ξ2dτ

^ C2(i + |f D

(cf. §4)

Hence we have

i <; c3(i

By the similar calculations we have (5.3).
Furthermore as in § 4, by definition of KJ+1 and by (5.3), we have (5.4).

(ii) We have

(5.5) \D°ξKUι{x, ξ ί, tθ I £ C(l + |f D<-w+«)/<»w+i»-. i n f l χ β f χ j ,

and

(5.6) |D?Ki+i(l + |f |)w+«/^+«)+—I => 0 in fl x J8e as t K

for any ε > 0.
To obtain (5.5) and (5.6), we have to estimate each term of the expression

(5.7) Da

ξKj+1(x, ξ ί, ίθ = DaΛ exp I — a(x, τ^dΛ^K^x, f s, t')ds

= Σ Cβl,β, P ̂  e x p ί ~ Γ α ^ ' Oί2dτ) D?L2Kj(x, ξ s, f)ds

= Σ c α i , α 2 /αi5α2.

By the similar calculation as in the step (i) we have

rt I rt \
+ |f|)~αΊ exp — γ\ ~Rea(x,τ)ξ2dτ) \DγL2Kj(x9ξ; s,t')\ds

J s \ J s /
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for some constant γ > 0 and we have

/α2 ^ σa + if p—
Hence we have (5.5) and by the above expression of Da

$Kj+1 and by (5.5)

we obtain (5.6).

(iii) We have

(5.8) \DxKj+1(x,ξ;t,t')\ ^ | |

i n β χ β f χ i ,

and

(5.9) |JD£Xj + 1(l + |f |)-

in fl x β f as 11 f

for any ε > 0.

To obtain (5.8) and (5.9), we have to examine each term in the expression

(5.10) DίKUl = Di^ exp ( -

= Σ
β β

/», f 8, t')ds

* ί Γ ) β

x*L2Kj(x, ξ s, O ώ .
t' \ JS I

Obviously there are two constants C, γ > 0 such that

}£ exp ( - J W , τ)ξ2dήDx>L2Kj(x9 ξ s, tO

+^Γ exp ί- rΓα(^,τ)ί2dτ)|^L2JK:^,f s,tf)\ds

Therefore we have to show

(5.11) I ^ d ( l + |f |)^X^)/(^-M)-O>I)(2(2.+D) in Ω x Rξ x Δ .

We shall study some terms of the integral I:

Γ exp ί- γΓ Re α(a;, , 8)DxKs{x9 f β,

exp (— r I^ e

Γ exp ( - rj£ Re

] fα^(x, s)Dx

2Kj(x, f s, ίOds

K^x, ξ s, f

= CIV + 7/' + III'),
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exp — f α(#,
Jt1 \ Js

\
r Re ax(x, s)ξds

I^ Cΐ(l

If |) -f- If |)(

exp ί-

(cf. (i))

' ^ Cw(l +

Γ exp ί-}-

(cf. (i))

For other terms we can treat in the similar manner and we obtain
(5.8), then by (5.8) and (5.10) we have (5.9).

(iv) We can treat DiD"sKj+1(x,ζ t,t') by the similar way as in the
step (iv) of the proof of Proposition 4.1, that is, by the same calculation
as above, we can estimate each term in the expression:

(5.12)

Σ
OSkSβ

exp Js
dτ

We obtain the following properties:

(5.13) \DlD'ξKj+1(x,ξ t , f ) | ^ C(X

and

(5.14) \ξ|)(

in fi x i?f as ί I f for any ε > 0 .

Thus we have proved that

#,(&, ξ t, tθ e S\ά S\^,^t^\Ω X Λe)), j = 0,1,2,
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(v) Next we shall study Dlt,D
β

xD
a

ξKj(x, ξ ί, V). We need the follow-

ing lemma.

LEMMA 5.2. Let f(t,t',s) be infinitely differentiable function in the

set {(ί, t', s) f <; s <: ί}. T/?,ew we have

(5.15) Z>? Γ /(*, ί', s)ds = Γ Dff(t, t', s)ds
it' J V

-1^, , , S ) U ,

(5.16) Ό\, Γ /(ί, t7, s)ds = Γ J5?,/(ί, f,

^ g(g - 1). -(g - fc

(5.17) D^Df Γ /(ί, tf, s)ds = Γ D*,Dff(t, t', s)ds
j f J f

*£ V(P - D :(P - y + l)z)

1) • • • (g - fe + 1) D i r * D r i φ { f ( t 9 ff9 s) \s=t,)

By an induction in j , using Lemma 5.2 and (5.12), we obtain the

following estimates:

(5.18) \Dlt

< Q ( + |^|)

The method of calculation is very similar to that used in the step (i) ~

(iv) so we omit the detail.

It remains to prove (5.2). By definition of Kj it holds that

Kj(x, ξ t, tθ e C"(β x Rξ x i ) , = 0,1,2, - •

and

Dlt,DiD«ξKj(x,ξ;t,t')\t=t, - 0

if p < y. Thus we have (5.2) by virtue of (5.18). Q.E.D.

§ 6. Parametrices

As in § 4 we consider the oscillatory integrals:
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(6.1) jTjix, y, t, tθ = - i - Γ eiix~mKj{x, ξ t, tθd$ , j = 0,1,2, ,

(6.2) F,(a>, 2/, ί, tθ - - p i - Γ e^-™L2K}(x, ξ ί, * 0 # , / = 0,1,2, ,

PROPOSITION 6.1. JΓJGB, #,*,*') and Fό(x,y,t,f) define functions in
C»{W), W = {(x,y9t,t0eΩ x Ry X I X I ;\x - y\ + \t - t'\> 0}. Further-

more we have

(6.3) Dlt,DiD«$rj(x, y, t, V) e C\ΩX x Ry x I x I)

if (jS X Ze)l(2e + I) + α + 2p < j/(2(2^ + 1)) - 1 and

(6.4) DfyDiD'Fjix, y, t, tf) e C 0^,, χ ί 2 , χ / χ ί )

if (β X 2£)/&£ + l) + a + 2p + 2< j/(2(2£ + 1)) - 1.

Proof. By induction in j9 we easily obtain the following estimates:

(6.5) \Dlt,DίKj(x,ξ; t, t')\ ^ CpM(l + |£Da

By using (6.5), we have the first assertion as in the proof of Proposition
4.2. By (5.2) and (5.18) we have (6.3) and (6.4).

The following proposition is obtained just like as Proposition 4.3.

PROPOSITION 6.2. J Γ / # , y91, V) is regular in (y91') as well as in (x, t).

Now we consider the parametrices. By definition of Kj(x, ξ t, tf)

and X^jix.y.t^t') we have

P* 1Σ XΊte, V> t, tf)) =δ(x-v,t- tθ + Fμ(x, y, t, tθ, ίi = 0,1,2, •

By Proposition 6.1 and 6.2, we have
( i) Σ^=o tffa yy t, tθ e C"(W)> p = 0,1,2, ,
(ii) 2y=o ̂ A^y V, t> t') is very regular, as a distribution, in the sense

of Schwartz [8], μ = 0,1,2, . . . ,
(iii) Fμ(x, y, ί, f) becomes smoother in Ω X Ry X I X I according as

μ becomes larger.
Thus we obtain that the operator ιP defined by

ϊϊψφ-ψdxdt = [[φ Pψdxdt, φ, ψeC0(Ωx x It)
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is hypoelliptic i n f i x / (cf. [9]). We can also prove the hypoellipticity

of the operator P since a translation of the variable t for the operator
ιP satisfies the conditions given in § 1.

By the above investigation we have obtained Theorem 1.1.

Remark 1. The case of many variables: It is easily verified that

our method can be applied for the following operator:

(6.6) A - a(x, t) f; atJ(x, t)—^— + Σ bj(x, t) A_ + c(x, t)
dt ίJ=i dXidXj J=ι dXj

where a(x,t), α4/zc,i), bό{x, t), c(x, t) are infinitely differentiable functions

in a open set U = Ωx x It of Rx x R] and we have

Re Σ dijix, «)£,£, ^ δ\ξ|2 (x, t)eU,ξeRn

for a positive constant δ. The functions a(x, t) and bj(x, t) satisfy the

analogous conditions (1.4) ^ (1.8) in Z7.

Remark 2. Another example for the case of many variables: Our

method can be applied for the following operator.

(6.7) A - ±aiS{x, fl-g^- + Σ bj(x, ί)-A. + c(x, t),

where aυ(x, t), bj(x, t), c(x, t) are infinitely differentiable functions in a

open set U — Ωn x It of Rn

x x βj and we suppose

(6.8) Re f; α,, (x, t)f 4f ̂  ̂  0 , (a;, ί) e U, ξ e Ru ,

(6.9) for all x e Ω and all ξ e Rn, ξ Φ 0, the function ί ^ R e Σ α</ίc, ί ) ^ ^

has only zeros of even order less than or equal to 2£ in the inter-

val /,

(6.10) |Im ai3(x, t)ξiξj\ ̂  C Re Σ M#> ;

(x, t) e U , £ e β w ,

(6.11) Σ Ms, ^ ^ R e Σ

for all j8, (x, ί) e £7 and £ e Rn ,
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(6.12)

(6.13)

J=ι
£ C(Re J

(x,t)eU , ξ € Rn ,

•)ξj\ ^ CCRet^iot

(x, t) e U , f e Rn .

, t)ξiξj)1/2

Then the operator (6.7) is hypoelliptic in U. In fact we can construct
the symbols Kj(x,ξ; t,f), j = 0,1,2, , just as in §3 and we have

Kj e £{Δ S-(fl x βe)) Π

= 0,1,2,

and so on.

EXAMPLE: The operator

(6.14) — - Σ ί 2 ' '-^- + Σ **'
dt j=ι dx) J=I

+ integers, ^ 0 ,

satisfies the above condition in a neighbourhood of the origin of Rn

x x R],

Remark 3. The case of infinite order degeneracy: As an example,
we consider the operator:

(6.15)
dt dx2

where a{t) is infinitely differentiate function in the interval I — (—1
< t < 1) and we suppose a(t) > 0 for ί ^ 0 and α(0) = 0. Take β =
(—oo < x < oo) and set

exp

0

- Γ
Jc

Then for any s > 0, we have easily

(a) K0(x, ξ t, to e e(J S—(fl x ί

(b) |Z)f,,.z)|ί:0(i + ifD-"+—i =Ϊ o

ΓΊ

- 1 < ί' ^ ί < 1

- 1 < t < f < 1.

X
p - 0

in fl x jβt as ί | ί' if 2p < a.

Thus we have the hypoellipticity of the operator (6.15) in Ω x / and we
have the fundamental solution denned by an oscillatory integral:
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y, t, tθ = (2τr)<-«/2Γ et('-MKt(x, ξ t, f)dξ .
J - o o

2Λ/TΓA(M0 1 / 2 L 4A(t,tO

A(t, V) = α(τ)dτ , t > f .
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