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We introduce, in spherical geometry, experiments on electro-hydrodynamic driven
Rayleigh–Bénard convection that have been performed for both temperature-
independent (‘GeoFlow I’) and temperature-dependent fluid viscosity properties
(‘GeoFlow II’) with a measured viscosity contrast up to 1.5. To set up a self-
gravitating force field, we use a high-voltage potential between the inner and outer
boundaries and a dielectric insulating liquid; the experiments were performed under
microgravity conditions on the International Space Station. We further run numerical
simulations in three-dimensional spherical geometry to reproduce the results obtained
in the ‘GeoFlow’ experiments. We use Wollaston prism shearing interferometry for
flow visualization – an optical method producing fringe pattern images. The flow
patterns differ between our two experiments. In ‘GeoFlow I’, we see a sheet-like
thermal flow. In this case convection patterns have been successfully reproduced
by three-dimensional numerical simulations using two different and independently
developed codes. In contrast, in ‘GeoFlow II’, we obtain plume-like structures.
Interestingly, numerical simulations do not yield this type of solution for the low
viscosity contrast realized in the experiment. However, using a viscosity contrast of
two orders of magnitude or higher, we can reproduce the patterns obtained in the
‘GeoFlow II’ experiment, from which we conclude that nonlinear effects shift the
effective viscosity ratio.

Key words: Bénard convection, geophysical and geological flows, nonlinear dynamical
systems
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1. Introduction
Convection in spherical shells under the influence of a radial buoyancy force is of

considerable interest in geophysical flows such as mantle convection (e.g. Schubert &
Bercovici 2009). Laboratory experiments involving this configuration are complicated
by the fact that gravity is then vertically downwards rather than radially inwards.
One alternative is to conduct the experiment in microgravity, thereby switching
off the vertically downward buoyancy force. Imposing a voltage difference between
the inner and outer shells, and using the temperature dependence of the fluid’s
dielectric properties, can further create a radial force. The first such thermo-electro-
hydrodynamic (TEHD) experiment was designed by Hart, Glatzmaier & Toomre
(1986) using a hemispherical shell, and was accomplished on the space shuttle
Challenger in May 1985.

A later experiment, called ‘GeoFlow’, not only involved a full shell instead of
a hemisphere, but also was designed to be performed on the International Space
Station (ISS), where considerably longer flight times are possible (Egbers et al. 2003).
Two versions of ‘GeoFlow’ have now been accomplished: ‘GeoFlow I’, involving an
essentially constant-viscosity fluid, was processed from August 2008 to January 2009
(Futterer et al. 2010); ‘GeoFlow II’, involving a fluid with pronounced temperature-
dependent viscosity, was processed from March 2011 to May 2012 (Futterer et al.
2012). The purpose of this paper is to present an integrative comparison of the two
experiments with one another, with accompanying numerical results, and with related
results in the literature.

The arrangement of this paper is as follows. With the review in § 2, we present an
extended literature study related to thermo-viscous Rayleigh–Bénard convection. There,
we also address the differences between Cartesian and spherical geometries. Then,
in § 3, we go through the physical basis for our TEHD experiment. The discussion
of the list of properties involved in our experiment is the basis for linking the
‘classical’ spherical Rayleigh–Bénard system (driven by Archimedean buoyancy) with
our TEHD driven Rayleigh–Bénard experiment. The final objective in this section
is the calculation of the electric Rayleigh number from the experimental data and
reordering it into domains available from the literature. The ‘GeoFlow’ experiment
series uses a very specific flow visualization, the Wollaston schlieren interferometry or
Wollaston prism shearing interferometry. The observed patterns of convection deliver
fringe images, which requires additional knowledge on interpretation possibilities. This
is demonstrated with a generic example in § 4. Then, in §§ 5 and 6 we discuss
the experimentally observed flow regimes and corresponding numerical models for
both experiment series ‘GeoFlow I’ and ‘GeoFlow II’. Based on further numerical
simulations, the deliberation of § 7 is on heat transfer properties related to different
convective patterns. We summarize and give conclusions in § 8, involving a discussion
on the nonlinear effects considered in our numerical models and an outlook for
recently performed experiment series ‘GeoFlow IIb’.

2. Thermally driven flow in liquids of temperature-dependent viscosity
In mantle dynamics, the basics of fluid flow movement and its interaction with

tectonic plates are still the object of study. As extensively reviewed in Schubert &
Bercovici (2009), research on those topics is focused on theoretical, numerical and
experimental materials and methods, and moreover on the geophysical observations
themselves. Especially, laboratory experiments have the character of ‘exploring new
physics and testing theories’ (Davaille & Limare 2009). There, authors summarize
the results from a huge series of tank experiments, which are designed to understand
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Rayleigh–Bénard convection phenomena and its relations to overall mantle dynamics.
They focus on the generation of plumes in highly viscous Newtonian and non-
Newtonian liquids with a strong temperature dependence of the viscosity. Moreover,
they describe their thermophysical and geometrical properties and present their
interaction with the thermal boundaries. Finally, the authors relate their results to
geophysical globally observed, convectively driven zones in the Earth’s mantle.

Generally, in simple mantle dynamics (e.g. neglecting internal heating, and
thermochemical or non-Newtonian convection), we consider the thermal driving of
a Rayleigh–Bénard system filled with a highly viscous liquid by the Rayleigh number

Ra= αg1Td3

νrefκ
, (2.1)

using the following symbols: α, coefficient of volume expansion; g, acceleration due to
gravity; 1T = (Thot − Tref ), temperature difference between the geometrical boundaries,
which are heated to Thot and cooled at a reference value Tref ; d, characteristic length
scale of the geometry (e.g. outer radius of a spherical shell system minus inner radius,
d = ro − ri); νref , reference kinematic viscosity; and κ , thermal diffusivity. From now
on, we will consider that the reference index ref refers to the cool boundary of the
system, where the various parameters are taken. With the Prandtl number

Pr = νref

κ
(2.2)

treated as infinite, Pr →∞, we ignore inertial effects. Typical values for the Earth’s
mantle are ν→ O(1016) and κ → O(10−7), and lead to this assumption (Schubert &
Bercovici 2009). In this section we discuss results for thermally driven flow in fluids
with temperature-dependent viscosity. This property is assessed with the viscosity ratio

γ = νref

ν(Tref+1T)
= νcold

νhot
, (2.3)

which delivers the ratio between the reference viscosity at the cool boundary and the
actual lowest possible viscosity at the hot boundary due to a specific temperature
difference in the system. Further temperature-dependent properties, e.g. thermal
expansion, seem to have a rather low impact on the dynamics (Ogawa 2008) compared
to the viscosity effects. Complex double-diffusion convection models have been
presented by, for example, Hansen & Yuen (1994). However, owing to our used
homogeneous experimental fluid, chemical aspects are not regarded here.

During the past decades, various studies have addressed the topic of temperature-
dependent viscosity mostly for Cartesian geometries (Booker 1976; Nataf & Richter
1982; Stengel, Oliver & Booker 1982; Richter, Nataf & Daly 1983; Morris &
Canright 1984; Busse & Frick 1985; White 1988; Christensen & Harder 1991; Ogawa,
Schubert & Zebib 1991; Hansen & Yuen 1993; Davaille & Jaupart 1994; Solomatov
1995; Tackley 1996; Kameyama & Ogawa 2000). While numerical simulations and
laboratory experiments consider the Rayleigh–Bénard system in a rectangular box,
naturally, the spherical shell convection is treated by means of numerical simulations
only for constant viscosity (Baumgardner 1985; Bercovici, Schubert & Glatzmaier
1989a; Bercovici et al. 1989b; Bercovici, Schubert & Glatzmaier 1991, 1992;
Schubert, Glatzmaier & Travis 1993) and for varying viscosity (Ratcliff, Schubert
& Zebib 1996; Kellogg & King 1997; Ratcliff et al. 1997; Zhong et al. 2000;
Yanagisawa & Yamagishi 2005; Stemmer, Harder & U Hansen 2006; Hernlund &
Tackley 2008; Hüttig & Stemmer 2008b; Zhong et al. 2008; Hüttig & Breuer 2011).
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650 B. Futterer et al.

To rearrange all the latter results in our context, we first refer to Solomatov (1995),
who introduces scaling relations for three main viscosity contrasts in rectangular
geometry, i.e. the mobile-lid, sluggish-lid and stagnant-lid convection. The mobile-lid
domain is characterized by convection in isoviscous systems and systems with small
viscosity contrast, where the surface layers are mobile and convection cells reach the
outer/upper cold boundary of the spherical/Cartesian box domain. The sluggish-lid
domain, also known as the transitional domain, is reached for larger viscosity contrasts,
γ ∈ (102, 104), resulting in a reduction of the velocity at the surface. In systems
with viscosity contrasts γ > 104, convection develops below an immobile lid through
which heat is transported only by conduction. In this regime stagnant-lid convection
occurs. Ratcliff et al. (1997) and Hüttig & Breuer (2011) find a low-degree regime for
bottom-heated and purely internally heated convection in a three-dimensional spherical
shell, respectively. This regime has been found to lie between the mobile-lid and
stagnant-lid domains and is characterized by long wavelengths. Low degrees for
bottom-heated convection in a three-dimensional Cartesian box were also observed
by Tackley (1993).

Moreover, Solomatov (1995) describes the mobile-lid domain behaving as a
constant-viscosity domain with ‘two thermal boundary layers of approximately equal
thickness’. The limit between the mobile-lid and sluggish-lid domains not only is
defined by the viscosity ratio itself, but also considers a different energetic balance
of the cold and hot boundary layers. This is shown in figure 2 of Androvandi
et al. (2011), where the authors collect all the relevant numerical and experimental
contributions and describe the obtained convection pattern as a function of the top and
bottom Rayleigh numbers in a three-dimensional Cartesian box geometry with

Rahot = γ Racold, (2.4)

when Ratop = Racold = Ra (equation (2.1)). In figure 2 of Androvandi et al. (2011),
the transition between mobile-lid and sluggish-lid domains is markedly analogous to
the situation in Solomatov (1995) for a top Rayleigh number Racold = 106 at γ = 102,
whereas for Racold = 105 the threshold is already at γ = 101. Thus, a sluggish-lid
domain can be assessed by lower Rayleigh numbers and smaller viscosity contrasts;
whereas for higher Ra, a higher viscosity ratio is needed to reach it.

Androvandi et al. (2011) collect experimental data from rigid boundary conditions
in the same diagram together with numerical data from free-slip numerical simulations.
In addition, the experiments investigate slightly different parameters in comparison to
the numerical simulation. This might be related to the fact that frequently experiments
run in a higher domain than numerical simulations achieve. However, experiments
capture nonlinear effects and associated instabilities at most (Schubert & Olson
2009). It is also obvious that there are still huge regimes not fully assessed either
with experiments or with numerical simulations. Nevertheless, the generic regimes for
different fluid flow behaviours are visible in figure 2 of Androvandi et al. (2011). In
the mobile-lid domain, if either the top or the bottom Ra is increased above a critical
value, a transition from steady state to time-dependent convection can be observed.
For supercritical Ra, plumes are the specific convective pattern not only for the nearly
constant viscosity contrast, but also for the stagnant-lid domain. In the domains in
between, we have a stabilization, i.e. transition from steady state to time-dependent
behaviour occurs only at higher critical Ra. But the planform of convection becomes
rather complex. Especially for intermediate viscosity ratio and high Ra, the authors
capture the coexistence of several scales of convection, i.e. slabs and plumes.
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Steady mobile-lid:
 – tetrahedral/cubic pattern,
i.e. sheet-like downwelling
and cylindrical upwelling
for bottom heated;
– sheet-like upwelling and
cylindrical downwelling
for pure internally heated

Steady sluggish-lid: 

– low-degree convection with

cylindrical downwellings;

– chains of plumes upwelling

Steady stagnant-lid:
– plume-like upwelling and sheet-like
downwelling for bottom heated;
– plume-like downwelling and sheet-like
upwellings for pure internally heated

Time-dependent

Mobile-lid

Sluggish-lid

Stagnant-lid

Baumgardner (1985)

Bercovici et al. (1989b)

Bercovici et al. (1992)

Bercovici et al. (1989a)

Schubert et al. (1993)

Ratcliff et al. (1996)

Ratcliff et al. (1997)

Stemmer et al. (2006)

Hernlund & Tackley (2008)

Zhong et al. (2008)

107

106

105

104

103

102

101

100

R
a c

ol
d

108

10–1
107 108 109106105104

Rahot

1010103

FIGURE 1. (Colour online) Spatio-temporal behaviour of incompressible, Newtonian
Boussinesq convection in spherical shells as a function of cool outer Rayleigh and hot
inner Rayleigh numbers related via the viscosity ratio by Rahot = γRacold with Racold = Ra =
(αg1Td3)/(νrefκ). The graphical illustration follows the idea from figure 2 in Androvandi
et al. (2011), who introduced it for the Cartesian box. With the viscosity ratio γ we
distinguish the mobile-lid (γ < 102), the sluggish-lid and stagnant-lid (γ > 104) domains.
The description of the convective planform in the steady flow cases for all viscosity domains
gives evidence on the influence of γ , i.e. isolated plumes are only induced via increasing
the viscosity ratio. Considering internal heating reverses the direction of the thermally driven
flow, e.g. from upwelling to downwelling, in comparison to bottom heated spherical shell
convection. The transition to time dependence in the upper parameter domain is not described
in the literature. In addition, it is not clearly discussed by means of periodicity or chaotic time
series and therewith only assessed qualitatively.

For the spherical geometry, we present the different convecting regimes found in
the literature in a similar way to Androvandi et al. (2011) for Cartesian geometry
(figure 1). All the numerical simulations, which are of relevance here, are performed
for a radius ratio of inner to outer spherical radius η = ri/ro = 0.55 and infinite Prandtl
number Pr →∞ with free-slip boundary conditions assuming an incompressible
Newtonian Boussinesq fluid. The authors vary the Rayleigh number up to Ra1/2 = 107

and consider the viscosity ratio up to γ < 105 via the Frank–Kamenetskii viscosity
approximation, i.e. a linear approximation of the exponent in the Arrhenius law

µ= a e− ln(γ )(T−Tref ). (2.5)

Commonly, they choose Ra1/2, which references the viscosity at a non-dimensional
temperature of 0.5 (note that the non-dimensional temperature is between 0 and 1
in the studied domain). Stemmer et al. (2006) give a general expression relating the
different Rayleigh numbers Ra1/2, Racold and Rahot for our case to

Rahot = γ 0.5 Ra1/2 = γ Racold. (2.6)
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Especially for the control of experiments, it is more convenient to use either the inner
or outer Rayleigh number at the hot or cool boundaries, respectively. In this paper our
reference is always the lower Rayleigh number at the outer cool boundary.

By recalculating the specific Rayleigh numbers from (2.6), we collect the literature
results from numerical experiments analogously to Androvandi et al. (2011), which
results in our figure 1 for incompressible Newtonian Boussinesq fluids. The convective
regimes are again divided into domains with low, transitional and high viscosity
contrast, equivalent to mobile-, sluggish- and stagnant-lid domains. Note that it is
also possible to use the term ‘non-Boussinesq’ related to such a strong temperature
dependence of the kinematic viscosity of the fluid, which breaks the symmetry
between the top and bottom boundary layers (Zhang, Childress & Libchaber 1997).
To the best of our knowledge a scaling for the domains as presented in Solomatov
(1995) is not available for three-dimensional spherical geometry apart from for purely
internally heated convection (Hüttig & Breuer 2011), which is not under consideration
here. Nevertheless, in figure 1 we observe for the constant and nearly constant
viscosity domains the transition from steady to time-dependent flow states. However,
the authors describe the time dependences for the planform of convection solely
qualitatively. It is the planform of steady-state convection that differs clearly from the
rectangular box. The spherical symmetry delivers the coexistence of two patterns, a
tetrahedral and a cubic mode, which are both characterized by sheet-like downwellings
and plume-like upwellings. The increase of the viscosity ratio induces the planform of
cylindrical downwellings at the pole and a chain of plumes upwelling at the equator
(Ratcliff et al. 1996). In the stagnant-lid domain, thermal up- and downwellings are
in the form of plumes only. From the literature it is not possible to compare time-
dependent patterns between the Cartesian and spherical geometries as they are not
fully assessed. Only Ratcliff et al. (1997) present both systems concurrently. For
the mobile-lid domain, they describe the upwelling to be sheet-like in the box, but
plume-like in the sphere.

Besides the onset of convection for constant-viscosity fluids (γ = 1), which is
Rahot = Racold = Ra = 712 (Bercovici et al. 1989a; Ratcliff et al. 1996), detailed
critical Rayleigh numbers for the transitions between different convective regimes
are not available. That value for the onset is below the well-known value of Ra= 1708
in an infinite plane layer (Hébert et al. 2010). It is not possible to compare the two
values directly, as for the spherical geometry the critical value depends on both the
curvature δ = (ro − ri)/ri, which is related to the radius ratio by δ = 1/η − 1, and
the critical mode (Chandrasekhar 1981). If the radius ratio is increasing, we get into
the limit of the plane layer reaching the value of Ra = 1719 (Zhang, Liao & Zhang
2002). If we have a lower η with higher δ, the critical Ra is decreasing (e.g. down
to 712 for η = 0.55). Thus it is obvious that an increase of the curvature decreases
the dimension of the hot boundary layer in comparison to the cold boundary layer.
This imbalance might lead to a more unstable situation already at a smaller critical
temperature difference, in addition to the thickness of the fluid layer increasing.

Generally, the viscosity contrast also has an influence on the critical Rayleigh
number for the onset of convection. It decreases with increasing viscosity contrast if
the reference is defined at the cold outer boundary. Ratcliff et al. (1996) present at
η = 0.55, e.g. for γ = 103, Ra1/2 = 2196 (corresponding to Racold = 69) as the critical
Rayleigh number for self-sustaining convection with most unstable wavenumber
lcrit = 2; and for γ = 104, Ra1/2 = 3400 with lcrit = 4 (corresponding to Racold = 34).
If, however, the reference Rayleigh number is defined at the lower boundary layer, we
expect a competition between sphericity and temperature-dependent viscosity for the
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onset of convection (Bercovici et al. 1989a, chapter 2, p. 77). This seems to be valid
only if we consider the Rayleigh number at the hot boundary, which indeed increases
analogously to (2.6) and in comparison to the values above.

With this summarized knowledge identifying also unresolved issues, we have to
quantify the contribution of our experiment, i.e. the description of our parameter
domains. Subsequently, the main objective is to calculate the specific Rayleigh number
and viscosity ratio to reorder our data into a comparable regime set-up. This leads
to the fact that our experiment will deliver the description of flow patterns in the
lower-viscosity-contrast domain for several orders of the Rayleigh number. As already
stated previously, a direct comparison may not be possible. The objective here is
to compare the generic flow behaviour in specific parameter domains. For this we
continue with the physical basics of TEHD driven flow in spherical shells.

3. Thermo-electro-hydrodynamic driven flow in spherical shells
We consider a fluid-filled spherical shell set-up, with the inner and outer boundaries

maintained at different temperatures. The crucial challenge in spherical experiments
is the set-up of a self-gravitating force field (Busse 2002), as in an Earth-based
laboratory the gravitational field is aligned with a vertically directed unit vector gez.
To set up a radially directed buoyancy ger, we apply an electric field E by a voltage
potential V0 with E=−∇V0. Then we consider the electric body force

fE = fC + fDEP + fES, (3.1)

formed by the electrophoretic (Coulomb) force fC and the dielectric force fD, which is
composed of the dielectrophoretic force fDEP and the electrostrictive force fES. In detail
we have from Landau, Lifshitz & Pitaevskii (1984) that

fE = qE− 1
2

E2∇ε +∇
(

1
2
ρE2 ∂ε

∂ρ

)
, (3.2)

where E = |E|. Applying direct current (d.c.), electric fields exert Coulomb forces;
whereas in alternating current (a.c.) electric fields of high frequency f � 1/τE (with
the charge relaxation time τE) the dielectrophoretic force fDEP is dominant. In general,
we can neglect the gradient force fES as it has no contribution to the flow field
(Yoshikawa, Crumeyrolle & Mutabazi 2013). With the use of a high-frequency a.c.
high-voltage potential V0 between the spherical boundaries, we drop Coulomb effects
in the electric body force, leading to

fE = fDEP =− 1
2 E2∇ε. (3.3)

Finally, it is only this dielectrophoretic force that acts on a dielectric insulating
liquid of temperature-dependent permittivity ε. To derive further relations we need
information on (i) the electric field E and (ii) the temperature-dependent variation of
the permittivity ε. Here, we just mention both relations; for more details, the interested
reader is referred to Yavorskaya, Fomina & Balyaev (1984) and Hart et al. (1986) for
application in the spherical shell and to Jones (1979) and more recently Yoshikawa
et al. (2013) for the cylindrical annulus. For the calculation of the electric field, we
treat the spherical shell as a spherical capacitor with

E(r)= riro

ro − ri

1
r2
er V0. (3.4)
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For the variation of the permittivity we use

ε = ε1[1− αE(T − Tref )], ε1 = ε0εr(Tref ), (3.5)

with the relative permittivity εr and the vacuum permittivity ε0. The coefficient of
dielectric expansion αE is related to the permittivity by ∂ε/∂T = −ε0εrαE. This
corresponds to the coefficient of volume expansion as ∂ρ/∂T = −ρ0α. This is
in analogy to the ‘classical’ Boussinesq approximated Rayleigh–Bénard convection,
which is mainly maintained by the temperature dependence of the density ρ with

f = αTg, ρ = ρ0[1− α(T − Tref )], ρ0 = ρ(Tref ). (3.6)

To summarize from Hart et al. (1986) and Yoshikawa et al. (2013), we have for the
electric buoyancy force

fE = αETgE, ε = ε1[1− αE(T − Tref )], ε1 = ε0εr(Tref ). (3.7)

In this formulation we get an acceleration gE defined by

gE = 2ε0εr

ρref

(
riro

ro − ri

)2

V2
0

1
r5
er. (3.8)

It is obvious that this ‘electric’ gravity varies with the depth, i.e. at the inner
boundary of the spherical shell we have a higher acceleration. Up to the outer
boundary, the functional relation follows 1/r5, resulting in a lower gravity potential
at that boundary.

The magnitude of the vector gE reaches the order of up to 10−1 m s−2 at the outer
spherical radius of our experiment (Futterer et al. 2010). This induces the need for
microgravity conditions in order to get a pure radially directed electric buoyancy field
not superimposed by the vertically directed Archimedean buoyancy forces (equation
(3.6)). We consider, therefore, a TEHD convection in microgravity (equation (3.7)),
which is driven by the temperature dependence of the electric permittivity ε. Next
we have to discuss the ‘difference’ between the Archimedean buoyancy and electric
buoyancy, mainly present in the radial dependence of the electric gravity and the
coefficient of dielectric expansion. Thus, in the following, we present details on the
dielectrophoretically induced self-gravitating force field in the equational set-up and
later on further physical properties of our spherical TEHD Rayleigh–Bénard system.

3.1. Different radial variations of radial gravity
We consider the Boussinesq approximation to be valid for the description of the
fluid motion, since the velocities appear to be small and the density fluctuations
(and permittivity variations, respectively) are linear (Chandrasekhar 1981; Sugiyama
et al. 2007; Futterer et al. 2012). The following relations are the basis for rescaling
length r, time t, temperature T , the effective pressure P and the viscosity µ:
r = (ro − ri)r∗ = dr∗, t = d2/κt∗, T − Tref = 1T T∗, P = κν/d2P∗ and µ = µrefµ

∗.
Abandoning the ∗, the equations for mass and momentum conservation as well as the
temperature become

∇ ·u= 0, (3.9)

Pr−1

[
∂u
∂t
+ (u ·∇)u

]
=−∇P+∇ · [µ(∇u+ (∇u)T)] + RaETr−5er, (3.10)

∂T

∂t
+ u ·∇T =∇ ·∇T, (3.11)
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with the inner radius ri, the outer radius ro and the unit vector in radial direction er.
Therewith, the thermal drive is now weighted by an electric Rayleigh number

RaE = αE1TgEd3

νrefκ

(
d

ro

)−5

. (3.12)

With the depth-dependent gravity (3.8) we obtain different values at the hot and cool
boundaries for the electric Rayleigh number (∝ gE), when a specific 1T is regarded
at a constant viscosity level. When we rewrite this equation by taking into account
constants, geometrical aspects, temperature-dependent physical properties, reference
physical properties and variational parameters, we obtain for the cold outer Rayleigh
number

RaE,cold = 2ε0V2
0︸ ︷︷ ︸

const.

r2
i r7

o

d4

1
r5

o︸ ︷︷ ︸
geometry

εr(Tcold)αE(Tcold)︸ ︷︷ ︸
temp. dep.

1
µcoldκcold︸ ︷︷ ︸

references

1T︸︷︷︸
variable

, (3.13)

and for the hot inner Rayleigh number

RaE,hot = 2ε0V2
0

r2
i r7

o

d4

1
r5

i

εr(Thot)αE(Thot)
1

µhotκhot
1T. (3.14)

Finally, we have

RaE,hot = γ
(

1
η

)5
εr(Thot)αE(Thot)

εr(Tcold)αE(Tcold)
RaE,cold. (3.15)

With η = 0.5 the initial difference between the cold and hot boundaries in their RaE

amounts to a factor of 32. The range of the ratio resulting from relative permittivity
εr and dielectric expansion coefficient αE at the hot and cold boundaries depends on
the experimental fluid and will be discussed later on. A subsequent question for the
interpretation of our experimental data is whether these additional factors lead to an
enhancement of the viscosity ratio for the fluid flow behaviour. But first, we have to
choose RaE,cold or RaE,hot in our equation (3.10) consistently in order to avoid involving
the electric Rayleigh number as a function and not as a parameter. From now on, we
will always refer the electric Rayleigh number to the outer spherical radius. This is
consistent with choosing the cool boundary as reference.

Now we assume that the TEHD driven convection has the property of a depth-
dependent gravity and we seek comparable situations. In the mantles of planetary
bodies, however, gravity is taken to be constant, whereas hydrodynamic convective
modes in the Earth’s liquid outer core are considered with a linear dependence (Busse
2002). In addition, for the Earth’s atmosphere, the planet’s gravitational potential
acts with 1/r2, but here convective modes are mainly driven by rotational effects
in differential heating at one surface. A classical spherical shell convection model,
as regarded here especially with rigid boundary conditions and isothermally heated,
is not considered here (Cullen 2007). Also, there is a clear tendency for setting
up, for example, baroclinic situations in cylindrical geometry. The different radial
dependences seem to become visible only in the planform of convection. Busse
(1975) and Busse & Riahi (1982) regard the symmetry-breaking bifurcations in the
spherical shell convection for the linear dependence of gravity. They already derive the
generic nature of the branches with polyhedral modes. In Bercovici et al. (1989b) we
find the confirmation of tetrahedral and cubic patterns as the dominating flow mode
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656 B. Futterer et al.

for the constant-gravity case. In those flow structures the ‘corners’ of the patterns
are the cylindrically formed upwellings. Feudel et al. (2011) show that the 1/r5

dependence induces axisymmetric and five-fold symmetries besides the cubic mode.
The tetrahedral mode does not occur. In their case, the cubic mode is dominated by
sheet-like upwellings near the hot boundary layer, besides the cylindrically formed
upwellings. This is in contrast to the cubic mode of Bercovici et al. (1989b), for
example, where no ‘ridges’ occur in between. This is a first hint that ‘classical’ plumes
are a specific property of the constant-gravity case.

The objective to tend into a specific planform of convection seems to be a reduction
of shear between upwellings and downwellings (Bercovici et al. 1989a). Owing to
an increase of the rising or sinking velocity, the gravitational potential energy is
released more efficiently. Bercovici et al. (1989a) claim that ‘in three-dimensional
convection with any geometry, a cylindrical upwelling or downwelling will necessarily
be surrounded by a sheet-like return flow’. The differences between planar and
spherical geometries, i.e. the asymmetry of up- and downwellings in the sphere, result
from geometrical effects. Thus the specific radial dependence only results in different
convection cell wavelengths. The whole scenario remains generic.

Therewith we can compare the classical and TEHD Rayleigh–Bénard system. For
this we need to rescale our Rayleigh numbers due to the fact that (i) in mantle
convection we have the buoyancy term RaTer, and (ii) in ‘GeoFlow’ we have the
buoyancy term RaETr−5er in the momentum equation. The non-dimensional radii are
r∗i = 1 and r∗o = 2, and the real dimensions of our experiments are ri = 13.5 mm
and ro = 27 mm. To compare (i) and (ii), when running mantle convection tests
(i.e. without r−5 in the buoyancy term), we take the reference at the top multiplied by
the radial dependence, leading to RE,cold(r∗o)

−5. For example, if we have a Rayleigh
number in ‘GeoFlow’ with RaE,cold = 2 × 104, then a simulation run takes the
Rayleigh number Racold = 2× 104× 2−5 = 2× 104/32= 625 to meet the corresponding
mantle convection domain. With an additional test on the mean temperature profile
and root mean squared velocity between the different buoyancy terms, we observe
a clear difference in the magnitudes of the order of 10 in the velocity, if the
factor (r∗)−5 = 1/32 is not considered. Finally, this leads to the Rayleigh domain
for the ‘GeoFlow’ experiment series as depicted in figure 2. For our numerical
simulation we perform both (i) the mantle set-up with constant gravity as well as
(ii) the ‘GeoFlow’ set-up with variational gravity. For the mantle set-up, we simulate
additional parameters in the neighbourhood of the experimental set-up.

We have already stated that the general symmetry of convective patterns does not
depend on the functional form of the radial gravity. Now we can compare the critical
Rayleigh numbers for the different cases. In a mantle model with η = 0.55 the onset of
convection for the constant-viscosity case (γ = 1) occurs at Rahot = Racold = Ra = 712,
but in our own simulation, owing to the no-slip boundary conditions, we observe the
onset with Ra ∈ (2.1×103, 2.2×103]. If we introduce a viscosity ratio, e.g. γ = 32, we
get the onset with Racold ∈ (475, 500]. Thus the viscosity contrast decreases the onset
of convection.

For ‘GeoFlow I’ with η = 0.5 we observe it at RaE|ro = 2491 (Travnikov, Egbers
& Hollerbach 2003; Feudel et al. 2011). Their Rayleigh number is related to the
outer sphere and the equations are scaled besides others with the outer spherical
radius ro, which is in contrast to choosing the ‘classical’ gap width of the research
cavity as characteristic length as introduced above for obtaining RaE|d = RaE,cold. If
we rescale their equations, we get RaE,cold = 9964 as critical onset. But to compare
it with the constant-gravity case we have to divide this value by 32 and we
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Cubic,
ridge

Cubic, 'star
(5 plumes on
the equator)

Cubic, tetrahedral,
'star'

Mobile-lid

Sluggish-lid

Time-dependent Stagnant-lid

Only cubic Cubic,
tetrahedral,
5 plumes

Cubic,
6 plumes

Cubic,
7 plumes

107
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105

104
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100

108

10–1

107 108 109106105104 1010103

GeoFlow I exp/num

GeoFlow II, WE II exp

GeoFlow II, WE III exp

GAIA num

FIGURE 2. (Colour online) ‘GeoFlow’ experimental (‘exp’) and numerical (‘num’)
parameter domains of incompressible, Newtonian TEHD Boussinesq convection in spherical
shells as a function of cool outer Rayleigh and hot inner Rayleigh numbers related via the
viscosity ratio by Rahot,GeoFlow = γ 32α′Racold,GeoFlow. For ‘GeoFlow’ we use the analogous
electric Rayleigh number Racold,GeoFlow = RaE,cold/32 = [(αEgE|ro1Td3)/(νrefκ)(d/ro)

−5]/32
with the electric acceleration gE|ro = (2ε0εr)/ρref [riro/(ro − ri)]2V2

0 r−5 related to the outer
boundary r = ro. For the development of the parameters related to TEHD effects, refer to
§ 3. ‘GeoFlow II’ is performed in two different working environments, ‘WE II’ and ‘WE
III’, which differ in their reference viscosity. Specific ‘GeoFlow’ patterns of convection are
described in §§ 5.1 and 6.1. From the illustration in figure 1 the classical convection regimes,
i.e. stagnant-lid, sluggish-lid and mobile-lid, related to γ , are also included. In addition,
the numerically simulated parameters Rahot = γRacold for incompressible, Newtonian mantle
Boussinesq convection in spherical shells are depicted (‘GAIA num’). Again, increasing the
viscosity ratio gives rise to plumes. The convective planform of stationary flow is precisely
allocated. Unsteady time-dependent flow is characterized by plumes.

will have RaE,cold/32 = 312 for ‘GeoFlow I’. It is worth mentioning that Travnikov
et al. (2003) find the onset of isoviscous convection for decreasing radius ratio, too:
η = 0.4, RaE|ro = 1898; η = 0.3, RaE|ro = 1483; η = 0.2, RaE|ro = 1162; and η = 0.1,
RaE|ro = 837. This shows a decrease for the critical value if the curvature increases
and corresponds to the general trend as reviewed in § 2 above. This is a further reason
to treat the TEHD set-up as an analogue for a Rayleigh–Bénard system.

Up to now we have focused the discussion on the specific functional form of
the gravity in the buoyancy term. But the physical properties of a real liquid are
also the basis for the calculation of the Rayleigh number resulting in figure 2. We
summarize the physical properties in tables 1 and 2, and their consideration in either
non-dimensional parameters or equations in tables 3 and 4. Following the idea of
(3.15) the two following subsections will discuss the temperature-dependent viscosity
and the details of dielectric expansion. The objective is to clarify the magnitude of all
three contributions.
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Parameter Unit Value (at 25 ◦C)

Viscosity νref m2 s−1 5.00× 10−6

Thermal conductivity λ W K−1 m−1 1.16× 10−1

Specific heat c J kg−1 K−1 1.63× 103

Density ρref kg m−3 9.20× 102

Thermal diffusivity κ = λ/(ρref c) m2 s−1 7.74× 10−8

Thermal coefficient of
volume expansion

α 1/K 1.08× 10−3

Relative permittivity εr 2.7
Thermal coefficient of
dielectric expansion

αE =
(Yavorskaya et al. 1984;
Hart et al. 1986)

α(εr− 1)(εr+ 2)/(3εr) 1/K 1.07× 10−3

TABLE 1. Physical properties of the silicone oil M5, which is the experimental fluid of
‘GeoFlow I’. We list the values of the parameters used in the experimental framework. As
a well-defined liquid, all data are available from the data sheet (Bayer Leverkusen 2002).

Parameter Value (at 20 ◦C) Value (at 30 ◦C)

Viscosity νref 1.42× 10−5 9.73× 10−6

Thermal conductivity λ 1.63× 10−1 1.58× 10−1

Specific heat c 2.47× 103 2.47× 103

Density ρref 8.29× 102 8.22× 102

Thermal diffusivity κ = λ/(ρref c) 7.94× 10−8 7.76× 10−8

Thermal coefficient of
volume expansion

α 9.45× 10−4 9.45× 10−4

Relative permittivity εr 8.6 8.83
Thermal coefficient of
dielectric expansion

αE =
(Yavorskaya et al. 1984;
Hart et al. 1986)

α(εr − 1)(εr + 2)/(3εr) 2.95× 10−3 2.46× 10−3

(new) −(1/εr)(∂εr/∂T) 9.95× 10−3 9.71× 10−3

TABLE 2. Physical properties of the alkanol, 1-nonanol, which is the experimental fluid
of ‘GeoFlow II’. We list the values of the parameters for the two thermal working
environments of the experiment, ‘WE II’ and ‘WE III’. Alkanols are liquids whose
physical properties are not always clearly quantified, especially in comparison to silicone
oils. The cosmetics industry mainly employs 1-nonanol because of its lemon fragrance. We
refer to data sheets from several companies (Merck 2003; FIZ Chemie 2010) and to the
data collection from Lide (2008). The units are the same as in table 1 and are not listed
due to limited space.

3.2. Temperature-dependent viscosity
In geodynamic models, the temperature-dependent dynamic viscosity µ, as part of the
stress tensor, usually follows the Frank–Kamenetskii approximation of the Arrhenius
law as in (2.5). If the liquid properties are temperature-independent, as for the silicone
oil used in ‘GeoFlow I’, the relation is not of relevance and the viscosity is regarded
as constant (Futterer et al. 2012). In (3.10) the viscous term becomes simpler with
∇2u. In ‘GeoFlow II’ we use an alkanol as experimental fluid with a pronounced
variability of the viscosity with temperature leading to γ 6 1.5. In Futterer et al.
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Parameter Thermal behaviour Physical model

νref Linear with small slope,
≈ const. (measured at BTU)

Simple ∇u in (3.10)

λ Constant Linear Fourier’s law of
thermal conduction in (3.11)

c Estimated to be constant —
ρref Linear (measured at BTU) Boussinesq and Rayleigh

number Ra and RaE

κ = λ/(ρref c) Calculated from λ, ρ, c Reference Prandtl number
Pr ref

α Constant Boussinesq and Rayleigh
number Ra and RaE, not of
relevance in microgravity

εr Constant Analogue Boussinesq and
Rayleigh number RaE

αE = α(εr−1)(εr+2)/(3εr) Calculated from εr Analogue Boussinesq and
Rayleigh number RaE

TABLE 3. ‘GeoFlow I’ experimental fluid, silicone oil M5. Overview of the general
thermal behaviour and its consideration in a physical model, e.g. as approximation or
equation. Silicone oils are liquids whose physical properties are clearly and accurately
quantified (table 1). This is mainly due to their broad field of application. Therewith many
data are available from the data sheet (Bayer Leverkusen 2002). In addition, we measured
properties with significant experimental relevance (viscosity and density) at Brandenburg
University of Technology (BTU).

(2012) we demonstrate the validity of (2.5) for our used experimental liquid. In
Futterer et al. (2012) we present test cases of the Earth laboratory set-up, where
the fluid-filled spherical shell is regarded as a heated inner sphere and cooled outer
sphere corresponding to the fluid physics of natural convection in spherical enclosures
(Futterer et al. 2007; Scurtu, Futterer & Egbers 2010).

In the Earth laboratory, the gravitational potential is no longer parallel to the heating
and cooling surfaces. This results in a clear distinction from a Rayleigh–Bénard
system by a base flow at infinitesimal small temperature difference induced by
baroclinic vorticity (Dutton 1995; Bahloul, Mutabazi & Ambari 2000). Here the
application of a high-voltage potential induces a slight enhancement of heat transfer
via the created convective flow pattern. It acts as a possibility for flow control, but
the variations of the permittivity are negligible due to the clear dominance of the
density changes. This is the reason for conducting the experiment under microgravity
conditions, where gravity and hence Archimedean buoyancy driven convection due
to a unidirectional gravity field is absent. In Futterer et al. (2012) we only present
experiments. In the recent work, we are able to reproduce those patterns by a
numerical model following (3.9)–(3.11) and (2.5) For the preparatory studies we
interpret the delivered patterns of convection to be induced by the temperature
dependence of the viscosity.

3.3. Thermal expansion in microgravity
For the calculation of the Rayleigh number RaE in the microgravity experiments
we have to include a temperature dependence of the thermal expansivity αE if we
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Parameter Thermal behaviour Physical model

νref Power law (measured at
BTU/AP)

Arrhenius law

λ Not available (implicit from
Lide (2008))

Linear Fourier’s law of
thermal conduction in (3.11)

c Not available (implicit from
Lide (2008))

—

ρref Linear (measured at BTU) Boussinesq and Rayleigh
number Ra and RaE

κ = λ/(ρref c) Calculated from λ, ρ, c Prandtl number Pr

α Constant (data sheet from
Merck)

Boussinesq and Rayleigh
number Ra and RaE, not of
relevance in microgravity

εr Polynomial fit (data from
FIZ)

Analogue Boussinesq and
Rayleigh number RaE

αE = α(εr−1)(εr+2)/(3εr) Calculated from εr Analogue Boussinesq and
Rayleigh number RaE

αE =−(1/εr)(∂εr/∂T) Calculated from εr Analogue Boussinesq and
Rayleigh number RaE

TABLE 4. ‘GeoFlow II’ experimental fluid alkanol, 1-nonanol. Overview of the general
thermal behaviour and its consideration in a physical model, e.g. as approximation or
equation. In addition to referring to data sheets from several companies (Merck 2003; FIZ
Chemie 2010) and to the data collection from Lide (2008), we performed measurements
of properties with significant experimental relevance (viscosity and density) at Brandenburg
University of Technology (BTU) and at the company Anton Paar GmbH (AP).

use 1-nonanol instead of M5. It is a very specific property of silicone oils to be
temperature-independent in all physical properties, and they are often only specified by
their different viscosities. The decision to use 1-nonanol in the same experimental set-
up is promoted through the overall comparable technical behaviour and the variability
of the viscosity. In addition, we take into account the temperature dependence of the
permittivity in (3.7), this being focused upon in the microgravity environment as a
substitute for density in (3.6).

Up to now the calculation of the TEHD expansion coefficient αE has been derived
via the relation from Yavorskaya et al. (1984) and Hart et al. (1986):

αE = α (εr − 1)(εr + 2)
3εr

. (3.16)

Behind this, we assume, is the following statement: ‘equivalent to that usually made
for a Boussinesq liquid, that ε is assumed constant except where multiplied by the
electrostatic gravity’ (Hart et al. 1986, p. 523). Regarding the liquid properties of
M5 (Bayer Leverkusen 2002), this assumption is absolutely valid. But for 1-nonanol
a measurement curve for εr with variation of the temperature T (FIZ Chemie 2010)
and its polynomial fit with εr = f (T) = 0.0005T2 − 0.1063T + 10.595 requires further
consideration here. With

αE =− 1
εr

∂εr

∂T
=−10−6T2 + 5× 10−5T + 0.0096, (3.17)
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we get for the specific reference temperature and temperature difference a factor that
is approximately 10 times higher than with (3.16) and therewith resulting in a different
RaE. But in the working environment of the experiments it remains a linear behaviour
like the natural volume expansion coefficient and will not need a further equation.
Using the information from the physical properties, the contribution

α′ = εr(Thot)αE(Thot)

εr(Tcold)αE(Tcold)
> 0.87 (3.18)

remains of the order of one.
In order to investigate nonlinear effects in addition to focusing on the temperature

dependence, we test an extended standard Boussinesq approximation. The main
idea is based on an extension of the electric buoyancy force fE in (3.7) by a
quadratic term, βE(T − Tref )

2. This results in an altered Rayleigh number RaE2 :=
RaE[1 − (βE/αE)(T − Tref )]. By choosing βE sufficiently small, hence focusing mainly
on the linear temperature dependence, the influence of the second-order term vanishes.
Owing to the fact that measurements of the working fluid’s density indicate only
a minor quadratic dependence on temperature, the numerical test is performed
with small values of RaE2. The overall solution does not change under the given
assumptions. Hence, the first-order Boussinesq approximation is an adequate and valid
truncation, reproducing the correct fluid flows in the depicted parameter space. Here,
we refer to a comprehensive review on nonlinear properties of convection given by
Busse (1978).

3.4. Effects from Prandtl number, radius ratio and boundary conditions
Besides the impact of the radial dependence in the buoyancy term and the calculation
of a suitable Rayleigh number, the left side of (3.10) requires a short comment on
the influence of the Prandtl number Pr = νref /κ . Indeed, in our experiments, we
have a finite Prandtl number with PrGeoFlow I ≈ 65 and PrGeoFlow II = 125 and 200.
When comparing the solutions with finite and infinite Pr , a benchmark with our two
available codes (Hollerbach 2000) and GAIA (Hüttig & Stemmer 2008a), adapted
for the TEHD model, delivers differences in the Nusselt number only of the order
of 10−2 and reproduces the planform of convection with a very good agreement
(Futterer et al. 2009). Additionally, both codes are well established for spherical shell
convection issues in geo- and astrophysical research; therefore we refer the reader to
the literature. In this present work the goal is to apply the codes to our experimental
set-up. As a conclusion from the simulations, the Prandtl number might be disregarded
in the numerical simulation and is considered also to have a negligible impact in the
experiment.

Further tests have been done to address the differences between our experiment
and state-of-the-art mantle convection models due to the radius ratio η, which is 0.5
for ‘GeoFlow’ and 0.55 for the mantle. If we use 0.5 instead of 0.55 we observe a
minimal influence on the velocity and temperature (both velocity and temperature are
negligibly smaller than in the 0.55 case).

A final remark has to be made on the boundary conditions. Naturally our
closed experiment has no-slip conditions, but the mantle studies perform numerical
simulations with free-slip conditions. Our tests deliver lower velocities for no-slip
conditions, i.e. the convection is less vigorous than in free-slip cases, and higher
temperatures, but no additional convection patterns with new symmetry classes were
obtained.
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3.5. Summary

From the previous discussion on the depth-dependent gravity, the temperature-
dependent viscosity ratio and the thermal expansion in microgravity, we can conclude
for (3.15) that

RaE,hot|max = 1.5× 32× 0.9× RaE,cold. (3.19)

Considering the factors, we assume an accuracy of one digit after the decimal
point as relevant impact for this equation. For the temperature-independent silicone
oil in ‘GeoFlow I’ we derive γ ∈ (1.0, 1.1) and α′ = 1.0, whereas with the use
of the temperature-dependent alkanol in ‘GeoFlow II’ we have γ ∈ (1.0, 1.5) and
α′ ∈ (0.9, 1.0). The influence of the depth-dependent gravity remains constant with
(1/η)5 = 32 in both experiments. Considering also the scaling down on both sides of
this equation with 1/32, we revisit figure 2. This demonstrates the enhancement of
the viscosity contrast by the dominating factor of 32, in which γ is initially assessed
only via the liquid itself to be in the range between 1 and 2. The contribution from
dielectric thermal expansion seems even to damp down slightly the small viscosity
contrast. Finally we conclude at this stage that both experiments mainly differ in
their Rayleigh number regime ‘distributed’ along an enhanced viscosity ratio of 32.
Referring figure 2 to figure 1, we expect to be able to describe the dynamics of
the nearly constant-viscosity domain with ‘GeoFlow I’. With ‘GeoFlow II’ we might
capture domains of transitional dynamics of the higher viscosity contrast domains.

In figure 3 we depict the variation of the cold Rayleigh number related to the liquid-
related viscosity contrast. This image does not take into account the enhancement via
the factor 32. But this is necessary for the experimental protocol, as the pumping of
the liquid in the cooling circuit is related to its viscosity, too. It is assumed that this is
the most important parameter, which is varied according to experimental protocol via
(i) choosing a reference environment to be either Tref = 20 ◦C or 30 ◦C for the viscosity
variation up to γ ≈ 1.5 and (ii) increasing the temperature difference between the inner
and outer spherical shell boundaries up to 1T = 10 K. The high-voltage potential V0

is set at the beginning of the experiment as this produces the electro-hydrodynamic
buoyancy in the microgravity environment. For ‘GeoFlow I’ it is V0 = 10 kV; in
‘GeoFlow II’ a lower value with V0 = 6.5 kV is sufficient due to the higher relative
permittivity of 1-nonanol.

4. A generic example for flow visualization
In the ‘GeoFlow’ experiment series, we use an optical method for flow visualization

(Merzkirch 1987) as delivered by the Optical Diagnostics Module (ODM) of the
Fluid Science Laboratory, more precisely the Wollaston prism shearing interferometer
(WSI) introduced by Dubois et al. (1999). The method detects variations in the
fluid refractive index, which reflects changes in the density (and the permittivity) of
the fluid. Refractive index gradients are visualized either by a deflection of light or
by phase shift disturbances, which are measured by such interferometers (Merzkirch
1987). At the least, the WSI yields images with fringe patterns of convection. Then the
distances between the fringe lines measured in the resolving direction correspond with
the magnitude of the directional derivative of the temperature field. The resolution is
related to the polarization angle ω of the Wollaston prism, the main optical component
of the WSI set-up. The following generic example explains how the fringe pattern can
be used to discriminate between sheet-like and plume-like flow upwellings.
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(× 104)

1

2

3

4

5

6

7

8

9

10

0
1.1 1.2 1.3 1.41.0 1.5

C (non active,  GeoFlow I)
 C (GeoFlow II)

C (GeoFlow II)

FIGURE 3. (Colour online) Rayleigh number as a function of the viscosity ratio in ‘GeoFlow’
experiments at spherical shells of radius ratio η = 0.5 filled either with silicone oil (N)
or alkanol (4,©). The experimental protocol is as follows: set-up of desired voltage V0;
reference image recording (V0 = desired value, 1T = 0, n = 0.008 Hz); loop on temperature
difference 1T with different start values and fixed increments including set-up of desired
1T; wait time corresponding for thermal time scale τ = d2/κref for stabilization; scientific
pictures acquisition, to be repeated at next 1T (Mazzoni 2011). During ‘GeoFlow I’ the
cooling loop kept its temperature in the vicinity of the ISS FSL temperature of 25 ◦C. The
heat loss of the system to the environment was assumed to be negligible. During ‘GeoFlow
II’ the cooling loop was controlled actively at either 20 ◦C or 30 ◦C, in order to control the
reference viscosity. In this illustration the ‘GeoFlow I’ and ‘II’ domains differ clearly. The
viscosity contrast here is related only to the behaviour of the real liquid.

We consider a fluid flow event given in the Cartesian box [−1, 1]2×d′, where d′ > 0
is small in comparison with the extension of the horizontal square [−1, 1]2. As the
measurement technique is an integrative method along the measurement section, we
assume the temperature distribution of the fluid to be sufficiently well represented by
the mean temperature taken in the approximate path of the laser light beam, i.e. the
vertical direction (z goes from 0 to d′):

H(x) := 1
d′

∫ d′

0
T(x, z) dz. (4.1)

Therefore, it remains to consider the two-dimensional temperature distribution H(x)
on the [−1, 1] square. We generate comparable temperature sheet-like and plume-like
flow upwellings using the following one-dimensional temperature flow profile function
h : R>0→ R>0 given by

h(u) := 1
4


(2− u)3 − 4(1− u)3 for u 6 1,
(2− u)3 for 1< u 6 2,
0 for 2< u.

(4.2)
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(a)

(b)

FIGURE 4. Flow visualization by means of Wollaston prism shearing interferometry: generic
example. Column 1: contour plots of the sheet-like HS (top) and the plume-like HP
temperature distributions (bottom). Columns 2–4: related fringe patterns of convection in
interferograms for three directions of polarization of the Wollaston prism, ω = 90◦ (vertical),
30◦ and 0◦ (horizontal).

We obtain the plume-like temperature field HP by rotating this cubic spline around the
vertical axis:

HP(x) := h( 1
3 |x|). (4.3)

The sheet-like temperature field HS is yielded by shifting the profile orthogonal to its
plane:

HS(x) := h( 1
3 |x2|). (4.4)

The two temperature fields are presented by the contour plots in the left column of
figure 4.

Assuming that the distances of the interferometry curves depend linearly on the
magnitude of the directional derivative of the temperature field, we compute the
corresponding fringe patterns for three directions of the polarization. The second
column shows the patterns for the vertical direction (ω = 90◦), the last column for the
horizontal direction (ω = 0◦), and the third column for the direction with an angle of
ω = 30◦ to the horizontal axis. We use sinΛ |∂H/∂n| as fringe generator, with a laser
wavelength of Λ= 532 nm.

Using the generic example we obtain the following characterization of the sheet-
and plume-like temperature upwellings:

(a) The interferogram of a sheet-like upwelling consists of parallel lines. The number
of black lines reaches a maximum when the direction of polarization is orthogonal
to the temperature isolines and decreases when the angle between the direction of
polarization and the ‘sheet’ direction tends to zero. Therefrom we cannot detect
sheet-like upwellings, which run parallel to the direction of polarization (figure 4,
row 1, column 4).
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(b) The interferogram of a plume-like upwelling is characterized by a double ring
structure. The symmetry axis in between the ring pair is orthogonal to the direction
of polarization. With it we possess a rule of thumb to determine the direction of
polarization on unclassified interferograms of plume-like upwellings.

5. Sheet-like upwellings in a self-gravitating spherical shell experiment
5.1. Experimental observation

To navigate on the sphere, we use a spherical coordinate system with radial r,
azimuthal ϕ and meridional θ directions. The rotation axis in the centre of the sphere
corresponds to an angle θ = 0◦. The optical axis of the FSL camera, used to obtain
the interferograms of the ‘GeoFlow’ experiment, intersects the spherical centre with an
angle of θ = 30◦. The angle of beam spread from the WSI covers 88◦ on the sphere.
Therewith the images taken from the sphere range from θ = −14◦ beyond the north
pole down to θ = 74◦ near the south pole. In this way, we can map the position of an
interferogram pixel onto the sphere.

As we want to collect as much image information as possible of the sphere’s
surface, we rotate the sphere with the slowest possible rotation frequency of
n = 0.008 Hz and take a photo every ϕi = 60◦ of the rotation, i.e. with i = 6 one
photo every [1/(0.008 s−1)]/6 = 20.83 s. Neglecting the overlapping regions of these
images, we use one photo to compute a sphere segment interferogram that sweeps
the azimuthal from −30◦ up to 30◦ of the meridian containing the optical axis. The
north–south extension of this segment goes from the north pole down to the parallel
θ = 74◦ near the equator. The montage of six interferograms is presented in figure 5.
The six positions of the optical axes are marked by black crosses. The white meridians
are the boundaries between the separate interferograms. The direction of interpolation
is given by the grey parallel lines in one separate interferogram. The white rings show
the parallels with θ = 15, 30, 45 and 60◦ counted from the north pole. The equator is
marked by the bold black line.

The lowest experimentally available RaE,cold/32= 5.18× 102 at 1T = 0.3 K delivers
images identical to the reference images, which are collected before setting up
the parameters at 1T = 0 (figure 5d). At the next Rayleigh number RaE,cold/32 =
6.44 × 103 we observe a very clear singular pattern of fine lines (figure 5c). At
RaE,cold/32 = 1.11 × 104 the gradients increase with an increase of line density and
experience turning into hooks (figure 5b). At the experimentally observable limit
of RaE,cold/32 = 1.46 × 104 the patterns form sets of broader thermal upwellings
in addition to some finer remaining fringe lines (figure 5a). All fringe patterns of
convection correlate with sheet-like upwellings.

Considering the onset of convection in the stability analysis at RaE,cold/32 =
3.12 × 102 in comparison to the assessed Rayleigh domain, we would expect to be
always above the onset of convection. There are two possible reasons for observing no
fringes at RaE,cold/32 = 5.18 × 102. On the one hand, there might be a shift between
stability analysis and experimental measurement. On the other hand, interferometry
requires a critical temperature difference, which is necessary to produce fringes. For
the lowest parameter domain RaE,cold/32 ∈ (2 × 102, 6 × 103) we have no more data
available due to technical problems on orbit. Thus we are not able to detect the onset
of convection in the experiment precisely related to the specific critical temperature
difference.

All samples are snapshots of time-dependent flows. For the real experimental
velocity we can estimate the time frame of one turn in order to get back to the
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(a)

(b)

(c)

(d)

FIGURE 5. The TEHD spherical shell convection experiment ‘GeoFlow I’ with temperature-
independent physical properties of the liquid (silicone oil with Pr = 65). Sheet-like
upwelling fringe patterns of convection for variation of the Rayleigh number RaE,cold/32
at (a) 1.46 × 104, (b) 1.11 × 104 and (c) 6.44 × 103. Flow without specific pattern or even
below onset of convection at (d) 5.19 × 102. Increase of thermal driving enhances sheet-like
convective planform and increases the global velocity, which is not of high amplitude.

same image position again, which is t = 1/(0.008 Hz) = 125 s. During that time of
approximately 2 min, the patterns at a specific position on the image move only
slightly in general, but not at the same rate over the whole image itself. To collect the
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spatial change of the whole pattern in between two images, an automated procedure
of image processing is a requirement, which is not available for those complex
image data. Neither commercial software nor self-developed tools have fulfilled our
objectives. That makes it impossible to assume one single velocity and requires an
extended review of available methods. However, this is not the focus of this work. We
conclude here that we observe sheet-like upwellings with long-term time-dependent
behaviour.

5.2. Numerical simulation
In § 3 we present the governing equations of the TEHD driven Rayleigh–Bénard
convection, which govern the fluid dynamics of the ‘GeoFlow’ experiment in particular.
This theory is used to compute the temperature distribution of the fluid in the spherical
shell. We apply the numerical code from Hollerbach (2000), i.e. a spectral method
for the three-dimensional numerical simulation of the equations (3.9)–(3.11). We refer
the reader to Hollerbach (2000) for a detailed description of the spectral solution in
the magnetohydrodynamic framework. The no-slip boundary conditions on the velocity
field and the fixed temperature values at the inner and outer shell close our set
of equations. In Travnikov et al. (2003), Futterer et al. (2010) and Feudel et al.
(2011), we have extensively applied the code to ideal isoviscous fluids with γ = 1.
We summarize the most important results of Futterer et al. (2010) with a focus on
the agreement with the experimental data, and those of Feudel et al. (2011) with the
bifurcation scenario resulting from path following analysis in numerical simulations.

In the numerical simulation we observe the onset of convection at RaE,cold/32 =
3.12 × 102. On increasing the Rayleigh number up to RaE,cold/32 = 3.13 × 103, the
results depict a steady-state convection with the coexistence of cubic, axisymmetric
and five-fold symmetry classes. The transition to time-dependent states occurs
suddenly; the time evolution delivers a very slow motion comparable to those observed
in the experimental data. The available experimental data agree with the numerical
data in the time-dependent domain. For this domain we choose to present data from
the non-stationary regime and the agreement with experimental data in figure 6.

The time-dependent pattern of the TEHD driven analogous Rayleigh–Bénard
Boussinesq convection combines the properties of all steady-state patterns from the
lower Rayleigh domain. In the chosen snapshot in figure 6 we observe the cubic
pattern produced by sheet-like upwellings in the radial velocity field illustration.
This is also present in the temperature field data, when it is visualized on a
spherical surface. To represent the details of the thermal upwellings, we plot also
the temperature field in a cut and highlight an arbitrarily chosen isosurface of the
temperature. There are no distinct plumes, but broadly merged thermal flow, i.e. sheet-
like upwellings.

In order to compare the numerical simulations with the experiment, we compute
the fringe patterns for a given temperature distribution T(ϕ, θ, r) with the approach of
§ 4. Again, we compute the mean of the temperature distribution in the approximate
direction of light, i.e. in the radial direction from the inner to outer radius of the
experiment geometry. Thus, we reduce the complexity of the temperature distribution
to the following distribution to a surface of a sphere:

H(ϕ, θ) := 1
ro − ri

∫ ro

ri

T(ϕ, θ, r) dr. (5.1)

Let us consider the experimental interferogram given in figure 6. The 60◦ meridians
are visible via their intersection at the north pole. Again, the black cross marks the
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FIGURE 6. Numerical simulation of ‘GeoFlow I’ Boussinesq TEHD model with constant
viscosity: (a) snapshot of sample at RaE,cold/32 = 6.25 × 103 with non-dimensional
temperature field distributed in the sphere and highlighted isosurface of T = 0.5; (b) radial
velocity component in a mid-spherical surface r = 0.5. Fringe patterns of convection with
sheet-like thermal upwelling (c) from numerical simulation of ‘GeoFlow I’ Boussinesq
TEHD model with constant viscosity at RaE,cold/32 = 6.25 × 103, and (d) observed in a
raw image in the experiments at RaE,cold/32= 6.44× 103.

centre of the circle-shaped image; it is equivalently the intersection of the sphere
with the optical axis. The grey parallels depict the direction of polarization of the
interferogram. We compute the gradient ∇ϕ,θH from the numerical data by taking
the central differences and obtain ∂H(ϕ, θ)/∂n via the multidimensional chain rule of
differentiation applied to the rotational transformations. Again, we use sinΛ |∂H/∂n|
as fringe generator. The fringe pattern convection calculated from the temperature field
obtained in the numerical simulations is in very good agreement with the observed
experimental data. We conclude here that we are able to validate the experimentally
observed images from the ‘GeoFlow I’ experiment (sheet-like thermal flow) with the
numerical model of an ideal isoviscous TEHD driven analogous Rayleigh–Bénard
Boussinesq convection system as presented in § 3.

6. Plume-like upwellings in a self-gravitating spherical shell experiment with
enhanced viscosity ratio and at higher Rayleigh numbers

6.1. Experimental observation
In the following we discuss the observed fringe patterns of convection in the ‘GeoFlow
II’ parameter domain. The experiment itself is performed in two different set-ups. First,
the reference cooling circuit is fixed to the lower temperature regime of Tref ,min = 20 ◦C.
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Thermal flow in spherical convection experiments under microgravity 669

Therewith, the initial viscosity of the fluid is higher. Second, the situation is reversed,
with the upper limit of Tref ,max = 30 ◦C and a lower initial viscosity of the fluid. In
this case, higher Rayleigh numbers are reached. Figure 3 shows the set points for
the Rayleigh number as a function of the viscosity ratio. This ratio results from the
properties of the used liquids and remains below 2 for both experiment series. In this
illustration with only one Rayleigh number RaE,cold/32 related to the viscosity ratio the
possible enhancement by a factor of 32 is not visible. The observation will have to
support the illustration in figure 2.

In ‘GeoFlow II’ an increment of 1T = 0.1 K delivers RaE,incr,refmin/32 = 8.62 × 102

and RaE,incr,refmax/32 = 31.15 × 103, resulting in a dense scan of the possible domain.
For ‘GeoFlow I’ a flow visualization is only available at the marked symbols, but the
whole domain is assessed also via numerical simulation. In addition, in ‘GeoFlow I’
the cooling circuit is not controlled actively, i.e. it is assumed to be the general room
temperature of the ISS. Again, from the illustration in figure 2, it becomes more clear
that the two experiment series assess different domains; only the upper ‘GeoFlow I’
and lower ‘GeoFlow II’ data can superimpose.

Regarding now the hydrodynamic stability related to figure 1, we do not expect
to track the transition from the conductive to the convective flow state above a
critical temperature difference and Rayleigh number, respectively. This is visible for
the experimental data already at the lowest assessed set points. In general, in the
lower Ra domain every single image shows pairs of elliptically formed rings, which
are distributed irregularly in the space between the polar and equatorial parts of the
spherical research cavity. This fringe pattern of convection clearly corresponds to the
plume-like upwelling type. Again, as in the ‘GeoFlow I’ case, figure 7 combines
multiple images. Those spots of plume-like upwelling are depicted in figure 7 for a
sample at (d) RaE,cold/32 = 6.14 × 103 and (c) RaE,cold/32 = 1.28 × 104. Furthermore,
patterns are not constant in space and time, changing between measured frames. This
is also observed for the mid range of the parameter domain. However, the amount of
those time-dependent ‘hot spots’ increases with viscosity. This has also been observed
in numerical models of mantle convection (Hüttig & Breuer 2011).

The overall temporal behaviour of the fluid flow is observed at all stages of the
performed set points. Only the specific planforms experience a transition of merged
patterns. The plumes are no longer separated from each other but are connected via
additional fringes RaE,cold/32 = 2.55 × 104 (figure 7b) and RaE,cold/32 = 3.81 × 104

(figure 7a). No significant difference in flow patterns is observed between the two
different viscosity domains. One might discuss the sharper contrast of the plumes in
the higher viscous working environment depicted in the right column of figure 7. From
the viewpoint of flow visualization, it is a question of refractive index behaviour. The
refractive index is a function of the relative permittivity and the relative permeability.
In the case of higher viscosity (higher Pr) the permittivity is also higher. Subsequently
the general refractive index level might be higher and lead to more deflection, resulting
in more contrast in the images. But there is also another possibility to relate this
with a Prandtl number effect. In the real experiment, the two liquids differ in their
reference Prandtl number. Starting from ‘GeoFlow I’ we can calculate Pr ref = 65,
and in ‘GeoFlow II’ we get Pr ref ,WE II = 200 and Pr ref ,WE III = 125. At this stage
one might identify an influence of the Prandtl number, with higher values inducing
sharper contrasts in plume-like upwellings. Clear evidence and an explanation for this
influence requires further study, e.g. with further experiments increasing the Prandtl
number. In this work here, we will refer to numerical simulations varying the Prandtl
number for different models below.
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(a)

(b)

(c)

(d)

FIGURE 7. The TEHD spherical shell convection experiment ‘GeoFlow II’ with temperature-
dependent physical properties of the liquid (liquid alkanol with PrTref=30◦C = 125 and
PrTref=20◦C = 200) and pronounced variation of the viscosity contrast γ in two reference
working environments, WE III (Tref = 30 ◦C), left column, and WE II (Tref = 20 ◦C), right
column. Fringe patterns of convection for variation of the Rayleigh number RaE,cold/32 at
different levels of γ : (a) 3.81 × 104 (left), (b) 2.55 × 104 (left) and 2.56 × 104 (right),
(c) 1.28 × 104 and 1.28 × 104, and (d) 6.14 × 103 and 6.24 × 103. The upper right panel
remains empty, because in that lower viscosity regime of WE II this high Rayleigh number
is not reached. Parameters below the onset of convection are not observed. The thermal drive
produces a plume-like convective planform; the increase of it delivers merged patterns with
‘connections’ between the plumes. All patterns are snapshots of highly irregular flow.
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Thermal flow in spherical convection experiments under microgravity 671

If we summarize now the route for the parameter domain of both experiment series
as depicted in figure 2, we observe sheet-like thermal flow in the lower domain. Then
we capture plume-like flow with single sharp spots, connected with broad-banded flow
in the upper domain. Especially the plumes are known in simple mantle dynamics with
significant viscosity ratios in the stagnant-lid domain. If we observe a plume in our
experiment, we can state here that the depth-dependent gravity enhances the viscosity
ratio in (3.15). The next step is to validate this result with numerical simulation.

6.2. Numerical simulation
In an initial step, we only consider the thermoviscous related terms of our numerical
TEHD model in the range of γ below 2 within the non-parallelized spectral code
(Hollerbach 2000). Certainly, the TEHD model involves the general factorial difference
of 32 between the cold and hot Rayleigh numbers. This does not lead to a change
in flow behaviour relative to the constant-viscosity scenario. The spatio-temporal
properties of the convective patterns remain comparable to the ‘GeoFlow I’ cases,
i.e. sheet-like. However, the ‘GeoFlow II’ experimental data show a convection
structure dominated by plume-like upwellings, which may be achieved by increasing
the effective viscosity ratio. Therefore we use the code GAIA, which can handle high
viscosity contrasts (six orders of magnitude between neighbouring grid points and up
to 40 system-wide). With GAIA we were already able to validate the results from
‘GeoFlow I’ with a focus on the influence of the Prandtl number. For the ‘GeoFlow
II’ case, we can increase the parameters even above the effective γ of 32. We also
balance the influence of the boundary conditions (no-slip versus free-slip) and the
different buoyancy magnitudes (constant, linear and 1/r5).

In mantle convection models, free-slip boundary conditions are considered realistic
for simulations of the interior dynamics of planetary bodies. However, in a closed
experiment, the boundary conditions are automatically set to no-slip. When comparing,
for example, the magnitude of velocity between the free-slip and no-slip boundaries
for a simulation with a cold Rayleigh number Racold = 6.25 × 102 and a viscosity
contrast γ = 32, we obtain a velocity that is enhanced by a factor of 2.4 in the
free-slip case relative to the no-slip case. This difference is caused by the zero
velocity at the boundaries in the no-slip case, while in the free-slip run the lateral
velocity can develop freely. This influences the temperature field, resulting in a lower
mean temperature for the free-slip case, since heat is transported more efficiently
than in the no-slip model. Additionally, the upper thermal boundary layer is located
closer to the surface in the free-slip case, meaning that thermal upwellings rise to a
shallower depth compared to the no-slip run. All these differences hinder the direct
quantitative comparison between the ‘GeoFlow’ experiments and published mantle
convection models.

Therefore, using no-slip boundary conditions in GAIA, we have performed a series
of numerical simulations (filled diamonds in figure 2) whose snapshots are shown in
figure 8. The critical Rayleigh number was found to be Racold,cr ∈ (2.1× 103, 2.2× 103]
for an isoviscous mantle system with constant gravity. With a viscosity contrast
γ = 32 we obtain Racold,cr ∈ (475, 500]. Performing a numerical simulation for
‘GeoFlow’ requires a radial dependence. This calculation with GAIA results in a
critical onset of RaE,cold,cr/32 ∈ (343.75, 375] for ‘GeoFlow I’. By increasing either
the Rayleigh number or the viscosity contrast, the convection changes from subcritical
to steady state and then to time dependent. A time-dependent behaviour is obtained
for the simulations plotted above the black border in figure 8. All the simulations in
figure 8 are done using a random initial perturbation as appropriate for the comparison
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FIGURE 8. (Colour online) Numerical simulation of the mantle Boussinesq model with
variation of the viscosity contrast γ : samples at Racold = 103, 104, 105, 106 for γ =
1, . . . , 103 resulting in Rahot = 104, . . . , 107. Patterns of convection are illustrated via an
arbitrarily chosen non-dimensional isosurface of the temperature field. The increase of γ
leads to plumes, which have a narrower channel of thermal upflow in their stem, when
a higher parameter domain and thus a higher thermal driving via Racold is considered.
Additionally, there are small ridges of thermal upwellings from the hot boundary layer. A
time-dependent behaviour is obtained for the simulations plotted above the black border.
Refer also to figure 2 for the transition from steady state to unsteady flow regimes.

with the experimental data. Obviously the picture changes if the initial perturbation is
set to cubical, for example. The cubical initial conditions result in six upwellings on
the axes, which remain stable also for higher Rayleigh numbers (e.g. Racold = 1 × 104

and Rahot = 1× 106).
In figure 8 we observe the increase of the number of thermal upwellings with

increasing viscosity contrast. This behaviour was also observed in purely internally
heated systems with insulating bottom boundary as discussed in Hüttig & Breuer
(2011). A low-degree regime as described in Hüttig & Breuer (2011) and Ratcliff et al.
(1997) has not been found in our simulations. This is most likely to be due to the
no-slip boundary conditions, which would prevent a long-wavelength solution (Tackley
1993). It shows once more the importance of the boundary treatment. Additionally,
with increasing viscosity ratio, we clearly observe plumes. These plumes have a
narrower channel of thermal upflow and a broader head with increasing γ . On
increasing the Rayleigh number, the plumes become interconnected by thin sheet-like
upwellings along the hot boundary layer.
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FIGURE 9. Fringe patterns of convection for numerical simulation of the mantle Boussinesq
model with variation of the viscosity contrast γ : samples at Racold = 103, 104, 105, 106 for
γ = 1, . . . , 103 resulting in Rahot = 104, . . . , 107. Plumes from the lower Ra domain result
in clear plume-like fringes with a pair of rings; plumes from the higher Ra domain are not
clearly separated as a pair of rings but even merge with sheet-like patterns resulting from the
ridges produced in the thermal boundary layer.

Using the flow visualization techniques presented in § 3 we can compute the fringe
patterns for the convection structure shown in figure 8. Figure 9 shows the elliptically
formed pair of rings representing a plume-like and the continuous lines that indicate
a sheet-like upwelling in the upper domain. The stationary regime does not clearly
deliver either plume-like flow or sheet-like fringe patterns of convection. At this stage
of analysis this is related to the way a temperature profile moves into the optical
segment. In the numerical reconstruction of the fringe patterns we are able to vary
the position of the optical axis. By this means, we can meet the real situation in the
experiment, where the optical axis is fixed and the pattern is moving freely. Figure 10
shows a match of the experimental data with fringe patterns. Here we conclude that
the ‘GeoFlow II’ domain reflects fluid flow dynamics from geodynamic models. The
TEHD model seems to be valid only for the higher domain. In the lower regime, only
the mantle model is able to validate the observed patterns.

If we briefly summarize that we observe sheets in ‘GeoFlow I’ and plumes in
‘GeoFlow II’, one might ask whether there is an influence of the Prandtl number
as described in Schmalzl, Breuer & Hansen (2002) and Breuer et al. (2004). For
very low Pr ∈ (0.1, 10) they capture a rather low-degree convection pattern with

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
:/w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e.

 U
ni

ve
rs

ity
 o

f B
as

el
 L

ib
ra

ry
, o

n 
30

 M
ay

 2
01

7 
at

 1
7:

28
:1

3,
 s

ub
je

ct
 to

 th
e 

Ca
m

br
id

ge
 C

or
e 

te
rm

s 
of

 u
se

, a
va

ila
bl

e 
at

 h
tt

ps
:/w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e/

te
rm

s.
 h

tt
ps

://
do

i.o
rg

/1
0.

10
17

/jf
m

.2
01

3.
50

7

https:/www.cambridge.org/core
https:/www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2013.507


674 B. Futterer et al.

(a) (c)

(b) (d)

FIGURE 10. Fringe patterns of convection with plume-like thermal upwelling from
numerical simulation (top) and observed in a raw image in the experiments (bottom). The
lower domain of the experiment exhibits plume-like thermal upwelling; the higher domain is
superimposed by sheet-like patterns related to ridges of thermal upwelling in the boundary
layer. While the lower domain is only reproduced by a pure mantle model, the higher domain
is assessable via both the mantle as well as the TEHD model.

bulgy structures interconnected by sheets in Cartesian box models. In the ‘GeoFlow’
experiments the Pr numbers used are 64.64, 125 and 200. A first benchmark for
‘GeoFlow I’, when using an infinite Pr and Pr = 64.64 as in the experiment, has
shown that in this range the Prandtl number can be assumed to be infinite. In the
‘GeoFow II’ experiment, Pr is about two times larger than in ‘GeoFlow I’ and the
same argument should hold.

7. Heat transfer properties of convective patterns
In table 5 we show output quantities of the numerical simulations performed

in this work. For steady-state simulations three different initial spherical harmonic
perturbations of the temperature field have been used: cubic (promotes six upwellings
on the axes), tetrahedral (promotes four upwellings distributed in the form of a
tetrahedron) or random. Beside the root mean square velocity, average temperature and
Nusselt number, we show also the weighted and dominant degree of the convective
pattern (Hüttig & Breuer 2011). The latter two offer additional information about
the structural complexity being directly correlated with the number of up- and
downwellings. In general, for sheet-like thermal structures (for all cases using the
‘GeoFlow’ configuration) we find that the heat transfer is more effective than for
plume-dominated flow as indicated by both higher Nusselt numbers and higher root
mean square velocities (table 5). In order to better understand the difference in the
convective structure and the cooling behaviour, we select two simulations, where
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Case Rahot Set-up IC State vrms Tavg Nu Wmode Modemax

Racold = 1× 103

1 1× 104 Mantle Cubic s 5.224 0.287 1.44 4.068 4
2 1× 104 Mantle Tetra s 4.925 0.290 1.41 4.492 4
3 1× 104 Mantle Random s 5.228 0.287 1.43 4.079 4

4 3.2×104 Mantle Random s 9.825 0.299 1.93 4.690 5
5 3.2×104 GeoFlow Random s 12.162 0.309 2.19 4.821 4

6 5× 104 Mantle Cubic s 11.813 0.300 2.04 4.091 4
7 5× 104 Mantle Tetra s 11.241 0.296 1.90 3.233 3
8 5× 104 Mantle Random s 11.655 0.304 2.09 5.077 5
9 5× 104 GeoFlow Random s 14.183 0.318 2.35 4.300 4

10 1× 105 Mantle Cubic s 15.938 0.313 2.30 4.154 4
11 1× 105 Mantle Tetra s 15.389 0.309 2.16 3.267 3
12 1× 105 Mantle Random s 15.694 0.321 2.39 5.420 5
13 1× 105 GeoFlow Random s 18.145 0.335 2.62 4.061 4

14 5× 105 Mantle Cubic s 31.408 0.358 2.92 4.493 4
15 5× 105 Mantle Tetra s 29.988 0.374 3.14 6.653 6
16 5× 105 Mantle Random s 29.837 0.371 3.13 6.801 6
17 5× 105 GeoFlow Random s 31.268 0.389 3.17 3.617 3

18 1× 106 Mantle Cubic s 41.779 0.380 3.19 4.712 4
19 1× 106 Mantle Tetra s 39.854 0.394 3.47 6.840 6
20 1× 106 Mantle Random s 38.425 0.394 3.48 7.629 7
21 1× 106 GeoFlow Random s 40.782 0.422 3.51 4.274 3

22 5× 106 Mantle Cubic s 78.619 0.433 3.81 5.287 4
23 5× 106 Mantle Tetra s 71.327 0.442 4.28 8.293 8
24 5× 106 Mantle Random s 71.442 0.442 4.31 8.403 8
25 5× 106 GeoFlow Random s 79.378 0.513 4.53 7.397 6

26 1× 107 Mantle Random t 94.201 0.473 4.78 9.129 8
27 1× 107 GeoFlow Random t 106.808 0.542 4.95 8.524 6

Racold = 1× 104

28 1× 104 Mantle Cubic s 17.614 0.237 2.33 4.306 4
29 1× 104 Mantle Tetra s 17.525 0.246 2.33 4.137 4
30 1× 104 Mantle Random s 17.521 0.246 2.33 4.146 4

31 5× 104 Mantle Cubic s 27.998 0.256 2.94 4.653 4
32 5× 104 Mantle Tetra s 27.878 0.258 2.96 4.949 4
33 5× 104 Mantle Random s 27.961 0.257 2.97 4.998 4

34 1× 105 Mantle Cubic s 34.123 0.269 3.22 4.848 4
35 1× 105 Mantle Tetra s 33.496 0.273 3.08 3.851 3
36 1× 105 Mantle Random s 34.061 0.272 3.32 5.534 5

37 3.2×105 Mantle Random s 47.386 0.302 3.97 6.440 5

TABLE 5. (Continued on next page)

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
:/w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e.

 U
ni

ve
rs

ity
 o

f B
as

el
 L

ib
ra

ry
, o

n 
30

 M
ay

 2
01

7 
at

 1
7:

28
:1

3,
 s

ub
je

ct
 to

 th
e 

Ca
m

br
id

ge
 C

or
e 

te
rm

s 
of

 u
se

, a
va

ila
bl

e 
at

 h
tt

ps
:/w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e/

te
rm

s.
 h

tt
ps

://
do

i.o
rg

/1
0.

10
17

/jf
m

.2
01

3.
50

7

https:/www.cambridge.org/core
https:/www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2013.507


676 B. Futterer et al.

Case Rahot Set-up IC State vrms Tavg Nu Wmode Modemax

38 3.2×105 GeoFlow Random t 54.575 0.346 3.89 4.441 3

39 5× 105 Mantle Cubic s 54.335 0.307 3.94 5.384 4
40 5× 105 Mantle Tetra s 54.163 0.312 4.22 6.701 5
41 5× 105 Mantle Random s 53.272 0.318 4.33 7.389 6
42 5× 105 GeoFlow Random t 62.396 0.371 4.20 4.659 3

43 1× 106 Mantle Cubic s 66.611 0.326 4.27 5.622 4
44 1× 106 Mantle Tetra s 66.095 0.332 4.72 7.567 6
45 1× 106 Mantle Random s 65.412 0.339 4.69 7.400 6
46 1× 106 GeoFlow Random t 75.160 0.402 4.73 6.306 3

47 5× 106 Mantle Random t 105.899 0.401 5.79 8.763 8
48 5× 106 GeoFlow Random t 127.284 0.491 6.06 8.519 6

49 1× 107 Mantle Random t 132.916 0.426 6.17 8.519 7
50 1× 107 GeoFlow Random t 169.208 0.526 6.93 9.240 7

Racold = 1× 105

51 1× 105 Mantle Random t 71.098 0.230 3.92 5.86 3

52 5× 105 Mantle Random t 102.466 0.267 5.25 7.16 5

53 1× 106 Mantle Random t 122.292 0.285 5.96 7.234 5

54 3.2×106 Mantle Random t 165.579 0.327 7.20 8.411 7
55 3.2×106 GeoFlow Random t 203.597 0.409 7.43 9.230 6

56 5× 106 Mantle Random t 193.870 0.348 7.74 8.455 7
57 5× 106 GeoFlow Random t 229.889 0.424 8.07 9.602 6

58 1× 107 Mantle Random t 229.528 0.367 8.55 8.975 6
59 1× 107 GeoFlow Random t 297.573 0.454 9.10 9.357 5

Racold = 1× 106

60 1× 106 Mantle Random t 270.387 0.227 7.74 8.742 6

61 5× 106 Mantle Random t 379.040 0.284 10.32 9.111 6

62 1× 107 Mantle Random t 446.289 0.307 11.47 8.834 8

TABLE 5. Results for the cases presented in this work: Rahot and Racold are the Rayleigh
numbers at the inner and outer boundary. The set-up shows either the use of a pure mantle
model or the ‘GeoFlow’ TEHD model. Initial starting conditions (IC) vary between cubic,
tetrahedral or random. In the fourth column of the table we show whether the simulations
reached a steady-state (s) or a time-dependent state (t). Further quantities are the root
mean square velocity vrms, average temperature Tavg and Nusselt number Nu, respectively.
The output parameters Wmode and Modemax give information about the spherical harmonics
degrees. While Wmode is a weighted spherical harmonics degree, Modemax is the dominant
degree reached.
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FIGURE 11. Influence of the self-gravitating configuration on the variation of the buoyancy
term and the convective patterns. (a) Variation of the buoyancy term caused by either
a temperature-dependent viscosity (grey lower full line, maximum; grey upper full line,
minimum; black line, volume averaged) or 1/r5 as used in the ‘GeoFlow’ experiments
(dashed-dotted line). (b) Convection patterns obtained for Racold = 104 and Rahot = 3.2 × 105

(the buoyancy term increases towards the inner boundary): left, the buoyancy term changes
with 1/r5; right, the buoyancy term changes due to the temperature-dependent viscosity.

the Rayleigh number varies either (i) locally due to temperature-dependent viscosity
(viscosity decreases with increasing temperature) according to µ(T) = exp(−γT) with
γ = ln(32) or (ii) as 1/r5 (‘GeoFlow’ configuration and with constant viscosity). The
Rayleigh numbers at the inner and outer boundary in these simulations are the same
(Racold = 104 and Rahot = 3.2×105) but vary with depth as in figure 11(a). The volume-
averaged Rayleigh number is 3.43 × 104 for the temperature-dependent viscosity case
and 6.24 × 104 for the ‘GeoFlow’ configuration. Thus, the increase of the Nusselt
number for the sheet-like thermal structures are related to a higher effective Rayleigh
number.

In the case of the ‘GeoFlow’ configuration, the lower thermal boundary layer is
therefore more unstable than in the case where the Rayleigh number changes solely
due the temperature-dependent viscosity. The first scenario shows sheet-like structures
while the latter produces a plume-like flow (figure 11b). However, on increasing
the Rayleigh number at the outer boundary above 104, both the sheet-like and the
plume-like structures change to a structure that shows plumes interconnected by sheets.
This structure is independent of the depth dependence of the Rayleigh number. An
interconnection between individual plumes has also been observed by Houseman
(1990) in three-dimensional Cartesian box models with stress-free boundaries and
was associated with convection patterns at high Rayleigh numbers in at least partially
bottom-heated systems.

8. Summary, discussion and outlook
In this paper we present results from our ‘GeoFlow’ spherical convection

experiments performed under microgravity, which use an analogy of TEHD convection
to reflect a Rayleigh–Bénard system in a spherical experiment. In the first experiment
‘GeoFlow I’ we use a silicone oil (M5), whose physical properties are considered
to be temperature-independent. In the second experiment ‘GeoFlow II’ we keep
the experimental design and set-up and fill the research cavity with an alkanol (1-
nonanol), whose properties are comparable to the silicone oil except for a pronounced
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variability of the viscosity with temperature. This allows us to capture the initial
basis of hydrodynamic effects in a spherical experiment motivated by Earth’s mantle
convection phenomena. The experimental domain captures several orders of the
thermal driving parameter, i.e. the Rayleigh number, along with an enhanced viscosity
ratio of 32. To the best of our knowledge this has been treated by means of numerical
simulations only (figure 1) or in rather complex experiments in rectangular geometries
(Androvandi et al. 2011). After a discussion of the governing equations and specific
properties of the TEHD convection, we present the results from both experiment
series and benchmark them against numerical simulation. We observe a sheet-like
thermal flow (visible in our flow visualization as interferograms of fringes), when
the physical properties of the fluid do not vary with temperature – a result from
‘GeoFlow I’. When we use a liquid with temperature-dependent viscosity (‘GeoFlow
II’), we observe a plume-like dominated flow (visible in the interferograms as pairs
of concentrically organized ellipsoidal rings). For the ‘GeoFlow I’ situation we are
able to reproduce our sheet-like fringe patterns of convection. Both available numerical
codes, Hollerbach (2000) and GAIA, describe the equations of the system with just
a TEHD related buoyancy term. Hence, we prove experimentally that the symmetry
classes for patterns of convection in a spherical shell system are more or less generic.
Only the details depend on the specific functional form of the gravitational potential.
Using the example of a cubic symmetry, a mantle model with constant gravity delivers
plume patterns of convection, called cubic, if four plumes are upwelling from the
equator (Bercovici et al. 1989a). A cubic symmetry formed by four upwellings
connected with sheets in the upper and lower hemisphere is discussed in Busse (1975)
and Busse & Riahi (1982) for a linear dependence of the gravitational potential. Here,
we describe it for a 1/r5 dependence resulting from the TEHD model. All patterns in
the ‘GeoFlow I’ domain are independent of the Prandtl number (Pr > 50). Thus the
experiment can be considered as a Stokes flow.

For the ‘GeoFlow II’ case the situation is rather different, as we depict in figure 10.
Dividing the plume-like fringe patterns of convection into two mainly observed types,
the single plumes in the lower domain and the superimposed ridges in the higher
domain, we are able to reproduce them with some additional conditions. For the single
plumes, which are not interconnected by sheet-like upwellings, we have an agreement
with a mantle model, i.e. without 1/r5 dependence of the buoyancy term. For the
higher domain both the mantle as well as the TEHD model deliver the same result. In
both cases we see evidence that depth-dependent gravity acts via an enhancement of
the viscosity contrast. Thus, if using a pure TEHD model, γ is directly comparable.
However, if instead a mantle model is used, then γ needs to be higher. Figure 12
shows how the patterns obtained with the numerical simulations correlate to the
structures obtained in the ‘GeoFlow’ experiments and demonstrates the inconsistency
between the numerical and the ‘GeoFlow II’ experiment for low surface Rayleigh
number. It still remains to be clarified why for the temperature-dependent viscosity
(‘GeoFlow II’) the convection pattern changes from sheet-like to plume-like. To this
end more experimental data (expected from a subsequent ‘GeoFlow IIb’ mission) and
numerical simulations are needed.

When we compare the combination of experimental and numerical work for the
TEHD issues, we have the results from Hart et al. (1986), where a very good
agreement between experimental and numerical data is found. But the authors use
a temperature equation different from ours. They include on the right side of our
equation (3.11) a term related to the dissipative heating and, in addition, they add a

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
:/w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e.

 U
ni

ve
rs

ity
 o

f B
as

el
 L

ib
ra

ry
, o

n 
30

 M
ay

 2
01

7 
at

 1
7:

28
:1

3,
 s

ub
je

ct
 to

 th
e 

Ca
m

br
id

ge
 C

or
e 

te
rm

s 
of

 u
se

, a
va

ila
bl

e 
at

 h
tt

ps
:/w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e/

te
rm

s.
 h

tt
ps

://
do

i.o
rg

/1
0.

10
17

/jf
m

.2
01

3.
50

7

https:/www.cambridge.org/core
https:/www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2013.507


Thermal flow in spherical convection experiments under microgravity 679

Obtained patterns
GeoFlow II

Plumes Sheets Sheets

Expected and obtained
patterns GeoFlow I

Expected and obtained patterns
GeoFlow II

Expected patterns
GeoFlow II

GeoFlow I

GeoFlow IIInterconnected plumes

and

FIGURE 12. Parameter space and corresponding structures obtained in the numerical study.
The pattern domains obtained in the two GeoFlow experiments are shown in different grey
shades.

term ‘depending on E that represents the work done by electric forces’ (Hart et al.
1986, p. 522):

∂ε

∂t
T

DE2

Dt
/2ρc. (8.1)

In our pre-studies for ‘GeoFlow I’ we omitted this term as a result of an extended
discussion related to its effective contribution to the flow (Travnikov et al. 2003).
Our ‘GeoFlow I’ results support this approach. Considering the TEHD in the vertical
annulus as in Malik et al. (2012) and Yoshikawa et al. (2013), we have a comparable
discussion on the so-called feedback effect, i.e. via the Gauss equation ∇ · (εE) = 0,
taking into account the influence ‘on the temperature disturbances on the electric
permittivity’ (Malik et al. 2012). Thus they keep the same temperature equation as in
our model. While an extended numerical study would deliver an answer as to which
of the other two TEHD equation models fit our experimental observation, we might
assume that in the lower domain we have such feedback effects producing the single
plumes not reflected in our recent TEHD model.

It has to be mentioned again that we have an agreement also in our selected
tests in the Earth laboratory. But in the microgravity the permittivity replaces the
density. For 1-nonanol, the liquid of ‘GeoFlow II’, the feedback effect seems to play
a more important role than for M5, the liquid of ‘GeoFlow I’. Owing to technical
pre-studies, we act on the assumption that our used liquids do not suffer from fatigue.
Nevertheless, we summarize that we are able to reproduce plume-like flow in a
spherical experiment by means of TEHD experiments.

In December 2012 we started the mission ‘GeoFlow IIb’, which will support more
highly resolved analysis related to the time resolution of the flow modes. In addition,
the transient behaviour will be reviewed. Both require long-term observations, which
were only authorized after the second mission ‘GeoFlow II’, which lasted from
March 2011 until May 2012. To clarify the feedback effects we plan to perform
additional parameter sets on orbit with a variation of the high-voltage potential. This
will distinguish the temperature effects on the permittivity as we vary the electric
energy.
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HÜTTIG, C. & STEMMER, K. 2008a Finite volume discretization for dynamic viscosities on Voronoi
grids. Phys. Earth Planet. Inter. 171, 137–146.
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