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ON SOME DEGENERATE PARABOLIC EQUATIONS I
TADATO MATSUZAWA

§1. Introduction
Let 2, I be open intervals in R, = (—o0o < 2 < ), R, =(—c0 <t

< o0) respectively. For a function a(z, t) ¢ C*(2 x I), consider the partial
differential operator

9 3
1.1 L=2 ,H-2 .
1.1 at%—()b(ac )ax

A sufficient condition of Nirenberg and Treves (c¢f. [7]) for the operator
(1.1) to be hypoelliptic? in 2 X I is expressed as follows:

(1.2) for all xef, the function t — Ima(x,?) has only zeros of even
order less than or equal to 2/ in the interval I. (¢ interger, = 0).

This is necessary and sufficient condition when a(x,t) is analytic in
02 x 1.

Motivated by this fact, we shall consider the hypoellipticity of a
degenerated parabolic operator defined in 2 x I:

0 0° 0
1.3 P=_ —ax,t)— + b(x,t)— + c(x,?),
(1.3) o — ale, B 4 b, i+ ol 1)
where a(x,t), b(x,t), c(x,t) e C°(2 x I) and satisfy the following con-
ditions.
(1.4) Rea(z,t) = 0 in @xI,

(1.5) for all ze 2, the function t{ — Rea(x,f) has only zeros of even
order less than or equal to 2¢ in the interval I,

(1.6) [Im a(z,t)| £ C Re a(x, t) in @ xI,
Received December 11, 1972,

1) The operator P is said to be hypoelliptic, if any distribution « is infinitely differ-
entiable in every open set where Pu is infintely differentiable.
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58 T. MATSUZAWA

a.m [Im a,(z, t)| < C[Re a(zx, t)]** in Qx1I,
(1.8) |b(z, t)] < C[Re a(x, t)]*2 in2xI,

where C denotes a positive constant.

Our aim is to construct the parametrices of the operator P. To do
so, we shall mainly rely upon the procedure of [4], [5] and the theory
of pseudo-differential operators developped in [1], [2]. Main result is
the following.

THEOREM 1.1. Suppose the operator (1.3): P satisfies the conditions
(1.4) ~ (1.8) then the operator P is hypoelliptic in 2 X I.

ExAMPLE. The operator

2
9 _ (t* + x’”")—a— L (A xm)i + 1, 4, m integers > 0,
ot o’ ox

satisfies the conditions (1.4) ~ (1.8) in a neighborhood of the origin.
At the end of §6, we shall give the other examples of the operators
for which our method can be applied.

§2. Preliminary lemmas

We prepare the useful lemmas derived from the recent results of
Nirenberg and Treves.

LEMMA 2.1. (cf. [7], Lemma 3.1 and [6], part I). Under the con-
ditions (1.4) and (1.5), for amy compact set K C 2 X I there exists a
constant C > 0 such that

2.1) |Re a,(z,t)] = C(Re a(x, )" (x,t)e K.

LEMMA 2.2. (cf. [7], Lemma C. 1,.-.) Under the conditions (1.4)
and (1.5), for any compact set K C Q2 X I there exists a constant § > 0
such that

2.2 3(t — th¥" < Re f ", dr
.
where (x,1t), (x,t)e K and t' < t.

§3. Formal construction of the parametrices

Our aim is to construct approximate solutions (parametrices) of the
equation
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PARABOLIC EQUATIONS I 59
P.z:,tE(x: Y, t’ t/) - 6(93 - yyt - t/) .
For v(y,t) e Cy(R;,,) we set
3.1) 86, ¢) = @0 e o, )y, EeR,.

Assume a parametrix of P can be written in the following form

3.2) Lol ) = I ‘ (f:e"“K(x, £1t, )08, t/)dg) ar’

T1 -

for v(y,t)eCo(@ x I) and (x,t)e 2 X I. Hereafter we put I = (T, <
t < T,). We have, by a formal computation,

N 0 0 )2
P = [ [ o —atno[2 +
o, by = [ 7 |2 — a0 2 +ie
0 (D i) + ol ) |K@, &5 1, 00066, )dgat
¥ f T K@, 65 1, 1)0(E, )AE]
from where we arrive at the following Cauchy problem:
a d 2\2 0 .
(3.3) [—— — az,t) (— + 25) + b(z, ) (—— + 25) + c(x, t)]
at ox ox

‘K(z,6;t,1) =0 in QX R, x 4,
A={tt); T, <t <t<T),

(3.4) K(.’,U, §;t,t) lz:z’ =1,
3.5 K@, &;t,t)=0 ift>t.

As a first approximation of the solution of this problem we take K (x, &;
t,t") as follows:

3.6 L =|2 +aG, DE K@ &3 6,1) =0 in 0 X R, x4,
[¢]

(37) Ko(x, & t’ t,)lz=c' =1 ’
(3.8) Ky(x,&;t,t) =0 ife<<t.

The solution K, can be written explicitely:
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60 T. MATSUZAWA

exp (—r a(z, r)Ezdr) in QX R, x4,
o
(39) Ko(x,f;t,t)z ZIE{(t,t/);T1<t'§t< Tz},
0 ift<t.
Next we set

62
ox?
+ i&b(x, t) + c(x, t) in Qx R, x1I.

L, = —2ita(e, -2 — a0 + b, )0
0x ox

We define K,(x,¢&;t,t), j=0,1,2,..-, recurcively as the solutions of
the following problem :

(3.10) [_af’t_ + alz, t)SZ]KjH(x,S; t,t) = —L,K,(x,&;t,1)
in QX R, X4,

(8.11) Kj(2,&5t, )] = 0

(3.12) Kj(2,&;t,t)=0 if t<t.

Apparently we have
B.13) K, (x,&;t,t) = _Jt exp (— f a(x,f)sah) LK(x,&; s, t)ds
t’ 124
= —Jt Ky(x,§&; t, ) LK (x,§; s,1)ds
v
in Qx R, x 4.

According to the formula (3.2), we set

t

[ 0)(x, £) = j (rwe"“Kj(x, g1, )0, t')de) v,

7 \J -
j:0,1’2,"' )

for v(y,t) e Cy(2 x I). A direct computation shows that

(3.14) P(AX + A+ - + A Pvl(z, t)

— oz, ) + f f " e LK (%, & £, )0, )dedt .
T1J —o0

Symbolically we have

(3.14") P+ A+ e + ) =0@ —y,t — 1) + LAy
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This formula suggests us the method of construction of the parametrices.
We shall study the properties of K,;(x,&;t,t") as a symbol of a pseudo-
differential operator with parameter (¢, ).

§4. Principal symbol
Ky, &;t,t).

We recall some notations:

£ an open interval in R, = (—oo < z < o0),
I=T<t<Ty,
Ad={tt); T, <t <t<Ty,
I={tt); T, <t <t< Ty},
DEFINITION 4.1. (cf. [2], Definition 1.1.1.) Let m,p,5 be real num-
bers with 0 <p=<1, 0<6=<1 Then we denote by Sr,(2 X R,) the

set of all @ = a(x, &) € C=(2 X R,) such that for every compact set K C £
and all integers a,8 (= 0) the estimate

4.1) |DiDsa(®, )| = Co 5 x(1 + |§)™ %, we K, §eR;,

is valid for some constant C,, .. The elements of Sy, are called symbols
of order m and type p,6. We set

S~ =8;5=MN8%,.
Obviously S™,(2 X R,) is a Fréchet space with the topology defined
by taking as seminorms the best constants C,,, in (4.1).

DEFINITION 4.2. Let 4 be a subset of R, X R,. We denote by
6'(4; ST(2 X R,) the set of all K(x,£;t,t') such that

K(x,§;t,t)e Sy(2 X R,)

for every (t,t)e A and continuous with respect to parameter (¢,t) in
4. For an integer p = 0 we say that

K(z,&;t,t) e 62(4; S*,(R2 X R)))

if D{,K(x,&;¢,t)eé%(4;8;,(2 X RY) for all j, 0 <j<p, where D],
denotes a differential operator of the form

o7

W, .71+.7z:.7
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We set
EU; ST (2, X R,)) = Qoé”’(/l; S7(2 X Ry)) .
»

After some shrinking of the sets 2 and I (rewrite them £ and I)
we have

PROPOSITION 4.1. For any ¢ > 0 we have

“4.2) K(z,&;t,t)eéd; S™=(2 X B)) N Qoé“’(ﬂ; Sty (@ X B,
=

4.3) (K, &3, ) — DA + &P 130 m 2 X R, as t ) t,

(44) 'Dcp,c'Df;D?Ko(l + Ie')(—ﬂxﬂ)/(2l+l)—2p+a—el :: 0
m RQXR.oast]t, if 2p<a.
(= means uniform convergency.)

Proof. We may assume
@.2) ot — 7" < Re [ aw,0de, @ t¥)e@ x4
for some 6 > 0. (See Lemma 2.2.) That is, we have
3(t — ¢)¥+182 < Re j:/a(x,f)fzdr, (2,66, t)eQ X Ry X 4.
Remembering that

exp (wjz,a(ac, r)&"’dr> (x,6;t,t)e Q2 X R, X 4

Ko(x,f; t, t,) = {
0 t<t,

we see
Kz, &;t,t)eé; S=(2 X RY) .

Next we shall prove
(4.5) K,e Qoé"”(d—; Si5een(2 X R)), >0
in several steps.

(i) We have
(4.6) Koz, &5 8, 8) < 1 in 2x R, x4,
“.7) [(Ky(2,&5t,t) — DA+ [ED~*|30in Q X B, as t | 1.
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In fact, for any compact set & C R, we have
Kf(x,&;t,t)=21in Q x B as t]t.
Hence we have (4.7) for any ¢ > 0.

(ii) Let « be a positive integer. We shall study DiK(x,&;¢,t) =
(0°)0E)K (2, &; t, t') which is expressed as a linear combination of terms
4.8 (n Dz f " e, f)szdr) K@, &5 6,1,

J 124
0<a” <2, a® + vvov a4+ oot =a.

Rewrite (4.8) as follows:

4.9) 1 (Dg"’ﬁ,a(x, z-)gzdf) K, &5 8, 1)

J

For a factor with «“’ =1 we see by (1.6)

’.?.j:a(x, )édr-exp (— %Jz a(x, r)52d1->

< 2C ]{-‘]“ﬁ’ Re a(x, 1)&dr-exp (— %ﬁ Rea(z, r)&zdr>
é C/[&[—l

For a factor with ¢’ = 2 we see

‘2‘[;0&(90, )dr-exp <— %fﬁ alz, ﬂg%lr)

< CISI*ZJ; Re a(, 0)&dz - exp (—%j” Re a(z, T)deT>
= C'l§1*.

We use the same symbols C,C’, ... to express the different constants.
Thus we have

(4.10) |ID¢Ky(x, &5, )| < C,(L + |&) in QX R, x4.
Furthermore, as in the step (i), from (4.6), (4.8) and (4.10) we have
(4.11) |DiKy(z, &5 6, 8)A + &) | Z20in Q X R, as t |t/

for any ¢ > 0.
(iii) For a positive integer g, D:K, = (8¢ /ox*)K(x, & ; ¢, ) is expressed
as a linear combination of terms
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4.12) (n Dg‘f’f: alz, T)smr) .exp (—f: a(z, T)edr)

J
0<ﬁm, ,B(” R +13(j) + e =8,
As in the step (ii) rewrite (4.12) as follows:

(4.13) M (Dg‘f’ I , a(z, f)szdf) -exp (_ﬁl;’l "z, f)swr) :

7 ¢

First we investigate a factor with g9 = 1:

(4.14) [ aute, 98z exp (—% [ o, o) .
t’ t’

By virtue of (1.7) and Lemma 2.1 we have

U:,%(x’ )&%z

< C&Z‘r’(Re e, 7)) dr
= Clglt =ty (r Re a(x, r)&‘zdr> ”

3 1/2
g C/IeFi/(ZZ—'-l)(&Z(t . t/)25+1)1/2(2l+1) . (I ) Re a(x’ T)&'Zdr)

Hence by using Lemma 2.2 we have
(415) l(414)| < C//(l + IEl)2£/(2£+1)

Next consider a factor with ¥ = 2:

‘ f’ Dt a(z, 0)Ede
.

= C&t — )
< C|&|ex20/ @D (g2(E — §)M+LY @D |

Hence we have as above

t

(4.16) ) f Z’D';"’a(x, O&dr-exp (—ﬂzi "z, r)@df)

< C/(l + lgl)(pmxu)/(uﬂ) , (‘B(j) g 2) .
Thus we have for any >0
4.17)  |D:K(x,&;t,t)] < C(A + |&]exeo/eesD in Q xR, x4.
Furthermore as in (i), from (4.12) and (4.17) we have

4.18) |DLK(w, &5 8, (L + [€)P320/0 = 2 0
in xR, ast|t
for any ¢ > 0.
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(iv) We shall study D{DiK(x,é;t,t) (@ + p > 0) which is expressed
as a linear combination of terms

@19) (11 02Dz ate, ds) - Ko, €5 1,1)
i,J t’
= 1 (2905 ate, gtde- Ko, &5 ¢, ¢)0 o eooen)
() t’
O § a(i) é 2, 0 < ﬁ(j) _|_ a(i), Z (‘B(j) + a(i)) — ‘8 + a.
%7

There are three cases in the factors in (4.19): a«® =0, a® =1 and
a(i) — 2.

(a) For the factors with « = 0, we have examined in the step (iii).

(b) For the factors with «® =1 we have to examine the cases
B =1 and ¥ = 2.

(b.1) Case a® =1, g9 =1:

H‘ a,(x, r)d$| < &l — ¢y (r Re a(z, f)df> v
t’ 1
— '$i2£/<24+1)—1($2(t . t/)24+1)1/2(2£+1) (JY &-2 Re a(x, T)df) 2 .
o
By using this inequality we have as before

(4.20) DD, ate, )z Kyerp
.

in QX R, x 4.

< C( + |g/een-1

(b.2) Case a9 =1, 9 = 2:

leﬂpg‘f’a(x,f)df < ClE|t — )

= lel(zxw/@“l)”l(é"’(t — )@Y
By using this inequality we have
(4.21) IDi‘j)Déjm a(x’ T)SZdT'K51+.5‘f))/(a+ﬂ) é C(l + l&])(ﬁ(]‘)ng>/(u+l)_l
o
in QX R, x4.

(¢) For the factors with «¥ = 2 we also have to examine the cases
B9 =1 and ¥’ = 2.
(c.1) Case a'? =2, g =1:
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b 1/2
< Ot — (f Re a(x,z')dr)
.

f " 4z, o)de
.

—_ Clsi2b’/(2£+l)-2($2(t — t/)2£+1)1/2(2£+1) (Ic Re a(x’ T)Ezdf) he .
o
Thus we have

(4_22) ‘DzD%ft a(x,r)&’dt-K?,"“'” é C(l + ISI)ze/(2e+1)-2
¢

in xR, x4.
(c.2) Case a® =2, g¥ = 2:

1Dg‘f’f a(z, )de| < Ct — )
,

— CIEI(ZXZZ)/(2Z+1)—2(€2(t . t/)2l+1)1/(2l+1) ,

from where we have

(4.23) ’Di""Dﬁr a(x, 7)Edr KG+EP /@) < O(1 4 |£])B9x20/GexD -2
t in 2 xR, x 4.
Combining all the above investigation we have finally
(4.24) |DiDiKy(x,&;t, )| = C, 41 + |E)@e0/@sb=e  in Q X R, X 4

for all integers «,8 = 0.
Furthermore from (4.19) and (4.24) we have

(4.25) ID';DZKO(JC, & t, t’)(l + IED(-—ﬁX2£)/(2£+1)+a—s| =30
in 2XR,ast|t

for any ¢ > 0, (8 + « > 0).
(d) From (4.19), (4.24) we can easily see

(4.26) lDzz'DiD?Kﬂ § Cn,ﬁ,p(l + IEI)(ﬁx2£)/(2£+l)+2p—a
in 2 xR, x4.

Furthermore, since 0 < o® < 2in (4.19) and by the proof of (4.25), we
have for any ¢ > 0

(4.27) IDgchiDg 0(1 + IEl)(—ﬁx2£)/(2£+1)—2p+a-—c, j 0
in 2x R, ast |V

if 2p < a.
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Thus the proof of Proposition 4.1 is completed.

PROPOSITION 4.2. The oscillatory integral (cf. [2]):

(4-28) «%/o(x, Y, t, t/) — L_ “ ei(w—y)eKo(x’{_.; t, t’)d{:
Vor J-e

defines @ function in C=(W), W = {(@,y,t,t) € 2 X R, X I X I} |z — y| +
[t —t'| > 0}

Proof. By definition 4 '(z,¥,t,t) =0 for ' > t. By (4.12) we can
see
(4.29) | D2, DEDxe V5K (x, & ; £, )]

= Ca’ﬁ,p(l + |§|)a+zﬂ+2p exp (—o&(t — t)¥+Y)

if ¢ <t.

Hence 2'(x,v,t,t) is infinitely differentiable in {(z,%,¢,t)eQ2 X R, X I
X I;|t—1t|> 0}
On the other hand, if x #+ ¥, t = t/, we have (in the oscillatory sense)
(@ — Az, y,t,t)
“ 1 a I i(x— . /
:j (_. _) GV K (2, &5 t, )dE
=\ 1 0§
J— a * i(x—y)¢é 1 a I . ’
'—(—1) € v T~ Ko(x957t,t)d5-
—o 1 08

By Proposition 4.1 it is obviously verified that
lim D? . DiDy(x — y)' A (%, y,t,t) =0

Ll

if 2p + (B X 20)/2¢ 4+ 1) + « <j— 1. This completes the proof since 7
is arbitrary.

PROPOSITION 4.3. Let A '|(x,y,t,t") be as in Proposition 4.2. Then
A2, Y, t, t) is regular in (y,t) as well as in (,1).

Proof. (i) For v = v(y,t)eCy(R, X I) consider the integral
Ao, y, t, 1oy, thdydt’
RyxI

_ J; U:ewexo(x, 5t )0, t’)ds) ar .

By using the fact that
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[, )= Cy1 4+ 16D N=0

and by Proposition 4.1 we can see this integral defines a function in
C=(2, x 1.
(i) To prove the regularity in (y,t) we need the following lemma.

LEMMA 4.4 (cf. [1], Lemma 2.3.) Let 2 be an open set in R*. Let
a(x, &) e ST(2 X RY) and v(x) € C7(2). Then we have

(4.30) l [eata, E)v(x)dx‘ < Cy(l + |E)™=-",  feRr,
where N is an arbitrary positive integer.
Now let ¥(z,t) e Co(2 X I) and consider the integral
L.%” W@, Y, &, (e, t)dx

= (J T et (3, 65t t')ds) (@, Hyda

=" e g K@, 85 1, V)@, t)dx) de .
We set

Fy(&;t,t)= Je"“Ko(x, &t t)y(x, Hde .

Then by Lemma 4.4 and Proposition 4.1 we have F (&;t,t)e&(d; S).
‘Whence we have

[, @ vt 00w, Haaat
2xI
T oo
= I j oW Fy(&; ¢, t)dEdt e C(R, X 1,.) .
t'J ~e
This completes the proof of Proposition 4.3. (c¢f. Lemma 5.2.)

§5. Symbols

Kyx,&;t,t), 1=0,1,2,---. We recall some notations:

exp (—ﬁ}a(x, r)EZdz-) t=t

Kz, &;¢,t) = {
0 t<t
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0 2
L, = — 4+ a(z, 1)&*,
ox

L, = —2ia(@, 0&-2 — a(@, -2 + b, -2
ox ox? ox

+ #%0(x, ) + c(x,1),
For j=0,1,2,...

Jt, exp (—.ra(x, r)&zdr> ‘LK (x,¢; s,t)ds, t=t

t

Kj+1(x’5; t’ t/) =
0 t<t.

PROPOSITION 5.1. For any ¢ > 0 it holds that

(.1 Ki@,&5t,t)e () 62(d; Siiadf® (@ X R)), 7=10,1,2,..-,

»20

(5.2) |D?,t/DiDng(1 + IED(—ﬁX?Z)/(2€+1)—2p+a+(j/2(2[+1))—e[ : 0
imn QXR.astlt,if 0p<yjy.

Proof. As in the proof of Proposition 4.1 we shall prove in several
steps. We shall start by showing that
K@, &;t,t) € 645 SGHE™(2 X Ry) 7=0,1,2,....

Assuming the case j, we shall show the case 7 + 1. The reasoning is
very similar to the proof of Proposition 4.1 so we shall only give a
sketeh.

(i) We have

(5.3)  |K;(x,&; ¢, 1) < CA + [gP-yrm/easd in 2 xR, x4,
and

(5.4 |K (@, &5 8, 1)1 + [§PUrD/CEEM=| 3 (
in 2xXR,ast|t

for any ¢ > 0.
For example, we shall examine a term in the integral of K;,,:

1= [ exp (- [ oeds)igh@, 9K (@, £ 5, t)ds

=01+ ISI)""”‘W“”J; exp (—Jt Re a(x,t)ézdz-) | bz, $)&|ds

< 0@ + [ep-ree [ exp <— j *Re a(z, f)gdf) Re a(z, )&9"ds ,
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j  exp (‘J Re a(z, f)fzdf) -(Re a(z, $)&)"*ds

t

< (Jw exp (—J‘: Re a(x, r)&zdz-) Re a(x, s)&zds> v

t

2 3 1/2
([ exp ([ Reatw,ds)ds) ™ = 11 > 11,

t

IIP=1— exp (—f Re a(x,t)ézdt) =1,
v

I = J‘ (t — 8)D2(t — 8)V2 exp (—f Re a(z, t)fzd’r) ds
¢ s

=< f (t — 8)V2ds sup (t — s)? exp (—'r Re a(z, r){-‘zdt)
t’ s

t/<sst

= G + [§pnreeD
(cf. §4)

Hence we have
I < C(1 4 |&)-yrvyeae)

By the similar calculations we have (5.3).
Furthermore as in §4, by definition of K;,, and by (5.3), we have (5.4).
(ii) We have

(56.8) |D¢K;,,(x,§;¢,t)] < C(L 4 |E-UrDyGaEED)I—« in 2 xR, x4,
and

(5.6) |DfK;, (1 + |&U+/eeeD taze) =2 () in 2XR,ast|t

for any ¢ > 0.

To obtain (5.5) and (5.6), we have to estimate each term of the expression

(6.7 DK, (2,&;t,t) = Dgf exp (—J‘a(x,r)szdr)LzK,(x,s; s, t)ds
124 s

- s c..[ D e'xp(-—ra(x,r)&zdz-)D‘;’Lsz(x,E;s,t’)ds
t’ 8

ajtag=a

= Z Cﬂx,ﬂe'I«n,az M

aytag=a

By the similar calculation as in the step (i) we have

1L, .= CQ + (&)= exp (—rr Re a(x,r)ézdr) | DsL,K (2, &3 5, ) |ds
=CQA + &)1,
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for some constant y > 0 and we have

I, < C/(1 + |g])-m-t+v/@eeD)

Hence we have (5.5) and by the above expression of D:K;,, and by (5.5)
we obtain (5.6).
(iii) We have
(5.8) ID;K]_'-I(.%»,E; t, t/)l é C(l _|_ IEI)(ﬁx2£)/(28+1)—(f+1)(2(25+1))
in QX R, x4,

and

5.9 |DEK (1 4 |£])~(Ex20/@eD+Grnaeee - =
in 2 XR,ast|t

for any ¢ > 0.

To obtain (5.8) and (5.9), we have to examine each term in the expression
(6.10) DIK,,, = Dgr exp (—f’a(x, r)@dr) LK (x,&; s, )ds
t’ s
= 2. Cup, t D% exp (—fa(x, r)ézdr) -D&8LK (x,&; 8,t)ds .
B1+B2=8 t s

Obviously there are two constants C, y > 0 such that

I t D% exp (—Jta(x, z-)f%lr) DELK (2,85 s, t’)ds’

t’ s
< 00 + [g)oere [ exp (— 7 ate, e [BLE @, €5 5, )] ds
= CQ1 + |§|)<ﬂl><zz>/(2é+1)_1 .

Therefore we have to show

(5.11) I é Cl(]_ + ,;;:D(ﬁzxzz)/(zeﬂ)—(j+1)(2(2e+1)) in Q X Re X Z’ .

We shall study some terms of the integral I:

[ exp (—1] Reatw, 0gdc) - Do, DK (@, 61, ¢)ds

t

< C, ( Jt exp (— yﬁ Re a(x, r)Esz) -Sa(x, )DBYK (x, &5 s, t’)ds‘
4+ I: exp (— rj: Re a(x, r)&zdr> -Ea(x, 8)DeK (%, &5 s, t')ds(
+ ﬁ exp (— r j ‘ Re a(z, T)ydf) Ea,,(@, DK, (, &5 3, t/)ds{ 4. )

=CW0 + I1I'+ 1IT") ,
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V4 é C’(]. + ISD((ﬂz+l)><215)/(2e+1)—j/(2(2z+1))—1J~£ exp <_7,Jt Re a(x, T)Szdf>
t s
-Re a(x, s)&%ds

é C/(l + l&,)(ﬁgxﬂ)/(25+l)—(j+1)/(2(2€+1)) ,

11 < (1 + [gpeveoresd-sann | [* exp (i ale, ode) Re ay(a, 92ds|
¢ s

< CY(1 + |g]eaxra/aern =il W““”f exp (——rra(x,r)ézdr) Re afx, s)&2)2ds
t’ $
é C;'(l + IEI)(ﬁzXN)/(N+1)—f/(2(23+1))(1 + [SI)(-I)/@(N'H)) y
(cf. ()
III/ é C///(l + 'sl)((ﬁg—l)><2é)/(2£+1)‘j/(2(2l+1))+1‘[t exp (_Tjta(x, r)Esz) ds s
t’ s

f exp (—rj‘a(x, f)52d1> ds < C//(1 + |g-oreanm |
t s
(ef. ()

For other terms we can treat in the similar manner and we obtain
(5.8), then by (5.8) and (5.10) we have (5.9).

(iv) We can treat DiD:K;, (x,&;t,t') by the similar way as in the
step (iv) of the proof of Proposition 4.1, that is, by the same calculation
as above, we can estimate each term in the expression:

(5.12) DiD:K;, (2, &5 t,t)

= 2 Couf DD exp (~ [ atw,e)eed)
05j2a §

-DED{L,K J(x,&; s,t)ds .
We obtain the following properties:

(5.13) IDI;D?KJH(W! ‘E; t, t/)l é C(l + ISI)(ﬂxze)/(2£+1)—a—(j+1)/(2(2£+1))
in Q2 xR, x4,

and

(514) ’DgD?Kj_H(l _|__ Isl)(—ﬁx2£)/(25+1)+(]’+1)/(2(2(3+1))—6I 3 0
in 2XR,ast|t for any e > 0.

Thus we have proved that
Kj(xs S; t, t,) € (0@0(2; Si,—zz//ge(igf)q))(g X Re)) ’ .7 = O’ 1’ 2, e
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(v) Next we shall study D?,.DiD:K(x,§;t,t"). We need the follow-
ing lemma.

LEMMA 5.2. Let f(t,t,s) be infinitely differentiable function in the
set {(t,t/,8);t' < s <t}. Then we have

(5.15) ij "t s)ds = f “Drr, ¢, s)ds
t’ t’

+ 520 =@ =i+ ppipiy, ¢, )L,
i=1 J:

(.16) Do J "t s)ds = I‘ Def(t, ¥, 8)ds
t’ t’

q

_falg =D -I-ﬂ('q = k4D perperpit, ¢, )
k=1 .

(5.17) Dg,fo Ft, ¥, $)ds = f ‘DuDrf(t, ¥, s)ds
t’ t’

$ oy (520 =D @ =T E D proiprag, v, ),
i1

7!

-5 e Uk D papippsce, ¢, 5l
t=1 !

By an induction in 7, using Lemma 5.2 and (5.12), we obtain the
following estimates:

(5-18) IDgt’DiDgK](x’S; t’ t/)l

S C P p(l + ISI)(ﬂx?l)/(2é+l)—a—j/(2(22+l))—(—Zp .

The method of calculation is very similar to that used in the step (i) ~
(iv) so we omit the detail.
It remains to prove (5.2). By definition of K; it holds that

Kij(x,&;t,t)eC(2 X R, X 4), i=0,1,2,-...
and
D? . .DiDsKy(%,&; ¢, 8)];o, = 0
if p < 7. Thus we have (5.2) by virtue of (5.18). Q.E.D.

§ 6. Parametrices

As in §4 we consider the oscillatory integrals:
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1
V2r

1
V2
PROPOSITION 6.1. % ,(x,y,t,t) and F z,y,t,t") define functions in

C=(W), W = {(z,9,t,t)e 2 X By X I X I;|x —y|+ |t —t|> 0}. Further-
more we have

(6'1) '%'j(xy Y, 1, tl) - jw ei(z_meKj(x’ &, t, t’)d& ’ 9 = 09 19 2, trt oy

(6.2) Fj(x, Y, t, t,) - J‘w ei(x—y)eLsz(x’ E; t’ t,)dé » j = 07 1’ 29 M)

(6.3) D2, DDt (x, 9, t, ) € CQ, X R, X I X I
if BX20/@6+ 1D 4 a+2p<3/QR2¢4+1V)—1 and
(6.4) D? DED:F (, Y, 1, 1) € CQ, X 2, X I X D)

if BX20)/@2¢+1D +a+2p+2<7/2@2¢+1)—1.
Proof. By induction in j, we easily obtain the following estimates:

(6.5) |Dp DK (,&;t,1)| < Cpp (L + [E)?++4 exp (—d(t — T)*+'€)
in 2 xR, x4.

By using (6.5), we have the first assertion as in the proof of Proposition
4.2. By (5.2) and (5.18) we have (6.3) and (6.4).
The following proposition is obtained just like as Proposition 4.3.

PROPOSITION 6.2. o ;(z,¥,t,t) is regular in (y,t) as well as in (z, ).

Now we consider the parametrices. By definition of K (x,¢&;¢,%)
and X y(x,y,t,t') we have

P:c,t(i:%‘j(x9y7t7t,)) = 6(37 - yvt - t/) + Fp(x,y’t,t/) ’ ¢ = 0,1,2, st
=0

By Proposition 6.1 and 6.2, we have
(i) Y oy, t,t)eC~(W), p=0,1,2,---,
(ii) >7u_, A y(x,y,t,1) is very regular, as a distribution, in the sense
of Schwartz [8], 0 =0,1,2,..-,
(i) F(z,v,t,t) becomes smoother in 2 X B, X I X I according as
2 becomes larger.
Thus we obtain that the operator ‘P defined by

jf tPy-ydadt = ff;o.P«ydxdt, o, v eCy(R, X Ip)
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is hypoelliptic in 2 X I (cf. [9]). We can also prove the hypoellipticity
of the operator P since a translation of the variable ¢ for the operator
tP satisfies the conditions given in §1.

By the above investigation we have obtained Theorem 1.1.

Remark 1. The case of many variables: It is easily verified that
our method can be applied for the following operator:

n 2 n
6.6 L _a@bt > ay@ ) —2 + Siba, -2 + e, t)
at 67=1 i= X,

3xiaxj 1 Ly

where a(x,t), a;;(x,t), b(x,t), c(x,t) are infinitely differentiable functions
in a open set U =02, X I, of R* X R} and we have

Re 37 ay,(z, &, = 0|6F  (2,0)e U, Ec R
1,j=1

for a positive constant 4. The functions a(x,t) and b,(x,t) satisfy the
analogous conditions (1.4) ~ (1.8) in U.

Remark 2. Another example for the case of many variables: Our
method can be applied for the following operator.

6.7 as,(, )—2

0 u % 0
2 bj(@, )— + c(x, 1),
at =1 02,07 +jZ=:1 A )axj + oln 1)

where a;(x,t), b;(x,t), c(z,t) are infinitely differentiable functions in a
open set U =0, X I, of R* X R} and we suppose

6.8) Re > a2, 088,20, (@,0el, éeR,,

(6.9) for all e 2 and all £ R*, & ++ 0, the function ¢ — Re Zn] a;(x, 1)L
i,7=1

has only zeros of even order less than or equal to 2/ in the inter-

val I,
(6.10) |Im asy(a, 0851 = C Re 37 auy(a, 084,
i,j=
(z,t)e U, &eR",
(6.11) D2 3 ay(w, 08| = Cy Re 3. auy(a, 5k,
= i,7=

for all B, (x,t)e U and éc R,
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6.12) > Z} < C(Re 3 0,/ DE&)"
(x,)elU, &eR",
(6.13) jw (z, D&,| < C(Re z (@, DEE

4,7=1

(x,0)eU, &cR".

Then the operator (6.7) is hypoelliptic in U. In fact we can construct
the symbols K(z,&;¢,t), 7=0,1,2,..-, just as in §3 and we have

K;eéd; S™=(2 X RN QO 25 SifEA (R X RY)
j:Ofi,Z,--- ,
and so on.
EXAMPLE: The operator

0 .
6.14 — — tz"f t‘f +1, Z; integers, =0,
(6.1 ot :@: o’ + 121 ox; ! & =

satisfies the above condition in a neighbourhood of the origin of R x R..

Remark 3. The case of infinite order degeneracy: As an example,
we consider the operator:
0

(6.15) s

where a(t) is infinitely differentiable function in the interval I = (—1
< t<1) and we suppose a(t) >0 for ¢+ 0 and a(0) =0. Take 2 =
(—oo < 2 < o0) and set
13
— 2d —-1<t<e<1
K\(z,§;t,t) = xp ( -[ t'a(T)E T> .
0 —1<t<t <.

Then for any ¢ > 0, we have easily

(@) Kyx,§;t,t)ee(d; S~ X RN ﬂ &2 S (2 X Ry),

(b) |D?,D:K,(1 4 |&)7?2* ¢ |30 in Q X R.ast|tif 2p<a.

Thus we have the hypoellipticity of the operator (6.15) in £ X I and we
have the fundamental solution defined by an oscillatory integral:
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Ao, Y, b, t) = @x)-n j T K (n, £ 8, )dE .

1 (@ —yy
W rAG T © p[ 1AGE, t')] ’

AL 1) = f‘ a@de, t=¢.
)
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