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Each bounded linear operator a on a Hilbert space K has a hermitian left-support
projection p such that pK=aK = aa*K and (1— p)K = ker a* = keraa*. I demonstrate
here that certain operators on Banach spaces also have left supports.

Throughout this paper X will be a complex Banach space with norm-dual X', and
L(X) will be the Banach algebra of bounded linear operators on X. Two linear subspaces Y
and Z of X are orthogonal (in the sense of G. Birkhoff) if || j>|| g \\y+z \\(ye Y, zeZ);
this orthogonality relation is not, in general, symmetric. It is easy to see that pX is orthogonal
to (1 — p)X if and only if the norm of p is 0 or 1, when p is a projection on X.

An element h of a complex unital Banach algebra A is hermitian if | exp(ith) || = l(ieR);
equivalently, ft is hermitian if its numerical range, {f(h) :feA',f(l) = ||/|| = 1}, is real.

PROPOSITION. Let X be a reflexive Banach space and let h be a hermitian operator on X
(that is, a hermitian element of L(X)). Then there is a projection p of norm 0 or 1 such that

p and (l-p)X = hX;

so ker h is orthogonal to hX.

Proof. This proposition is an immediate consequence of [4 : VII. 7.5] and the inequality
|| a(a—It)'11| ^ 1 which holds for hermitian h and purely imaginary a. To prove this
inequality, put k = (a-A)"1 and choose/in A' with ||/|| = 1, f(k) = ||fc||; define g in A'
by 9(a) = I k ||-iftak); then #(1) = || g || = 1; so, g(h) being real, | a | £ |u-g(h) | =\ ( ) \ \ \ \ \ > \ \ \ \ \ r

Alternatively, the result can be derived from [6] where it is shown that, first, ker? is
orthogonal to tX for any operator / the boundary of whose numerical range contains 0,
and, second, that X = tX© ker / if X is reflexive.

The Vidav-Palmer theorem [2, §6] characterises unital C*-algebras among unital Banach
algebras; a unital Banach algebra A is a C*-algebra if and only if A = H+iH, where H
is the set of hermitian elements of A. I say that A is a V*-algebra (on X) if A contains the
identity operator on X and A = H+ iH (so that A is, abstractly, a C*-algebra).

Suppose that A is a K*-algebra on A'and that its closed unit ball At is relatively compact
in the weak operator topology; this will happen if X is reflexive [8] or if X is weakly
sequentially complete and A is commutative [7, Theorem 2 and Corollary 2], Let 1 be the
linear span of the closure (/41)

w of Ax in the weak operator topology: A = u {k(Ai)w : keN}.
Then A is a F*-algebra; indeed, A is a JF*-algebra (an abstract von Neumann algebra) [8].

I say that an element n of a unital Banach algebra A is normal if n can be expressed as
h + ik where h and k commute and h'k3 is hermitian (r, s = 0,1, 2 , . . . ) ; so n is normal if
and only if there is a commutative subalgebra of A which contains n and the identity of A
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and, further, is a C*-algebra. In particular, n is a normal operator on X (that is, normal
in L(X)) if and only if n belongs to a commutative l/*-algebra on X. (This definition of
normality is narrower than that in [2].)

THEOREM. Let X be a complex Banach space, let A be a V*-algebra on X with weakly
relatively compact unit ball and let aeA. Then a has a hermitian left-support projection p such
that

pX = aX = aa*X and (\-p)X = kera* = keraa*.

Moreover, pX and (1 — p)X are mutually orthogonal. Further, kera = kera* if a is normal.

Proof. Let B be the subalgebra generated by aa*. Write C for the closure of B in the
topology a induced on A by its predual. Let p be the identity of the f-F*-algebra C. By
Kaplansky's density theorem [5, 1.9] there exists a bounded net P (in B) which cr-converges
to p. But then P converges to p in the weak operator topology (for on A, these two topologies
are comparable, compact and Hausdorff: hence identical). Thus there exists a bounded
net Q (of convex combinations of P) which converges to p in the strong operator topology.
So pX£ aa*X£~aX and (1 -p)X& kera*. Now 0 = (1 -p)(aa*) = (a-pa)(a-pa)*; so
a = pa; from which aa*X £ aX £ pX and keraa* £ (1 —p)X. Therefore pX = aX = aa*X
and (1 — p)X = kera* = keraa*. The norms of p and 1 — p are 0 or 1, because p is hermitian;
so pX and (1 —p)X are mutually orthogonal. Finally, if a is normal, then

kera = kera*a = keraa* = kera*.

This theorem generalises Lemma 3.1 of [1].

COROLLARY. Let s be a scalar-type spectral operator on a Banach space X. Then

X — sXQkers.

Proof. There is a spectral measure e supported by the spectrum of s with s = \ze{dz)
[4, XV]. Now X can be given a new norm (equivalent to the original norm) with respect to
which all the values of e are hermitian. (This is a result of E. Berkson: see [3, §33].) Thus s
is normal (for the new norm). Also, by Theorem 2 of [7], the norm-closed algebra generated
by e has weakly relatively compact unit ball. The theorem may therefore be applied to give
ker,s = ker.s* and X = sX@kers.

H. R. Dowson has remarked to me that this corollary can be derived from results of
S. R. Foguel; see [4, XV. 8.2 and 8.3].

The corollary extends neither to spectral operators in general (consider . ft acting

on C2) nor to all scalar-type prespectral operators (the operator s on V° defined by
J(JCB) = («"**,,) has zero kernel and separable range).

The proposition and theorem suggest the question: must X = hX@ktth whenever X
is weakly complete and h is a hermitian operator on XI
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