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THE SCENERY FLOW OF SELF-SIMILAR MEASURES WITH

WEAK SEPARATION CONDITION

ALEKSI PYÖRÄLÄ

Abstract. We show that self-similar measures on Rd satisfying the weak separa-
tion condition are uniformly scaling. Our approach combines elementary ergodic
theory with geometric analysis of the structure given by the weak separation con-
dition.

1. Introduction

Taking tangents and obtaining information on an object by studying its small-
scale structure is a classical idea in analysis. Much like tangent spaces can be used to
study the local structure of differentiable manifolds, tangent measures can be used
to study the local structure of a Radon measure µ. Tangent measures are defined as
the weak-∗ accumulation points of the scenery of µ at x, that is, the flow (µx,t)t≥0,
where

µx,t(A) =
µ(e−tA+ x)

µ(B(x, e−t))

for measurable A ⊆ B(0, 1), and B(x, e−t) denotes the closed ball centered at x and
of radius e−t.
The collection of tangent measures around a point can be very large, making it

difficult to infer from this collection any information on the original measure. For
example, O’Neil [27] has shown that there exist Radon measures on Rd which possess
every non-zero Radon measure as a tangent measure, in almost every point. This
raises the question whether some tangent measures are more relevant than others in
terms of studying the structure of the original measure.
Recently, it has been observed that instead of individual tangent measures, it

is often more useful to study the statistical behaviour of the scenery (µx,t)t≥0. To
establish these statistics, one views the scenery as the orbit of µ under the con-
tinuous magnification operation at x. This idea gives rise to the notion of tangent
distributions, defined as the accumulation points of the scenery flow

(

1

T

∫ T

0

δ[µx,t] dt

)

T>0

.
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Here and throughout, δ[y] denotes the Dirac measure at the point y. Tangent
distributions at x are supported on the collection of all tangent measures at x,
and are closely connected to Furstenberg’s CP-processes [11] and their coordinate-
independendent generalizations, Hochman’s fractal distributions [15]. The theory of
tangent distributions was greatly developed by Hochman and Shmerkin in [18] and
further by Hochman in [15].
It is often possible to study geometric properties of a measure by studying the

structure of its tangent distributions. In particular, measures for which the scenery
flow converges, as T → ∞, to a common distribution in almost every point in
their support, are geometrically much more regular than arbitrary measures. For
example, they are always exact dimensional [15]. Measures of this kind are called
uniformly scaling, a concept first introduced by Gavish [13].
During recent years, certain dynamical properties of tangent distributions have

proved to be a powerful tool in establishing fine-structure properties of fractal mea-
sures. For example, when the scenery flow converges to an ergodic fractal distribution
(see Definition 5.1) in almost every point, as is often the case for uniformly scaling
measures due to a remarkable result of Hochman [15], the measure satisfies a strong
version of the classical Marstrand’s projection theorem: If µ is a uniformly scaling
measure on Rd generating an ergodic fractal distribution, then for every k and ε > 0
there exists an open dense set Uε in the space of linear projections from Rd to Rk

such that for all π ∈ Uε,

(1.1) dim πµ > min{k, dimµ} − ε.

This is due to Hochman and Shmerkin [18, Theorem 8.2]. Here and in the sequel
dim refers to Hausdorff dimension.
In [8], Ferguson, Fraser and Sahlsten applied this projection theorem to prove

Falconer’s distance set conjecture in some special cases: If µ is a uniformly scaling
measure which generates an ergodic fractal distribution and H1(sptµ) > 0, writing

D(sptµ) = {|x− y| : x, y ∈ sptµ}

for the distance set of the support of µ, we have

(1.2) dimD(sptµ) ≥ min{1, dimµ}.

This is [8, Theorem 1.7].
Another application of the uniform scaling property is found in the prevalence

of normal numbers in the support of the measure. Recall that a number x ∈ [0, 1]
is a-normal if the sequence {akx mod 1}k∈N equidistributes for Lebesgue measure,
and a measure µ is called pointwise a-normal if µ-almost every x is a-normal. In a
breakthrough paper [19, Theorem 1.1], Hochman and Shmerkin established a condi-
tion for a uniformly scaling measure to be pointwise normal in terms of dynamical
properties of its tangent distribution: If µ is uniformly scaling, generates an ergodic
fractal distribution P and the pure-point spectrum of P does not contain a non-zero
integer multiple of 1

log a
, where a > 1 is a Pisot number, then µ is pointwise a-normal.
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Motivated in part by this progression, much attention has lately been given to the
problem of understanding the scenery flow for various classes of fractal measures,
and whether they are uniformly scaling and generate ergodic fractal distributions.
Examples of uniformly scaling measures include ergodic measures in the one-sided
shift space [10], the occupation measure on Brownian motion in dimension at least
3 [13], self-affine measures on Bedford-McMullen-type carpets [8] and self-similar
measures with the open set condition [13]. Recall that a measure µ on Rd is self-
similar if there exists a finite family of strictly contracting, angle-preserving affine
maps {ϕi}mi=1 and a probability vector (pi)

m
i=1 with positive entries such that

(1.3) µ =

m
∑

i=1

pi · µ ◦ ϕ−1
i .

For measures on R that satisfy (1.3) for some equicontractive family {ϕi}mi=1, De-Jun
Feng [6] has shown that the open set condition can be relaxed to the strictly weaker
finite type condition. The separation conditions play crucial roles in [13] and [6],
and this gives rise to the natural question: Are all self-similar measures uniformly
scaling?
The main result of this paper, Theorem 1.1, provides an affirmative answer to

this question under a separation condition called the weak separation condition. We
say that the family {ϕi}mi=1 (or the associated self-similar measure) in (1.3) satisfies
the weak separation condition if the identity is not an accumulation point of the
topological group generated by F−1F , where F is the semigroup with identity gen-
erated by {ϕi}mi=1. (In Section 2, Definition 2.1, we adapt a different but equivalent
characterization that is more explicitly reflected in the geometry of the self-similar
measure.) We remark that this condition is strictly weaker than the conditions
present in [13] and [6]; see [14,25,30] for discussion on the relationship between the
three conditions.

Theorem 1.1. If µ is a self-similar measure satisfying the weak separation condi-
tion, then µ is uniformly scaling and generates an ergodic fractal distribution.

As an immediate application to the geometry of the measure, this allows us to
deduce (1.1) and (1.2) for self-similar measures satisfying the weak separation con-
dition. Combining Theorem 1.1 with the methods of Hochman-Shmerkin [19], we
also obtain an application to their pointwise normality; see Corollary 5.4 in Section
5.
The idea in the proof of Theorem 1.1 is to approximate the flow (µx,t)t≥0 with

another flow that behaves statistically in a similar manner as the orbit of a point in
the underlying shift space. We construct this flow by first producing a fixed reference
measure ν on Rd via the weak separation condition (in (3.4)). Then, drawing from
certain recurrence properties in the underlying symbolic space, we may ensure that
µx,t is “close to” ν for a large proportion of scales t, in a quite strong sense which also
ensures that the magnifications of µx,t are close to those of ν. This is made precise
in Propositions 3.3 and 3.4. We may then use tools from ergodic theory to deduce
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that the approximating flow equidistributes for a limiting measure on the space of
measures independent of the point x. Finally, a compactness argument allows us to
deduce the convergence of the scenery flow of µ. It then follows immediately from
results of Hochman that the generated distribution is an ergodic fractal distribution.
In the presence of the open set condition, approximating (µx,t)t≥0 with another

flow is not necessary to gain access to tools from ergodic theory. Indeed, it follows
from the open set condition and the relation (1.3) that µ is homogeneous (in the
sense of Gavish [13]), i.e. any measure in the (weak-∗) closure of the family {µx,t :
x ∈ Rd, t ≥ 0} equals a restriction of a scaled and translated copy of µ itself.
Drawing from the CP-process machinery of Furstenberg, Gavish [13] showed that
this closure always contains many uniformly scaling measures, in fact when µ is any
Radon measure on Rd. Combining this with the homogeneity of µ, Gavish concluded
that self-similar measures with the open set condition are uniformly scaling.
Another argument was presented by Hochman in [15] assuming the strong separa-

tion condition under which the measures in the sum of (1.3) have disjoint supports.
In particular, if K denotes the support of µ, then the map T : K → K, x 7→ ϕ−1

i (x)
where 1 ≤ i ≤ m is the unique number such that x ∈ ϕi(K), is well-defined and pre-
serves µ. As described in [15, Section 4], the scenery flow of µ now arises as a factor
of a suspension flow of the dynamical system (K,µ, T ) (or of a certain skew-product
dynamical system, when the linear parts of ϕi are not positive scalars). Applying
tools from ergodic theory on this suspension flow allowed Hochman to establish the
uniform scaling property for self-similar measures satisfying the strong separation
condition.
Since a self-similar measure satisfying the weak separation condition is not nec-

essarily homogeneous, nor is it in general preserved under any obvious map on Rd,
the existing arguments do not directly apply in our setting. On the other hand, our
argument relies heavily on the weak separation condition in providing the reference
measure ν, which leaves open the question whether self-similar measures without
this separation condition are uniformly scaling.
The paper is organized as follows. In Section 2, we set up our notation and recall

the basic theory of dynamical systems and iterated function systems. In Section
3 we prove Theorem 1.1 in the simplified case when the defining IFS consists of
only homotheties, i.e. functions composed of scaling and translation operations.
Afterwards, we discuss the minor changes required to prove the general case. Section
4 is devoted to the proofs of Propositions 3.3 and 3.4, the main tools required in
the proof of Theorem 1.1. In Section 5 we briefly discuss the second assertion of
Theorem 1.1, a generalization of Theorem 1.1 for ergodic Markov measures, and its
application to pointwise normality of self-similar measures.

2. Preliminaries

In this paper, a measure always refers to a Radon measure on a metrizable topo-
logical space. For a compact subset A of a metric space X , write P(A) for the
space of probability measures on X for which sptµ ⊆ A. This space is endowed
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with the compact weak-∗ topology which we metrize with the Prokhorov metric d.
We use the notation ‖ · ‖ to denote the total variation norm. It is well-known that
convergence in the metric induced by the total variation norm implies convergence
in the Prokhorov metric. Finally, the Euclidean norm is denoted by | · | and the
supremum norm by ‖ · ‖∞.
For a measure ν and all non-null measurable sets A, write ν|A : B 7→ ν(B∩A) for

the restriction of ν to A and νA = ν(A)−1ν|A for the normalized restriction. For a ν-
measurable function f , write fν = ν ◦f−1 for the image (or push-forward) measure,
and if f is integrable, write fdν : A 7→

∫

χ[A](x)f(x) dν(x) for the weighted measure,
where χ[A] stands for the indicator function of A.

2.1. The scenery flow. Following the notation of [15], for t ≥ 0 and x ∈ Rd, we
write St : y 7→ ety for the exponential scaling map and Tx : y 7→ y − x for the
translation which takes x to the origin. The function S induces an additive action
of [0,+∞) on P(B(0, 1)), given for every t by S∗

t : ν 7→ C(Stν)|B(0,1), where C is
such that S∗

t ν is a probability measure. Here and throughout, B(0, 1) denotes the
closed unit ball. We sometimes refer to S∗ as the “zoom-in” operation and point
out that in [15] it was denoted by S� in order to emphasize restriction to B(0, 1).
For the composed scaling and translation operation, we use the short-hand notation

νx,t := S∗
t Txν.

Using the introduced notation, we recall the definition of the scenery flow of a
measure ν at a point x ∈ spt ν as the flow

(

1

T

∫ T

0

δ[νx,t] dt

)

T>0

.

Note that this is a flow on P(P(B(0, 1))). The elements of P(P(B(0, 1))) are termed
distributions to emphasize that they are measures on the space of measures. The
space of distributions is endowed with the weak-∗ topology. As a consequence of
the compactness of this topology, the set of accumulation points of the scenery flow
at any point is non-empty. Recall that a measure ν is termed uniformly scaling if
there exists a distribution P such that the scenery flow of ν converges to P ν-almost
everywhere, as T → ∞.

2.2. The symbolic space. Let Γ = {1, . . . , m} be an alphabet with m ≥ 2, and
let Φ = {ϕi}i∈Γ be a finite family of contractions on Rd. The family Φ is called an
iterated function system (IFS). It is well-known (see e.g. [4]) that there is a unique
compact set K, called the attractor of Φ, such that

K =
⋃

i∈Γ

ϕi(K).

If the functions ϕi are of the form ϕi(x) = ρiRix + ai, where 0 < ρi < 1, Ri is
an orthogonal matrix on Rd and ai ∈ Rd, the IFS Φ is called self-similar and its
attractor a self-similar set. Since our study does not depend on the coordinate
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basis of Rd, in order to simplify notation we may and do suppose that 0 ∈ K and
K ⊂ B(0, 1), where the inclusion is strict.
Write Γ∗ =

⋃

n Γ
n for the set of finite vectors, or words, composed of elements

of Γ. We usually denote finite words by characters a, b and c. For a finite word
a = (i0, i1, . . . , in) ∈ Γ∗, write ϕa = ϕi0 ◦ · · · ◦ϕin and Ka = ϕa(K). The notation |a|
stands for the number of elements in the word a and is called the length of a. For fi-
nite words a = (i0, . . . , in) and b = (j0, . . . , jm), we let ab := (i0, . . . , in, j0, . . . , jm) ∈
Γ|a|+|b| denote their concatenation.
Elements of ΓN are called infinite words and we often denote them by characters

i and j. For a word i, either infinite or of length |i| ≥ k, we write i|k ∈ Γk for
its projection to the first k coordinates. Given a ∈ Γ∗, we call elements of the set
{b ∈ ΓN ∪

⋃

k≥|a| Γ
k : b||a| = a} descendants of a; the words a|k, k = 1, 2, . . . , |a|

are called the ancestors of a. These notions extend in the obvious way to the sets
Ka and the functions ϕa. For a finite word b ∈ Γ∗, we write [b] for the cylinder set
{i ∈ ΓN : i||b| = b}. We also use the term “cylinder” to refer to the sets Ka. The
collection of all cylinder sets generate the topology with which we equip ΓN.
Let σ : (i0, i1, . . .) 7→ (i1, i2, . . .) denote the continuous left-shift on ΓN. We say

that a measure ν on ΓN is invariant with respect to σ if σν = ν, and ergodic, if
ν(E) ∈ {0, 1} for all sets E satisfying σ−1E = E.
It is sometimes convenient to consider the two-sided extension (ΓZ, σ) of the

dynamical system (ΓN, σ), where σ(. . . , i−1; i0, i1, . . .) = (. . . , i0; i1, i2, . . .) is also
used to denote the left-shift on ΓZ which, we note, is now invertible. For i =
(. . . , i−1; i0, i1, . . .) ∈ ΓZ and n ≤ m ∈ Z, write i|mn = (in, in+1 . . . , im−1, im) ∈ Γ∗

and [i]mn = {(. . . , j−1; j0, j1, . . .) ∈ ΓZ : (jn, jn+1, . . . , jm−1, jm) = i|mn }. The topol-
ogy of ΓZ is again generated by the cylinder sets [i]mn . There exists a natural bijec-
tion between the spaces of σ-invariant probability measures on ΓN and ΓZ, given by
ν 7→ ν∗, where ν∗([i]mn ) = ν([i|mn ]) for every i ∈ ΓZ and n ≤ m. It is straightforward
to check that this bijection maps ergodic measures to ergodic ones.
Write π for the surjective map ΓN → K,

i 7→ lim
k→∞

ϕi|k(0),

which we call the natural projection. Slightly abusing notation, we often write
Ti := Tπ(i) for the translation taking π(i) to the origin.
Fix a probability vector p = (pi)i∈Γ and write µ̄ = pN for the associated Bernoulli

measure on ΓN. It is well-known that the measure πµ̄ =: µ is a Radon measure
supported on the self-similar set K and satisfies

µ =
∑

i∈Γ

pi · ϕiµ.

This measure is called the self-similar measure associated to the vector p. Without
loss of generality, we assume that p has strictly positive entries: Those i with pi = 0
can be removed from Γ without affecting µ, and if only one entry is positive, µ is a
point mass and trivially uniformly scaling.
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2.3. The weak separation condition. To make the structure of self-similar sets
and measures more tractable, there are numerous separation conditions one can
impose on the defining IFS. These conditions are meant to limit the ways the cylin-
ders Ka can overlap with one another, making it easier to understand the geometric
properties of self-similar measures by studying the dynamical system (ΓN, µ, σ). Un-
derstanding the geometric properties of self-similar sets and measures without as-
suming any separation condition is an interesting and challenging problem in fractal
geometry; see [16,17,28,29] and the references therein for some recent breakthroughs
on the topic.
The weak separation condition was first introduced by Lau and Ngai in [24, Def-

inition 6.2], where the authors studied the multifractal formalism for self-similar
measures satisfying the condition. It allows overlaps between the cylinders Ka but
in a certain limited manner: Roughly speaking, for any r > 0, any closed ball of
radius r may intersect at most M distinct cylinders of diameter ≈ r, for some M
independent of r. We point out that no bound is imposed on the number of exact
overlaps : Given a ∈ Γ∗, there might be numerous words b ∈ Γ∗ for which Ka = Kb.
Before we formulate the separation condition precisely, some more notation is in
order.
Let Φ = {ϕi(x) = ρiRix + ai}i∈Γ be a self-similar IFS. For a finite word a =

(i0, . . . , in) ∈ Γ∗, write a− = (i0, . . . , in−1), ρa = ρi0 · · · ρin , Ba = ϕa(B(0, 1)), and
denote

N (a) = {ϕ−1
a ◦ ϕb : b ∈ Γ∗, ρb ≤ ρa < ρb− , Kb ∩Ba 6= ∅}.

We call the collection N (a) the neighbourhood system of a. The sets ϕa ◦ f(K),
f ∈ N (a), are called the neighbours of Ka.

Definition 2.1. The IFS Φ satisfies the weak separation condition, if

(2.1) sup
a∈Γ∗

#N (a) <∞.

Remark 2.2. If K is not contained in an affine hyperplane and we write N ′(a) =
{f ∈ N (a) : f(K) ∩ int convK 6= ∅}, where int denotes the interior and conv
denotes the convex hull, then it is not difficult to see that (2.1) is equivalent to the
condition supa∈Γ∗ #N ′(a) < ∞. In fact1, when int convK 6= ∅, it is an interesting
question whether (2.1) is equivalent to the a-priori stronger condition

(2.2) #

(

⋃

a∈Γ∗

N ′(a)

)

<∞.

This question was first raised by Lau and Ngai in [25]. Some evidence for the
equivalence was provided in [14] where the authors showed that (2.1) implies (2.2)
when K = [0, 1].

While appearing different in form, Definition 2.1 coincides with that of Lau and
Ngai; this is proved in Zerner’s paper [30, Theorem 1], where multiple equivalent

1We thank Alex Rutar for suggesting this remark.
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formulations (including the one in the introduction) for the weak separation condi-
tion are listed. We refer the reader to [7,9,21,26] for further results on the structure
of weakly separated self-similar sets and measures.
In our study of the scenery flow, we aim to establish regularity in (µi,t)t≥0 through

the existence of a recurring neighbourhood system in the sequence (N (i|k))k∈N. To
study this recurrence with the help of the theory of dynamical systems, we let a0 ∈ Γ∗

be a word for which

(2.3) #N (a0) = sup
a∈Γ∗

#N (a)

and call the maximal neighbourhood (system) the collection

(2.4) N0 := N (a0).

The following observation regarding the recurrence of N0 in the zoom-in process was
made by Feng and Lau in [7]. It is one of the key tools in our proof.

Lemma 2.3. For any c ∈ Γ∗,

{ϕb : b ∈ Γ∗, ρb ≤ ρca0 ≤ ρb− , Kb ∩Bca0 6= ∅} = ϕca0N0,

where we write ϕca0N0 = {ϕca0 ◦ f : f ∈ N0}.

K

Kc1a0
Kc2a0

{f(K) : f ∈ N0}

Figure 1. Here c1, c2 ∈ Γ∗. The neighbourhood system of any cylin-
der whose symbolic coding ends with a0 is N0.

Proof. We have

{ϕb : b ∈ Γ∗, ρb ≤ ρca0 ≤ ρb− , Kb ∩ Bca0 6= ∅}

⊃ {ϕca : a ∈ Γ∗, ρca ≤ ρca0 ≤ ρca− , Kca ∩ Bca0 6= ∅}

= {ϕc ◦ ϕa0 ◦ ϕ
−1
a0

◦ ϕa : a ∈ Γ∗, ρa ≤ ρa0 ≤ ρa− , Ka ∩Ba0 6= ∅}

= ϕca0N0.

This is equivalent to

(2.5) N0 ⊆ {ϕ−1
ca0

◦ ϕb : b ∈ Γ∗, ρb ≤ ρca0 ≤ ρb− , Kb ∩Bca0 6= ∅}.

Recall from (2.3) and (2.4) that N0 has cardinality at least that of the right-hand
side of (2.5). Hence (2.5) holds with equality. �
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3. The scenery flow

For simplicity, we first prove the following special case of Theorem 1.1, and af-
terwards discuss the minor modifications required in the proof in order to lift these
restrictions on the IFS.

Theorem 3.1. If Φ = {φi(x) = ρx+ai}i∈Γ is an IFS of equicontractive homotheties
on Rd satisfying the weak separation condition, then any self-similar measure µ
associated to Φ is uniformly scaling.

In the setting of Theorem 3.1, the neighbourhood system of a finite word a ∈ Γ∗

assumes the slightly simplified form

N (a) = {ϕ−1
a ◦ ϕb : b ∈ Γ|a|, Kb ∩Ba 6= ∅}.

If (rn)n∈N ⊆ [0,+∞) is a sequence such that

(3.1) lim
n→∞

rn
n

∈ (0,+∞),

then the sequence

(3.2)

(

1

rn

∫ rn

0

δ[µi,t] dt

)

n∈N

is asymptotic to the scenery flow of µ at π(i). Our strategy is for every ε > 0 and
almost every i ∈ ΓN to choose the numbers rn = rn(i) in such a way that the tail
of (3.2) is within Prokhorov distance ε from a distribution Pε independent of i.
Provided that (rn)n∈N also satisfies (3.1), it follows that tail of the scenery flow is
within distance 2ε from Pε. Taking ε → 0 along a countable sequence and using the
compactness of the space of distributions, we then obtain a set of full µ-measure in
which the scenery flow converges.
To find a distribution Pε which nearly captures the statistics of the scenery of µ,

we want to approximate (µi,t)t≥0 with a flow whose dynamics can be more easily
traced back to (ΓN, µ̄, σ). Since our prior hope of accomplishing this is to use the
recurrence of N0 in (N (i|k))k∈N which follows from the recurrent visits of (σki)k∈N
in [a0], our first task is to exhibit the scenery measures using the neighbourhood
systems appearing around π(i). The following representation is immediate from the
self-similarity of µ; recall that Ti denotes the translation x 7→ x− π(i).

Lemma 3.2. Let i ∈ ΓN. For every k ∈ N, there exists a probability vector
(qf(i|k))f∈N (i|k) such that

µi,t = S∗
t+k log ρTσki

∑

f∈N (i|k)

qf (i|k) · fµ

whenever t > 0 is such that B(π(i), e−t) ⊆ Bi|k .

Proof. An elementary calculation shows that

(3.3) Sk log ρ−1Ti = Tσkiϕ
−1
i|k
.
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Since we suppose that B(π(i), e−t) ⊆ Bi|k , using self-similarity, (3.3) and the addi-
tivity of the action induced by S∗ we can write

µi,t = S∗
t+k log ρSk log ρ−1Ti

∑

a∈Γk , Ka∩Bi|k
6=∅

pa · ϕaµ

= S∗
t+k log ρTσki

∑

a∈Γk , Ka∩Bi|k
6=∅

pa · (ϕ
−1
i|k

◦ ϕa)µ

and using the definition of N (i|k), the sum in this representation can be reordered
as

∑

f∈N (i|k)







∑

a∈Γk, ϕ−1
i|k

◦ϕa=f

pa






· fµ.

Normalizing gives the statement. �

Motivated by the recurrence of N0 in (N (i|k))k∈N and the prescribed representa-
tion for the scenery measures, we define the measure

(3.4) ν =
∑

f∈N0

fµ.

This is the recurring “frame” to which we compare the scenery measures. Indeed,
for those k for which N (i|k) = N0, Lemma 3.2 tells us that µi,t ≪ νσki,t+k log ρ with
density ζ = ζ(i|k) determined by the weights qf (i|k). While the exact form of the
density depends on the entirety of i|k, the content of the following proposition is
that much less information on i|k is required to control ζ(i|k) on a sufficient level.

Proposition 3.3. There exists a finite word b0 ∈ Γ∗ and a family of ν-integrable
functions {ζh : h ∈ F ⊆ N0}, each bounded from below by a constant Ch > 0, such
that for almost every i ∈ ΓN and all k ∈ N for which σk−|a0b0|i ∈ [a0b0], there exists
a function ζ = ζ(i|k) which is a convex combination of the functions ζh such that

µi,t = (ζdν)σki,t+k log ρ

for any t > 0 satisfying B(π(i), e−t) ⊆ Bi|k .

The proof requires some geometric work and can be found in Section 4.
We write

W = {ζ(i|k) : i and k satisfy the assumptions of Proposition 3.3}

for the countable collection of all functions given by Proposition 3.3. Note that
as a bounded subset of the linear span of a finite family of functions, the closure
of W is compact in the topology induced by the supremum norm. Combining
this compactness with an application of the Lebesgue-Besicovitch differentiation
theorem and some elementary continuity properties of ζ 7→ (ζdν)i,t we can deduce
the following:
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Proposition 3.4. For all ε > 0, there exists a set J = J (ε) ⊆ ΓN and an integer
N = N(ε) such that µ̄(J ) > 0 and for any ζ ∈ W and every i ∈ J ,

(3.5) d

(

1

T

∫ T

0

δ[µi,t] dt,
1

T

∫ T

0

δ[(ζdν)i,t] dt

)

< ε

for all T ≥ N .

The proof can be found in Section 4.
These propositions together give us a way to approximate the statistics of (µi,t)t≥0

using only the statistics of the recurrence of (σki)k∈N in [a0b0].

3.1. The sequence (rn)n. Let ε > 0. We now move on to defining the distribution
of the random sequence (rn)n∈N; recall (3.2) and the discussion thereafter. Let b0
be the finite word given by Proposition 3.3, and let J = J (ε) be the set given by
Proposition 3.4. Since everything we define in the following depends on the set J
and hence on ε, we suppress this dependence from our notation.
We will first define, for almost every i ∈ ΓN, a sequence (tn)n∈N ⊆ N such that

for every n,

i) σtni ∈ J and
ii) σtn−|a0b0|i ∈ [a0b0]

In particular, the sequence (σtni)n must also include some information on the “past”
of each element. One way to deal with this is to consider the two-sided extension
of the space ΓN. Since there is a natural bijection between the spaces of invariant
measures on ΓN and ΓZ, it is convenient to denote the extended Bernoulli measure on
ΓZ also by µ̄. Since the natural projection π extends to ΓZ by i 7→ π(i+), where (·)+

denotes the projection to the positive coordinates, and both the Bernoulli measure
and the extended one project onto the self-similar measure µ, we do not usually
make a distinction between one-sided and two-sided infinite words.
We let

J ′ = {i ∈ ΓZ : i|−1
−|a0b0|

= a0b0, i
+ ∈ J }

and define the sequence (tn)n∈N as the return times of i to the set J ′: write

τ : j 7→ min{n ≥ 1 : σnj ∈ J ′}

for the time of first visit in J ′, defined µ̄-almost everywhere, and set

t0 = 0,

tn(i) = tn−1(i) + τ(σtn−1i) for n ≥ 1.

Note that µ̄(J ′) > 0. We also point out the following:

Lemma 3.5. The function τ is µ̄-integrable over J ′.

Proof. Since µ̄ is ergodic, this is implied by Kac’s theorem [20, Theorem 2]. �
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Finally, define

rn(i) = inf{r ≥ 0 : B(π(i), e−r) ⊆ Bi|tn(i)
}

= tn(i) log ρ
−1 + α0(σ

tn(i)i).

Here

α0 : j 7→ inf{r ≥ 0 : B(π(j), e−r) ⊆ B(0, 1)}

is the correction that arises because the natural projections of j ∈ ΓN are not
necessarily in the “center” of B(0, 1). Since we suppose that K is strictly included
in B(0, 1), for a large enough integer M we have α0(j) ∈ [0,M ] for all j ∈ ΓN.
Let N be the integer given by Proposition 3.4. Note that since we have

rn+1(i)− rn(i) = (tn+1(i)− tn(i)) log ρ
−1 + α0(σ

tn+1i)− α0(σ
tni)

≥ log ρ−1 −M,

by replacing the alphabet Γ with a high-level iteration Γ⌈(M+N)/ log ρ−1⌉ we can sup-
pose that the difference rn+1(i)− rn(i) ≥ N for almost every i ∈ J ′. We will later
see that this sequence satisfies the condition (3.1).
We are now ready to prove Theorem 3.1.

3.2. Proof of Theorem 3.1. In the proof, we require the following application of
Birkhoff’s ergodic theorem. We postpone its short proof to the end of the section.

Claim 3.6. For any µ̄-integrable (distribution- or real-valued) g and almost every
i,

lim
n→∞

1

n

n−1
∑

k=0

g(σtki) =

∫

g dµ̄J ′ .

Define the functions ψ, η for µ̄-almost every j by

ψ : j 7→

∫ τ(j) log ρ−1+α0(στ(j)j)

α0(j)

δ[µj,t] dt,

η : j 7→ τ(j) log ρ−1 + α0(σ
τ(j)j)− α0(j).

(3.6)

The measurability of these functions is standard, and integrability over J ′ follows
from that of τ (Lemma 3.5) and the assumption α0(J ) ⊆ [0,M ].

Proof of Theorem 3.1. Let now i ∈
⋃∞

n=0 σ
−nJ ′ be such that Claim 3.6 holds for

the functions ψ and η. The set of these words has full µ̄-measure. Since the scale
we start the zoom-in process at has no effect on the generated distribution, we may
suppose that i ∈ J ′. To make the notation more clear, from now on we suppress the
dependance of rk and tk on i. Recall that the set J ′ was defined so that whenever
i ∈ J ′, we have i+ ∈ J and (σ−|a0b0|i)+ ∈ [a0b0].
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Now, we can write the sequence (3.2) as

1

rn

∫ rn

0

δ[µi,t] dt =
1

rn

n−1
∑

k=0

∫ rk+1

rk

δ[µi,t] dt

=
1

rn

n−1
∑

k=0

∫ tk+1 log ρ
−1+α0(σ

tk+1i)

tk log ρ−1+α0(σ
tki)

δ[(ζ(i|k)dν)σtki,t+tk log ρ] dt

=
1

rn

n−1
∑

k=0

∫ τ(σtki) log ρ−1+α0(σ
tk+1i)

α0(σ
tki)

δ[(ζ(i|k)dν)σtki,t] dt,(3.7)

using Proposition 3.3 and writing out the definitions of rk in the second equality,
and performing a change of variable t 7→ t− tk log ρ in the last one. Combining this
with Proposition 3.4 we get that

(3.8) d

(

1

rn

∫ rn

0

δ[µi,t] dt,
1

rn

n−1
∑

k=0

∫ τ(σtki) log ρ−1+α0(σ
tk+1i)

α0(σ
tki)

δ[µσtki,t] dt

)

< ε

for all large enough n. Write

Qn :=
1

rn

n−1
∑

k=0

∫ τ(σtki) log ρ−1+α0(σ
tk+1i)

α0(σ
tki)

δ[µσtki,t] dt.

Using the functions ψ and η defined in (3.6), we have for Qn the representation

Qn =
1

∑n−1
k=0(rk+1 − rk)

n−1
∑

k=0

ψ(σtki) =

(

1
1
n

∑n−1
k=0 η(σ

tki)

)(

1

n

n−1
∑

k=0

ψ(σtki)

)

.

It follows from Claim 3.6 that the sequence (Qn)n∈N converges to a limiting distribu-
tion Pε as n→ ∞. Combining this with (3.8), it follows that there exists an integer
nε such that

d

(

1

rn

∫ rn

0

δ[µi,t] dt, Pε

)

< 2ε for all n ≥ nε.

Since Claim 3.6 applied for η shows that

lim
n→∞

rn
n

= lim
n→∞

1

n

n−1
∑

k=0

η(σtki) =

∫

η dµ̄J ′ ∈ (0,+∞),

it follows that the sequence
(

1

rn

∫ rn

0

δ[µi,t] dt

)

n∈N

is asymptotic to the scenery flow of µ at π(i).



14 ALEKSI PYÖRÄLÄ

We have now found, for every ε > 0, a distribution Pε and an integer Tε such that
for almost every i,

(3.9) d

(

1

T

∫ T

0

δ[µi,t] dt, Pε

)

< 2ε for all T ≥ Tε.

Letting ε → 0 along a countable sequence and taking the intersection of the sets
of full µ̄-measure in which (3.9) holds, we obtain a set of full measure in which
(3.9) holds for every ε. Using the compactness of P(P(B(0, 1))), it follows that the
scenery flow of µ converges almost everywhere. Moreover, since the distributions Pε

are independent of i, so is the limit of the scenery flow. This concludes the proof
of Theorem 3.1. �

Proof of Claim 3.6. Note first that the claim is equivalent to

lim
n→∞

1

µ̄(J ′)n

⌊µ̄(J ′)n⌋
∑

k=0

g(σtki) =

∫

g dµ̄J ′ .(3.10)

Using Birkhoff’s ergodic theorem for σ and χ[J ′] in the form

lim
n→∞

#{0 ≤ ℓ ≤ n− 1 : σℓi ∈ J ′}

n
= µ̄(J ′),

we see that the sequence on the left-hand side of (3.10) is asymptotic to the sequence

1

µ̄(J ′)n

#{0≤ℓ≤n−1: σℓi∈J ′}
∑

k=0

g(σtki).

Now, using the fact that σℓi ∈ J ′ if and only if ℓ = tk for some k, which follows
from the definition of (tk)k as the return times to the set J ′, we can write

1

µ̄(J ′)n

#{0≤ℓ≤n−1: σℓi∈J ′}
∑

k=0

g(σtki) =
1

µ̄(J ′)

1

n

n−1
∑

ℓ=0

χ[J ′](σℓi)g(σℓi).

Finally, using Birkhoff’s ergodic theorem for χ[J ′]g and σ, we obtain (3.10). �

3.3. On the proof of Theorem 1.1. In the proof of Theorem 3.1 it was assumed
that the IFS Φ consists of equicontractive homotheties. Only minor modifications
in the proof are required in order to dispose of this requirement. We provide an
overview of the needed modifications; details are left to the interested reader. For
now, suppose that Ψ = {ϕi(x) = ρiRix + ai}i∈Γ is a self-similar IFS satisfying the
weak separation condition and µ is an associated self-similar measure.
In Proposition 3.3, to obtain the stated identity we need to replace the measure

(ζdν)σk,t+k log ρ by (Ri|k(ζdν))σki,t+log ρi|k
, where Ri|k is the matrix component of ϕi|k .

The statement of Proposition 3.4 extends as it is for distributions generated by Rν
and R(ζdν), for any orthogonal matrix R.
In the ergodic-theoretic part of Subsection 3.2, one must take into account the

additional dynamics coming from the matrix components of the similarities. Instead
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of the system (ΓN, µ̄, σ), we need to consider the skew-product (ΓN × G, µ̄ × γ, F ),
where G is the closure of the topological group generated by the matrix components
of ϕi, γ is the right-invariant Haar measure on G and F is the transformation
(i, R) 7→ (σi, R · Ri|1). The ergodicity of this kind of skew-product system is due
to Kakutani [22]. Going through Section 3 with these modifications, one sees that
for γ-almost every R, the measure Rµ is uniformly scaling. This property is clearly
preserved under action by R−1.
The fact that µ generates an ergodic fractal distribution is immediate from the

results of Hochman [15]. Since some additional terminology needs to be introduced
before the short deduction, we postpone it to Section 5 in order not to disrupt the
main line of argument behind the uniform scaling property.

4. The scenery of the self-similar measure

In this section, we prove Propositions 3.3 and 3.4. Although the proofs are written
in the setting of Theorem 3.1 for the sake of notational simplicity, after modifying
the statements of the propositions according to the highlights in Subsection 3.3, the
arguments extend with little work to the setting of Theorem 1.1.
We adopt the notation

(4.1) µa := (ϕ−1
a µ)B(0,1)

for every a ∈ Γ∗, for the “symbolic magnifications” of the self-similar measure.

4.1. Proof of Proposition 3.3. Recall Lemma 3.2 and that our motivation is
to find a way to describe the probability vector (qf(i|k))f∈N (i|k) without requiring
information on the entirety of the word i|k. Recall also the choice of the word a0
from (2.3) and the definition of the maximal neighbourhood N0 from (2.4). Through
the work in this subsection, we will find a finite word b0 such that for any c ∈ Γ∗,
N (ca0b0) = N0 and the weights qf (ca0b0), f ∈ N0, are bounded from below by a
constant independent of c.
The key geometric observation in the proof is the following Claim which provides

us with the word b0.

Claim 4.1. There exists a finite word b0 and a collection F ⊆ N0 such that N (b0) =
N0 and

(i) for every h ∈ F , every neighbour of Kb0 is a descendant of h(K), that is,
there exists a word bh ∈ Γ∗ such that h ◦ ϕbh = ϕb0 and N (bh) = N0,

(ii) for every h ∈ N0 \ F , Bb0 ∩ h(K) = ∅.

Proof. In the case where Ka0 ∩h(K) = ∅ for every h ∈ N0\{Id} the claim is close to
trivial: set F = {Id} and choose b0 ∈ Γ∗ in such a way that Bb0 ∩

⋃

h∈N0\F
h(K) = ∅

as we may since the union is closed.
Suppose then that Ka0 ∩ h1(K) 6= ∅ for some h1 ∈ N0 \ {Id}. The set F and the

word b0 are now found through the following recursive construction. First, we claim
that a descendant of h1(K) overlaps exactly with a descendant of K.
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Claim 4.2. There exist finite words b, c ∈ Γ∗ such that

ϕb = h1 ◦ ϕc.

Proof of Claim 4.2. Since we assume Ka0 ∩ h1(K) 6= ∅, there exists c ∈ Γ|a0| such
that h1(Kc) ∩Ka0 6= ∅. Because h1 ∈ N0 = N (a0), by definition of N there exists
a ∈ Γ|a0| such that h1 = ϕ−1

a0
◦ ϕa, so we have

ϕ−1
a0

◦ ϕac(K) ∩ ϕa0(K) 6= ∅.

Mapping both sets by ϕa0 , we can use Lemma 2.3 to deduce that ϕac ∈ ϕa0a0N0, or
equivalently, h1 ◦ ϕc ∈ ϕa0N0.
Since N0 consists of functions of the form ϕ−1

a0
◦ ϕb for b ∈ Γ|a0|, there exists b

such that h1 ◦ϕc = ϕa0 ◦ϕ
−1
a0

◦ϕb = ϕb. The claim is satisfied with the words b and
c. �

Write b1 := b and c1,1 := c for the words b and c given by Claim 4.2.
Suppose now that for an integer n ≥ 1 and every 1 ≤ k ≤ n we have found

functions hk and words bn, cn,k such that ϕbn = hk ◦ϕcn,k
for every k. Now, if there

exists a function hn+1 ∈ N0\{Id, h1, . . . , hn} for which Kbna0∩hn+1(K) 6= ∅, proceed
as in the proof of Claim 4.2 with a0 replaced by bna0 to find words b, c such that
ϕbnb = hn+1 ◦ ϕc = hk ◦ ϕcn,kb for every 1 ≤ k ≤ n; the latter equality follows from
the hypothesis on bn and cn,k. Set bn+1 := bnb, cn+1,n+1 := c and cn+1,k := cn,kb

for each 1 ≤ k ≤ n.
Continue this process until we have reached an integer n < #N0 for which either

N0 = {Id, h1, . . . , hn} or Kbna0 ∩ h(K) = ∅ for each h ∈ N0 \ {Id, h1, . . . , hn}. Write
F = {Id, h1, . . . , hn} and note that by construction of F , for every h ∈ F there
exists b′h ∈ Γ∗ such that ϕbn = h ◦ ϕb′

h
. By passing onto a descendant of bn we

may assume that Bbn ∩
⋃

h∈N0\F
h(K) = ∅ since the union is closed. Finally, set

b0 = bna0 and bh = b′ha0 for each h ∈ F to obtain the lemma.
�

Proof of Proposition 3.3. We first consider the claimed representation for symbolic
magnifications of µ. Using self-similarity, we first write

(ϕ−1
i|k
µ)|B(0,1) = ϕ−1

i|k

∑

a∈Γk , Ka∩Bi|k
6=∅

pa · (ϕaµ)|B(0,1).

Using the equality {ϕa : a ∈ Γk, Ka ∩Bi|k} = ϕi|kN0 which is Lemma 2.3, we can
write the above measure as

(4.2)
∑

f∈N0





∑

a∈Γk, ϕa=ϕi|k
◦f

pa



 · (fµ)|B(0,1).

Recall that k is such that σk−|a0b0|i ∈ [a0b0]. Writing k′ = k−|b0|, we further reorder
the above sum using the following claim. It is a simple consequence of Claim 4.1
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and says that each neighbour of Ki|k is a descendant of ϕi|k′ ◦ h(K) if and only if
h ∈ F .

Claim 4.3. For each f ∈ N0, we may write

{a ∈ Γ∗ : ϕa = ϕi|k ◦ f} =
⋃

h∈F

{bc ∈ Γ∗ : ϕb = ϕi|k′
◦ h, h ◦ ϕc = ϕb0 ◦ f},

where the union is disjoint. In particular, note that b and c can be chosen indepen-
dently of each other.

Proof of Claim 4.3. First we observe that ϕi|k ◦f(K) coincides with a descendant of
Ki|k′

. Indeed, because i|k = i|k′b0, this is equivalent to ϕb0 ◦ f(K) coinciding with
a descendant of K, which in turn follows by Lemma 2.3 because f ∈ N0 = N (b0).
From this we can deduce that in particular, any ancestor of ϕi|k◦f(K) must intersect
Bi|k′

. Using this and the fact that ϕi are similarities, we may write

{a : ϕa = ϕi|k ◦ f} = {(b, c) ∈ Γk′ × Γ|b0| : Kbc = ϕi|k ◦ f(K)}

= {(b, c) ∈ Γk′ × Γ|b0| : Kb ∩ Bi|k′ 6= ∅, Kbc = ϕi|k ◦ f(K)}.

On the other hand, because N (i|k′) = N0, each neighbour of Ki|k′
coincides with

ϕi|k′ ◦ h(K) for some h ∈ N0, by Lemma 2.3. Finally, by the properties of b0 given
by Claim 4.1, as a neighbour of Ki|k the set ϕi|k ◦ f(K) coincides with a descendant
of ϕi|k′ ◦ h(K) for each h ∈ F , and for h 6∈ F ,

Bi|k ∩ ϕi|k′ ◦ h(K) = ϕi|k′ (Bb0 ∩ h(K)) = ∅.

Thus, we may write

{(b, c) ∈ Γk′ × Γ|b0| : Kb ∩ Bi|k′
6= ∅, Kbc = ϕi|k ◦ f(K)}

=
⋃

h∈F

{(b, c) ∈ Γk′ × Γ|b0| : Kb = ϕi|k′
◦ h(K), ϕi|k′

◦ h ◦ ϕc(K) = ϕi|k ◦ f(K)}.

Using the fact that ϕi are similarities, the above can again be written as

⋃

h∈F

{bc ∈ Γ∗ : ϕb = ϕi|k′ ◦ h, ϕi|k′ ◦ h ◦ ϕc = ϕi|k′b0 ◦ f}

=
⋃

h∈F

{bc ∈ Γ∗ : ϕb = ϕi|k′
◦ h, h ◦ ϕc = ϕb0 ◦ f},

which is what was claimed. �

Using Claim 4.3, we write the sum (4.2) as
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∑

f∈N0





∑

a∈Γk , ϕa=ϕi|k
◦f

pa



 · (fµ)|B(0,1)

=
∑

h∈F

∑

f∈N0





∑

bc∈Γ∗, ϕb=h◦ϕi|
k′
, h◦ϕc=ϕb0◦f

pbc



 · (fµ)|B(0,1)

=
∑

h∈F

q̃h(i|k)
∑

f∈N0





∑

c∈Γ∗, h◦ϕc=h◦ϕbh
◦f

pc



 · (fµ)|B(0,1)

=
∑

h∈F

q̃h(i|k)
∑

f∈N0





∑

c∈Γ∗, ϕc=ϕbh
◦f

pc



 · (fµ)|B(0,1)(4.3)

where

q̃h(i|k) =
∑

b∈Γk′ , ϕb=h◦ϕi|
k′

pb.

On the third row, we have summed over b ∈ Γk′ for every fixed c and used the
equality ϕb0 = h ◦ ϕbh for every h ∈ F , given by Claim 4.1.
Define now the functions

ζh =
∑

f∈N0





∑

c∈Γ∗, ϕc=ϕbh
◦f

pc



 ·
d(fµ)|B(0,1)

dν

for h ∈ F , where the last expression denotes the Radon-Nikodym derivative of
(fµ)|B(0,1) with respect to ν. Because N (bh) = N0, for every h ∈ F we have

ζh(x) ≥ Ch := min
f∈N0

∑

c∈Γ∗, ϕc=ϕbh
◦f

pc > 0

for ν-a.e. x ∈
⋃

f∈N0
f(K) ∩ B(0, 1). Normalizing the coefficients q̃h(i|k) in (4.3),

writing (qh(i|k))h∈F for the obtained probability vector and defining ζ := ζ(i|k) =
∑

h∈F qh(i|k)ζh, we obtain from (4.3) the representation

(4.4) µi|k = (ζdν)B(0,1).

An elementary calculation shows that Sk log ρ−1Ti = Tσkiϕ
−1
i|k
. For any t > 0 for

which B(π(i), e−t) ⊆ Bi|k , using (4.4) we have

µi,t = S∗
t+k log ρS−k log ρTiµ

= S∗
t+k log ρTσkiµi|k

= (ζdν)σki,t+k log ρ

which is what was claimed. �
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4.2. Proof of Proposition 3.4. Proposition 3.4 is a consequence of the uniform
continuity of the function ζ 7→ (ζdν)i,t which is established in the following lemmas.
The first one is a simple application of the Lebesgue-Besicovitch differentiation

theorem.

Lemma 4.4. If η and γ are Radon measures and 0 6= η ≪ γ, then for η-almost
every x,

lim
t→∞

‖ηx,t − γx,t‖ = 0.

Proof. See [15, Proposition 3.8]. �

Recall that the set W consists of all the functions ζ = ζ(i|k) given by Proposition
3.3 for i ∈ ΓN, k ∈ N, and that ζ ≥ C := minh∈F Ch > 0 for each ζ ∈ W. Write

A =
⋂

ζ∈W

{i ∈ ΓN : lim
t→∞

‖µi,t − (ζdν)i,t‖ = 0}.

Since µ ≪ ζdν and W is countable, we deduce from Lemma 4.4 that µ̄(A) = 1.
In the following, the lower bound for the functions in W comes to play: while the
previous lemma asserts that µi,t and (ζdν)i,t have similar asymptotic behaviour in
t, the following two lemmas show that this similarity is actually uniform over W,
when i is given.

Lemma 4.5. For i ∈ A and t ≥ 0, the function f i,t : W → R,

ζ 7→ ‖µi,t − (ζdν)i,t‖

is continuous (when W is equipped with the metric induced by the supremum norm)
and the modulus of continuity is independent of i and t.

Proof. Fix i and t. Let ε > 0 be given and let δ > 0 be such that whenever
ζ1, ζ2 ∈ W and ‖ζ1 − ζ2‖∞ < δ, we have ζi ∈ [(1 − ε)ζj, (1 + ε)ζj] for i, j ∈ {1, 2}.
Choosing such a δ is possible because the functions ζ1, ζ2 are bounded from below
by C > 0.
Now, if ‖ζ1 − ζ2‖∞ < δ, we have for i, j ∈ {1, 2} and all measurable A ⊆ B(0, 1),

(ζidν)i,t(A)− (ζjdν)i,t(A) =

∫

e−tA+π(i)
ζi dν

∫

B(π(i),e−t)
ζi dν

−

∫

e−tA+π(i)
ζj dν

∫

B(π(i),e−t)
ζj dν

≤

∫

e−tA+π(i)
((1 + ε)ζi − (1− ε)ζi) dν

∫

B(π(i),e−t)
(1 + ε)ζi dν

≤
2ε

1 + ε
.

Thus
|f(ζ1, t, i)− f(ζ2, t, i)| ≤ ‖(ζ1dν)i,t − (ζ2dν)i,t‖ < 2ε.

Since ε was arbitrary and δ depends only on ε and C, this completes the proof.
�
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Lemma 4.6. Let X be a subset of a compact metric space and let f be a function on
X × R such that x 7→ f(x, t) is continuous, with modulus of continuity independent
of t, and for every x, limt→∞ f(x, t) = 0. Then for every ε > 0,

sup
x∈X

inf{t0 : f(x, t) ≤ ε for every t ≥ t0} <∞.

Proof. Suppose otherwise, that there exists c > 0 with the property that for every
n ∈ N, there exists xn ∈ X and tn ≥ n such that f(xn, tn) > c. Let (yn)n∈N ⊆ X
be a Cauchy subsequence of (xn)n∈N. Now, for every δ > 0 there exist N,M ∈ N

such that |yn − yN | < δ, f(yN , tn) < c/2 and f(yn, tn) > c for all n ≥ M . Since the
continuity of x 7→ f(x, t) was assumed to be uniform in t, this is a contradiction. �

We are now able to deduce Proposition 3.4.

Proof of Proposition 3.4. As a closed and bounded subset of the linear span of a
finite family of functions, the closure of W is compact. For i ∈ A and t > 0, let
f i,t denote the function of Lemma 4.5. Now, for each i ∈ A and ε > 0, apply
Lemma 4.6 for the function (ζ, t) 7→ f i,t(ζ) to obtain the existence of an integer
N(i, ε) <∞ such that ‖µi,t − (ζdν)i,t‖ < ε for every ζ ∈ W and t ≥ N(i, ε). Since
µ̄(
⋃

N∈N{i ∈ A : N(i, ε) ≤ N}) = µ̄(A) = 1, we may choose an integer N ′ so that
if J = {i ∈ ΓN : ‖µi,t − (ζdν)i,t‖ < ε for all t ≥ N ′}, we have µ̄(J ) > 0.
To obtain the statement of the proposition, choose N large enough with respect

to N ′ that

d

(

1

T

∫ T

0

δ[µi,t] dt,
1

T

∫ T

0

δ[(ζdν)i,t] dt

)

< ε

for all T ≥ N and i ∈ J . That such an N exists can be easily seen from the
definition of the Prokhorov metric.

�

5. Discussion

We now recall the definition of a fractal distribution, and afterwards provide the
short deduction of the second assertion of Theorem 1.1.
Following the terminology of Hochman from [15], fractal distributions are dis-

tributions which are S∗-invariant and possess a spatial invariance property called
quasi-Palm. They generalize the notion of CP-distributions introduced by Fursten-
berg to a coordinate-free setting, and, in the context of scenery flows, the well-
known principle of Preiss that “tangent measures to tangent measures are tangent
measures”.

Definition 5.1. Let P be a distribution on the space of probability measures on
B(0, 1). We say that P is quasi-Palm if for any measurable A, P (A) = 1 if and only
if for every r > 0, P -almost every ν satisfies

νx,r ∈ A

for ν-almost every x with B(x, e−r) ⊆ B(0, 1).
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A fractal distribution is a distribution which is S∗-invariant and quasi-Palm. If
the distribution is also ergodic with respect to S∗, we say that it is an ergodic fractal
distribution.

Remark 5.2. This definition coincides with Hochman’s definition of a restricted frac-
tal distribution in [15], and this particular formulation was used by Hochman and
Shmerkin in [19]. The definition of a fractal distribution in [15] considers distribu-
tions supported on all Radon measures of Rd whose support contains the origin, and
does not require the condition B(x, e−r) ⊆ B(0, 1). Since we only consider distribu-
tions arising from the scenery flow, the restricted versions are more relevant in our
context. However, since it was shown in [15] that each restricted fractal distribution
extends uniquely to a fractal distribution on the space of all Radon measures, the
results of [15] that we use also apply with the above definition.

We will now explain how to deduce the second assertion of Theorem 1.1 from the
results of [15]. Suppose that µ is a self-similar measure satisfying the hypothesis of
Theorem 3.1: With the modifications highlighted in Subsection 3.3, the following
goes through also in the setting of Theorem 1.1.
Let P denote the limit of the scenery flow of µ. It is due to Hochman [15, Theorem

1.7] that P is a fractal distribution. It is not difficult to see from the representation
(3.7) that P gives positive mass to the closed set

(5.1) {(ζdν)i,t : ζ ∈ W, i ∈ ΓN, 0 ≤ t ≤ R}

for large enough R. In particular, there exists an ergodic component P ′ of P which
gives positive mass to the set (5.1). Because ergodic components of fractal distri-
butions are also fractal distributions by [15, Theorem 1.3], P ′ is an ergodic fractal
distribution. From the ergodic theorem and the quasi-Palm property it is not dif-
ficult to see that typical measures for P ′ are uniformly scaling and generate P ′.
In particular, a measure in the set (5.1) generates P ′. Finally, since each of these
measures contains as an absolutely continuous component a translated and scaled
copy of µ, Lemma 4.4 allows us to deduce that the distribution generated by µ also
equals P ′. In particular, µ generates an ergodic fractal distribution.

Remark 5.3. It suffices to consider any accumulation point of the scenery flow in
place of P in the preceding paragraph. This way, after observing from (3.7) that
an accumulation point is supported on measures of the form (5.1), one can infer
another proof of Theorem 1.1 that relies on the deep results of [15] instead of the
more hands-on geometric analysis of Proposition 3.3.

5.1. Projections of Markov measures. Theorem 1.1 extends for natural projec-
tions of ergodic Markov measures on ΓN. Write µ̄ for such a measure on ΓN and
µ := πµ̄ for its natural projection on the self-similar set. We go through the main
observations one must make in addition to the ones in the Bernoulli case; details
are left to the interested reader.
Let Σ ⊆ ΓN denote the subshift of finite type associated to µ̄, and Σ∗ the collection

of its finite words. First we note that #{µa := π(µ̄[a]) : a ∈ Σ∗} ≤ (#Γ)2 < ∞
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and that for any b ∈ Σ∗, µab = µcb for all a, c ∈ Σ∗ for which ab, cb ∈ Σ∗. These
are immediate from the Markov property of µ̄. The definition of the neighbourhood
system of a ∈ Σ∗ is replaced by

N (a) := {ϕ−1
a ◦ ϕb : b ∈ Σ∗, ρb ≤ ρa ≤ ρb− , Kb ∩Ba 6= ∅}.

Arguing similarly as in the proof of Lemma 2.3, using the weak separation condition
and finiteness of the collection M := {µa : a ∈ Σ∗}, we see that there exists a word
a′0 ∈ Σ∗ such that for any b for which ba′0 ∈ Σ∗, N (ba′0) = N (a′0) =: N0 and

(5.2) µba′0 ∼ µa′0 .

Recall (4.1) for the definition of the symbolic magnifications µa. The equivalence
(5.2) follows from the condition N (ba′0) = N (a′0) when µ̄ is Bernoulli, and allows us
to compare the scenery measures to the uniform “frame” ν := µa′0 as in the case of
the Bernoulli measure. Now, if the collection F ⊆ N0 and the words bh, b0 ∈ Σ∗ are
as in Claim 4.1, we can go through the proof of Proposition 3.3 to obtain the same

result with ζ(i|k) being a convex combination of the functions 0 < ζηh =
dηbh
dν

< ∞,
where h ∈ F and η ∈ M is such that ηbh 6= 0. The ergodic-theoretic work in
Subsection 3.2 also goes through, as all properties of Bernoulli measures we use are
shared by ergodic Markov measures. The ergodicity of the skew-product system we
require in the rotating case follows from [23, Theorem 2.2].

5.2. Pointwise normality. In [19, Theorem 1.4], Hochman and Shmerkin proved
that if Φ = {ϕi(x) = ρix+ ai}i∈Γ is a self-similar IFS on the real line with the open
set condition and if s > 1 is a Pisot number such that log s

log ρi
6∈ Q for some i ∈ Γ,

then any self-similar measure associated to Φ is pointwise s-normal. The open set
condition was required partly because of the uniform scaling assumption.
Combining Theorem 1.1 with the methods of Hochman-Shmerkin, we obtain the

following:

Corollary 5.4. Let Φ = {ϕi(x) = ρix+ ai}i∈Γ be a self-similar IFS on R satisfying
the weak separation condition, and let µ be a self-similar measure associated to Φ.
If s > 1 a Pisot number and log s

log ρi
6∈ Q for some i ∈ Γ, then µ is pointwise s-normal.

Proof. In the proof of [19, Theorem 1.4], the open set condition was only used to
deduce that (i) µ is uniformly scaling and generates an ergodic fractal distribution
P , and that (ii) given an eigenfunction of P , the phase measure of µ is an atom.
Recall [19, Section 4.3] for the definitions of an eigenfunction and a phase measure.
Since (i) is true by Theorem 1.1, we will only explain how to deduce that the phase
measure of µ is an atom in the setting of Corollary 5.4; after this, the proof proceeds
exactly as the proof of [19, Theorem 1.4].
It follows from [19, Proposition 4.15] that given any eigenfunction, the phase

measure of P -almost every η is an atom. Since P gives positive mass to the set
(5.1), it follows that for some ζ ∈ W , i ∈ ΓN and t ≥ 0, the phase measure of
η = ζ dνi,t is an atom. Since µi,t ≪ η, using the self-similarity of µ we find a linear
map f such that fµ ≪ η. By [19, Corollary 4.17, part 1], the phase measure of
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fµ is also an atom, and by applying [19, Corollary 4.17, part 2] to the image of fµ
through f−1, we deduce that also the phase measure of µ is an atom. �

We remark that refinements of [19, Theorem 1.4] have been obtained by Algom,
Rodriguez Hertz and Wang [1] for self-similar measures with the Rajchman property,
and by Dayan, Ganguly and Weiss [2] for certain self-similar measures defined by
contractions with integer contraction ratios. While these works cover a large class
of self-similar measures outside the assumptions of Hochman-Shmerkin, it is never-
theless not difficult to construct self-similar measures which satisfy the assumptions
of Corollary 5.4 but do not satisfy the assumptions of [19, Theorem 1.4], [1] or [2].
Consider, for example, the Bernoulli convolution νρ, i.e. the self-similar measure
associated to the IFS {x 7→ ρx−1, x 7→ ρx+1} with the uniform probability vector.
It is well-known that when 0 < ρ < 1 is such that ρ−1 is a Pisot number, νρ is not
a Rajchman measure [3] but it satisfies the weak separation condition [12, 24]. By
Corollary 5.4, νρ is pointwise s-normal for any Pisot s > 1 such that log s

log ρ
6∈ Q.

5.3. Prospects.

5.3.1. Weaker separation conditions. In our proof of Theorem 1.1, the weak sepa-
ration condition played a crucial role in providing the reference measure ν in (3.4).
A natural question is whether the statement of the theorem holds in the presence of
weaker separation conditions, for example, the asymptotic weak separation condition
introduced in [5].

Question 5.5. Let Φ = {ϕi}i∈Γ be a self-similar IFS satisfying the asymptotic weak
separation condition, that is,

lim
n→∞

log(maxa∈Γn #N (a))

n
= 0.

Are self-similar measures associated to Φ uniformly scaling?

This condition lacks the existence of a maximal neighbourhood system, instead
allowing the cardinalities of the neighbourhood systems to grow subexponentially in
n. As a consequence, it is much more difficult to understand the dynamic behaviour
of the sequence (N (i|k))k∈N for any i ∈ ΓN, and it seems that substantial refinements
are required in our argument for one to be able to say anything about the scenery
flow under this condition.

5.3.2. A description of the tangent distribution. In our proof of Theorem 1.1, the
tangent distribution of µ arises from a limiting argument. Therefore, it would be
interesting to find a description of the tangent distribution for at least one ex-
plicit self-similar measure which satisfies the weak separation condition but not the
open set condition. This would require describing the distribution of the sequence
(ζ(i|k))k∈N in (3.7) in more detail than what is required for the approximation (3.8).
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