GENERALIZED CONTINUED FRACTION EXPANSIONS WITH CONSTANT PARTIAL DENOMINATORS

TOPI TÖRMÄ
(September 20, 2018)

Abstract

We study generalized continued fraction expansions of the form $$
\frac{a_{1}}{N}+\frac{a_{2}}{N}+\frac{a_{3}}{N}+\cdots
$$ where N is a fixed positive integer and the partial numerators a_{i} are positive integers for all i. We call these expansions dn_{N} expansions and show that every positive real number has infinitely many dn_{N} expansions for each N. In particular we study the dn_{N} expansions of rational numbers and quadratic irrationals. Finally we show that every positive real number has for each N a dn_{N} expansion with bounded partial numerators.

Keywords and phrases: Generalized continued fractions
Mathematics Subject Classification (2010): 11J70.

1. Introduction

In [1] Anselm and Weintraub introduced a generalization of simple continued fractions, the cf_{N} expansion

$$
a_{0}+\frac{N}{a_{1}}+\frac{N}{a_{2}}+\frac{N}{a_{3}}+\ldots
$$

where N is a fixed positive integer, a_{0} is a non-negative integer and a_{i} is a positive integer for every i. They showed that every positive real number has infinitely many cf_{N} expansions for all $N>1$ and studied the properties of these expansions for rational numbers and quadratic irrationals. In particular, they focused on the so-called best cf_{N} expansion, where the partial denominators a_{i} are chosen as large as possible and which is unique for each real number.

[^0]In this paper we flip the roles of the partial numerators and denominators of the cf_{N} expansions and study generalized continued fraction expansions of the form

$$
\begin{equation*}
\frac{a_{1}}{N}+\frac{a_{2}}{N}+\frac{a_{3}}{N}+\cdots \tag{1}
\end{equation*}
$$

where N is a fixed positive integer and a_{i} are positive integers. We shall call these continued fractions dn_{N} expansions and denote them by $\left\langle a_{1}, a_{2}, \ldots\right\rangle_{N}$. While a general study of the dn_{N} expansions of real numbers doesn't seem to have been done, continued fractions of form (1) have been studied quite a lot. For example, Ramanujan presented many such continued fractions in his notebooks ([2],[3]). Among them were

$$
1=\frac{x+N}{N}+\frac{(x+N)^{2}-N^{2}}{N}+\frac{(x+2 N)^{2}-N^{2}}{N}+\frac{(x+3 N)^{2}-N^{2}}{N}+\cdots
$$

where $x \neq-k N$ for all positive integers k,

$$
\begin{equation*}
1+2 N^{2} \sum_{k=1}^{\infty} \frac{(-1)^{k}}{(N+k)^{2}}=\frac{1}{N}+\frac{1^{2}}{N}+\frac{1 \cdot 2}{N}+\frac{2^{2}}{N}+\frac{2 \cdot 3}{N}+\frac{3^{2}}{N}+\cdots \tag{2}
\end{equation*}
$$

and perhaps most famously Ramanujan's AGM continued fraction

$$
\mathcal{R}_{N}(a, b)=\frac{a}{N}+\frac{b^{2}}{N}+\frac{(2 a)^{2}}{N}+\frac{(3 b)^{2}}{N}+\frac{(4 a)^{2}}{N}+\frac{(5 b)^{2}}{N}+\cdots
$$

that satisfies the remarkable equation

$$
\mathcal{R}_{N}\left(\frac{a+b}{2}, \sqrt{a b}\right)=\frac{\mathcal{R}_{N}(a, b)+\mathcal{R}_{N}(b, a)}{2}
$$

connecting the arithmetic and geometric mean of numbers a and b ([4]). Some examples of well-known dn_{N} expansions for real numbers are Lord Brouncker's dn n_{2} expansion

$$
\pi=\frac{8}{2}+\frac{2}{2}+\frac{3^{2}}{2}+\frac{5^{2}}{2}+\cdots
$$

(see [6]), the dn_{1} expansion

$$
\ln 2=\mathcal{R}_{1}(1,1)=\frac{1}{1}+\frac{1^{2}}{1}+\frac{2^{2}}{1}+\frac{3^{2}}{1}+\cdots
$$

(see [4]), and the dn_{1} expansion

$$
\zeta(2)-1=\frac{\pi^{2}}{6}-1=\frac{1}{1}+\frac{1^{2}}{1}+\frac{1 \cdot 2}{1}+\frac{2^{2}}{1}+\frac{2 \cdot 3}{1}+\frac{3^{2}}{1}+\cdots
$$

derived from (2).

We will begin with some preliminaries in Section 2, followed by the dn_{N} algorithm in Section 3. We will show that every positive real number has infinitely many dn_{N} expansions for every N and define a special dn_{N} expansion called the least dn_{N} expansion. In Sections 4 and 5 we will examine the dn_{N} expansions of positive rational numbers and positive real quadratic irrationals, respectively. We will prove that for any rational number there exist infinitely many finite, periodic and aperiodic dn_{N} expansions, and that for any quadratic irrational number there exist infinitely many periodic and aperiodic dn_{N} expansions. Special attention is paid to the least dn_{N} expansion of these numbers. In Section 6 we will show that every positive real number has a dn_{N} expansion with bounded partial numerators.

In this paper, we denote the set of positive integers with \mathbb{Z}_{+}and the set of non-negative integers with \mathbb{N}.

2. On continued fractions

We begin with some preliminaries on (generalized) continued fractions

$$
\begin{equation*}
b_{0}+\frac{a_{1}}{b_{1}+\frac{a_{2}}{b_{2}+\cdots}}=b_{0}+{\underset{K}{\mid c 1}}_{\infty}^{K_{n}}=b_{0}+\frac{a_{1}}{b_{1}}+\frac{a_{2}}{b_{2}}+\cdots \tag{3}
\end{equation*}
$$

where the partial numerators a_{n} and the partial denominators b_{n} are positive integers for all $n \in \mathbb{Z}_{+}$and $b_{0} \in \mathbb{Z}$. If the limit of the n :th convergent

$$
\frac{A_{n}}{B_{n}}=b_{0}+\frac{a_{1}}{b_{1}}+\frac{a_{2}}{b_{2}}+\cdots+\frac{a_{n}}{b_{n}}
$$

at infinity exists, it is called the value of the continued fraction. The numerators A_{n} and denominators B_{n} of the convergents can be obtained from the recurrence relations

$$
\left\{\begin{array}{l}
A_{n+2}=b_{n+2} A_{n+1}+a_{n+2} A_{n} \tag{4}\\
B_{n+2}=b_{n+2} B_{n+1}+a_{n+2} B_{n}
\end{array}\right.
$$

with initial values $A_{0}=b_{0}, B_{0}=1, A_{1}=b_{0} b_{1}+a_{1}$ and $B_{1}=b_{1}$. These relations imply the formula

$$
\frac{A_{n+1}}{B_{n+1}}-\frac{A_{n}}{B_{n}}=\frac{(-1)^{n} a_{1} \ldots a_{n+1}}{B_{n} B_{n+1}}
$$

valid for all $n \in \mathbb{N}$. If continued fraction (3) converges to $\tau \in \mathbb{R}$, then

$$
\begin{equation*}
\tau=b_{0}+\sum_{k=0}^{\infty} \frac{(-1)^{k} a_{1} \ldots a_{k+1}}{B_{k} B_{k+1}} \tag{5}
\end{equation*}
$$

as shown for example in [5]. Using recurrence relations (4) and the standard error estimates of alternating series we get

$$
\begin{equation*}
\frac{b_{n+2} a_{1} \ldots a_{n+1}}{B_{n} B_{n+2}}<\left|\tau-\frac{A_{n}}{B_{n}}\right|<\frac{a_{1} \ldots a_{n+1}}{B_{n} B_{n+1}} . \tag{6}
\end{equation*}
$$

We can also determine the sign of $\tau-A_{n} / B_{n}$ since equations (4) and (5) imply

$$
\begin{equation*}
\frac{A_{0}}{B_{0}}<\frac{A_{2}}{B_{2}}<\ldots<\frac{A_{2 k}}{B_{2 k}}<\tau<\frac{A_{2 l+1}}{B_{2 l+1}}<\ldots<\frac{A_{3}}{B_{3}}<\frac{A_{1}}{B_{1}} \tag{7}
\end{equation*}
$$

for all $k, l \in \mathbb{N}$.
As the partial coefficients a_{n} and b_{n} of continued fraction (3) are positive integers for all $n \in \mathbb{Z}_{+}$, the following theorem gives us a convergence criterion.

Theorem 2.1. [The Seidel-Stern Theorem] Let a_{n} and b_{n} be positive real numbers for all n. Then the continued fraction $\mathrm{K}_{n=1}^{\infty} \frac{a_{n}}{b_{n}}$ converges if and only if the Stern-Stolz series

$$
\begin{equation*}
\sum_{n=1}^{\infty} b_{n} \prod_{k=1}^{n} a_{k}^{(-1)^{n-k+1}} \tag{8}
\end{equation*}
$$

diverges to ∞.
Proof. See [7], Chapter III, Theorem 3 and the subsequent Remark 2.

Corollary 2.2. Let a_{n} and b_{n} be positive integers for all n. If the sequence $\left(a_{n}\right)$ has a bounded subsequence, then the continued fraction $\mathrm{K}_{n=1}^{\infty} \frac{a_{n}}{b_{n}}$ converges.

Proof. Let us assume that (a_{n}) has a bounded subsequence $\left(a_{k_{i}}\right)$ such that $a_{k_{i}} \leq M$ for all $i \in \mathbb{Z}_{+}$and some $M \in \mathbb{Z}_{+}$. Without loss of generality, we may also assume that $k_{i+1} \geq k_{i}+2$. By denoting

$$
S_{n}=\prod_{k=1}^{n} a_{k}^{(-1)^{n-k+1}}
$$

the Stern-Stolz series of the continued fraction $\mathrm{K}_{n=1}^{\infty} \frac{a_{n}}{b_{n}}$ can be written as $\sum_{n=1}^{\infty} b_{n} S_{n}$, where $S_{1}=1 / a_{1}$ and $S_{n+1}=1 /\left(S_{n} a_{n+1}\right)$. Now either $S_{k_{i}} \geq 1$ or $S_{k_{i}}<1$ and $S_{k_{i}+1}=1 /\left(S_{k_{i}} a_{k_{i}+1}\right)>1 / M$ so

$$
\sum_{n=1}^{\infty} b_{n} S_{n} \geq \sum_{i=1}^{\infty}\left(S_{k_{i}}+S_{k_{i}+1}\right) \geq \sum_{i=1}^{\infty} \frac{1}{M} \rightarrow \infty .
$$

Hence the Stern-Stolz series of $\mathrm{K}_{n=1}^{\infty} \frac{a_{n}}{b_{n}}$ diverges to infinity and by Theorem 2.1 the continued fraction $\mathrm{K}_{n=1}^{\infty} \frac{a_{n}}{b_{n}}$ converges.

We say that the (infinite) expansion $\left\langle a_{1}, a_{2}, \ldots\right\rangle_{N}$ is (eventually) periodic if there exist positive integers k and m such that $a_{i}=a_{i+k}$ for every $i \geq m$. Then we denote

$$
\left\langle a_{1}, a_{2}, \ldots\right\rangle_{N}=\left\langle a_{1}, \ldots, a_{m-1}, \overline{a_{m}, \ldots, a_{m+k-1}}\right\rangle_{N}
$$

Every periodic dn_{N} expansion converges by Corollary 2.2 since the partial numerators of periodic continued fractions are bounded. It is easy to see that every periodic dn_{N} expansion represents a rational number or a quadratic irrational.

Finally, we recall some useful results from the theory of simple continued fractions

$$
c_{0}+\frac{1}{c_{1}}+\frac{1}{c_{2}}+\ldots=\left[c_{0} ; c_{1}, c_{2}, \ldots\right],
$$

which are a special case of continued fractions (3) with $a_{n}=1$ and $b_{n}=c_{n}$ for all n. We denote the convergents of the simple continued fraction expansion by C_{n} / D_{n}. As is well known, the simple continued fraction expansion of a real number τ is finite if and only if τ is rational and periodic if and only if τ is a quadratic irrational. Especially,

$$
\sqrt{d}=\left[c_{0} ; \overline{c_{1}, \ldots, c_{k-1}, 2 c_{0}}\right]
$$

where d is a positive non-square integer, $c_{0}=\lfloor\sqrt{d}\rfloor$ and $c_{i}=c_{k-i}$ for all $1 \leq i \leq k-1$ (see [8]).

For simple continued fractions error estimates (6) take the form

$$
\begin{equation*}
\frac{1}{\left(d_{n+1}+2\right) D_{n}^{2}}<\frac{d_{n+2}}{D_{n} D_{n+2}}<\left|\tau-\frac{C_{n}}{D_{n}}\right|<\frac{1}{D_{n} D_{n+1}}<\frac{1}{d_{n+1} D_{n}^{2}}, \tag{9}
\end{equation*}
$$

which suggests the convergents C_{n} / D_{n} are good approximants for τ. In a way they are the only very good approximants as the following Theorem shows:

Theorem 2.3. If τ is a real number, $p \in \mathbb{Z}$ and $q \in \mathbb{N}$ are coprime and

$$
\left|\tau-\frac{p}{q}\right|<\frac{1}{2 q^{2}},
$$

then p / q is a convergent of the simple continued fraction expansion of τ.
For the proof, see for example Lemma 2.33 in [5].

3. The dn_{N} expansion

Through the rest of this paper, N is a fixed positive integer and τ_{0} is an arbitrary positive real number unless stated otherwise.

We now present the dn_{N} algorithm for obtaining a dn_{N} expansion for τ_{0} :

1) Let $i=1$.
2) Choose a positive integer a_{i} such that $a_{i} / \tau_{i-1} \geq N$.
3) Let $\tau_{i}=\frac{a_{i}}{\tau_{i-1}}-N$. If $\tau_{i}=0$, terminate. Otherwise let $i=i+1$ and go to step 2.

As the only criterion for choosing each a_{i} is to keep τ_{i} non-negative, we can obtain uncountably many dn_{N} expansions for τ_{0}. However, we would like our continued fraction to converge to the number τ_{0}. Therefore the partial numerators a_{i} should be chosen so that the series

$$
\sum_{n=1}^{\infty} \prod_{k=1}^{n} a_{k}^{(-1)^{n-k+1}}
$$

diverges to infinity, which in the case of dn_{N} expansions implies the divergence of the Stern-Stolz series (8).

LEMMA 3.1. If the dn_{N} expansion obtained for τ_{0} by the $d n_{N}$ algorithm converges, then it converges to τ_{0}.

Proof. By induction,

$$
\tau_{0}=\frac{A_{n}+A_{n-1} \tau_{n}}{B_{n}+B_{n-1} \tau_{n}}
$$

Then

$$
\begin{aligned}
\left|\tau_{0}-\frac{A_{n}}{B_{n}}\right| & =\left|\frac{A_{n}+A_{n-1} \tau_{n}}{B_{n}+B_{n-1} \tau_{n}}-\frac{A_{n}}{B_{n}}\right| \\
& =\left|\frac{A_{n} B_{n}+A_{n-1} B_{n} \tau_{n}-A_{n} B_{n}-A_{n} B_{n-1} \tau_{n}}{B_{n}\left(B_{n}+B_{n-1} \tau_{n}\right)}\right| \\
& =\frac{\tau_{n} \prod_{i=1}^{n} a_{i}}{B_{n}\left(B_{n}+B_{n-1} \tau_{n}\right)}<\frac{\prod_{i=1}^{n} a_{i}}{B_{n} B_{n-1}}
\end{aligned}
$$

Since the continued fraction converges, we have

$$
\lim _{n \rightarrow \infty} \frac{\prod_{i=1}^{n} a_{i}}{B_{n} B_{n-1}}=0
$$

by (5), and hence $\lim _{n \rightarrow \infty} A_{n} / B_{n}=\tau_{0}$.
In the multitude of possibilities for choosing the partial numerators there is a natural method for making the choices uniquely, and that is by choosing each a_{i} to be as small as possible. Since the smallest positive integer a_{i} such that $\tau_{i}=a_{i} / \tau_{i-1}-N \geq 0$ is $\left\lceil N \tau_{i-1}\right\rceil$, we give the following definition:

Definition 1. The dn_{N} expansion of τ_{0} obtained from the dn_{N} algorithm by choosing $a_{i}=\left\lceil N \tau_{i-1}\right\rceil$ for every i is the least dn_{N} expansion of τ_{0}.

TheOrem 3.2. The least dn_{N} expansion of τ_{0} converges.

Proof. If the least dn_{N} expansion of τ_{0} is finite, we interpret it as converging. Let the least dn_{N} expansion $\left\langle a_{1}, a_{2}, \ldots\right\rangle_{N}$ of τ_{0} be infinite. If $\tau_{i} \geq 1$, then

$$
0<\tau_{i+1}=\frac{\left\lceil N \tau_{i}\right\rceil}{\tau_{i}}-N<\frac{N \tau_{i}+1}{\tau_{i}}-N=\frac{1}{\tau_{i}} \leq 1
$$

so there are infinitely many i such that $\tau_{i} \leq 1$. Since $\tau_{i} \leq 1$ implies that $a_{i+1}=\left\lceil N \tau_{i}\right\rceil \leq N$, there are infinitely many i such that $a_{i} \leq N$. Therefore the sequence $\left(a_{i}\right)$ has a bounded subsequence, so by Corollary 2.2 the continued fraction $\left\langle a_{1}, a_{2}, \ldots\right\rangle_{N}$ converges and by Lemma 3.1 it converges to τ_{0}.

We have now established that every positive real number has at least one converging dn_{N} expansion. In fact, there are uncountably many such expansions since we may choose $a_{i}=\left\lceil N \tau_{i-1}\right\rceil+1$ instead of $a_{i}=\left\lceil N \tau_{i-1}\right\rceil$ and still get a converging dn_{N} expansion. From this point forward, when we talk about a dn_{N} expansion $\left\langle a_{1}, a_{2}, \ldots\right\rangle_{N}$ of a positive real number τ_{0}, we indicate that the expansion converges to τ_{0}, that is $\tau_{0}=\left\langle a_{1}, a_{2}, \ldots\right\rangle_{N}$.

Example 1. Here are some least dn_{N} expansions of different numbers.

τ_{0}	N	least dn_{N} expansion of τ_{0}
$5 / 17$	1	$\langle 1,3,1,3\rangle_{1}$
	10	$\langle 3,2\rangle_{10}$
$\sqrt{2}$	1	$\langle\overline{2,1}\rangle_{1}$
	2	$\langle 3,1,13,1,21,1,24,1,27,1,136,1,140,1,7849, \ldots\rangle_{2}$
	7	$\langle 10, \overline{1,50}\rangle_{7}$
π	1	$\langle 4,1,3,1,7,1,37,1,71,1,449,1,657,1,991, \ldots\rangle_{1}$
	2	$\langle 7,1,5,1,17,1,20,1,108,1,204,1,239,1,326, \ldots\rangle_{2}$
e	1	$\langle 3,1,9,1,24,1,65,1,67,1,335,1,881,1,1152, \ldots\rangle_{1}$
	7	$\langle 20,3,10,2,23,2,5,6,4,5,9,2,4,2,22, \ldots\rangle_{7}$

4. Rational numbers

Throughout this section $\tau_{0}=p / q$ is a positive rational number with $p, q \in \mathbb{Z}_{+}$.

Theorem 4.1. Let $\left(k_{j}\right)$ be a sequence of positive integers such that $k_{j} q>$ N for all j. Then

$$
\begin{align*}
\frac{p}{q} & =\left\langle k_{1} p, k_{1}^{2} q^{2}-N^{2}, k_{1}(p+N q), k_{2} p, k_{2}^{2} q^{2}-N^{2}, k_{2}(p+N q), \ldots\right\rangle_{N} \\
& \left.=\underset{j=1}{\infty} \overline{\left\langle k_{j} p, k_{j}^{2} q^{2}-N^{2}, k_{j}(p+N q)\right.}\right\rangle_{N} . \tag{10}
\end{align*}
$$

Proof. With the choices

$$
\begin{cases}a_{3 j-2} & =k_{j} p, \\ a_{3 j-1} & =k_{j}^{2} q^{2}-N^{2}, \\ a_{3 j} & =k_{j}(p+N q)\end{cases}
$$

for all $j \in \mathbb{Z}_{+}$we get inductively from the dn_{N} algorithm that

$$
\begin{gathered}
\tau_{3 j-2}=\frac{k_{j} p}{p / q}-N=k_{j} q-N>0, \\
\tau_{3 j-1}=\frac{k_{j}^{2} q^{2}-N^{2}}{k_{j} q-N}-N=k_{j} q
\end{gathered}
$$

and

$$
\tau_{3 j}=\frac{k_{j}(p+N q)}{k_{j} q}-N=\frac{p}{q}=\tau_{0} .
$$

Hence we obtain the dn_{N} expansion

$$
\underset{j=1}{\infty}\left\langle\overline{k_{j} p, k_{j}^{2} q^{2}-N^{2}, k_{j}(p+N q)}\right\rangle_{N}
$$

Using the same notation as in the proof of Corollary 2.2 , if $S_{3 j-3} \leq 1$, then since $k_{j} q \geq N+1$, we have

$$
S_{3 j}=\frac{a_{3 j-1}}{a_{3 j-2} a_{3 j} S_{3 j-3}}>\frac{k_{j}^{2} q^{2}-N^{2}}{k_{j}^{2} p(p+N q)} \geq \frac{q^{2}(2 N+1)}{p(p+N q)(N+1)^{2}} .
$$

Therefore the sequence $\left(S_{3 j}\right)$ is bounded below by a positive constant and the Stern-Stolz series of continued fraction (10) diverges to infinity. Then the convergence of continued fraction (10) to p / q follows from Theorem 2.1 and Lemma 3.1.

Corollary 4.2. The rational number p / q has infinitely many periodic dn_{N} expansions and uncountably many aperiodic dn_{N} expansions.

Proof. By Theorem 4.1 the rational number p / q has the dn_{N} expansion (10) for any sequence of positive integers $\left(k_{j}\right)$ that satisfies $k_{j} q>N$ for all j. If $\left(k_{j}\right)$ is periodic of period length m, then the dn_{N} expansion

$$
\frac{p}{q}={\underset{j=1}{\infty}\left\langle\overline{k_{j} p, k_{j}^{2} q^{2}-N^{2}, k_{j}(p+N q)}\right\rangle_{N}}
$$

is periodic of period length $3 m$ at most. As there are infinitely many periodic sequences $\left(k_{j}\right)$, it follows that there are infinitely many periodic dn_{N} expansions for p / q.

On the other hand, if we choose the sequence $\left(k_{j}\right)$ to be such that it has a strictly increasing subsequence, then the dn_{N} exapansion (10) is aperiodic because it contains arbitrarily large partial numerators. As there are uncountably many such sequences $\left(k_{j}\right)$, there are uncountably many aperiodic dn_{N} expansions for p / q.

Example 2. Let $\tau_{0}=22 / 7$ and $N=13$. It is then that Theorem 4.1 gives the dn_{13} expansion

$$
\frac{22}{7}=\underset{j=1}{\infty}\left\langle\overline{22 k_{j}, 49 k_{j}^{2}-169,127 k_{j}}\right\rangle_{13},
$$

where the sequence $\left(k_{j}\right)$ satisfies $k_{j} \geq 2$ for all j. Using different sequences (k_{j}) we get the following dn_{13} expansions:

$\left(k_{j}\right)$	dn_{13} expansion of $22 / 7$
$k_{j}=2$ for all j	$\langle\overline{44,27,254}\rangle_{13}$
$k_{2 i-1}=2, k_{2 i}=3$	$\langle\overline{44,27,254, ~ 66, ~ 272, ~ 381 ~}\rangle_{13}$
$k_{j}=j+1$ for all j	$\langle 44,27,254,66,272,381,88,615, \ldots\rangle_{13}$

In Example 1 both of the least dn_{N} expansions calculated for $5 / 17$ were finite. It turns out this is the case for every least dn_{N} expansion of a positive rational number.

Theorem 4.3. The least dn_{N} expansion of $\tau_{0}=p / q$ is finite.
Proof. Let us denote $P_{0}=p, Q_{0}=q$ and $S_{0}=P_{0}+Q_{0}$. By the division algorithm there exist unique $q_{1}, r_{1} \in \mathbb{N}$ such that $N P_{0}=q_{1} Q_{0}+r_{1}$, where $0<r_{1} \leq Q_{0}$. Then $\left\lceil N P_{0} / Q_{0}\right\rceil=q_{1}+1$. Using the dn_{N} algorithm we have

$$
\tau_{1}=\frac{\left\lceil N P_{0} / Q_{0}\right\rceil}{P_{0} / Q_{0}}-N=\frac{Q_{0}\left(q_{1}+1\right)-N P_{0}}{P_{0}}=\frac{Q_{0}-r_{1}}{P_{0}} .
$$

If $r_{1}=Q_{0}$, then $\tau_{1}=0$ and the algorithm terminates. If $0<r_{1}<Q_{0}$, we put $P_{1}=Q_{0}-r_{1}$ and $Q_{1}=P_{0}$. Note that now

$$
S_{0}=P_{0}+Q_{0}>P_{0}+Q_{0}-r_{1}=P_{1}+Q_{1}=S_{1} .
$$

Suppose we have reached $\tau_{i}=P_{i} / Q_{i}, P_{i}, Q_{i} \in \mathbb{Z}_{+}$and $S_{i}=P_{i}+Q_{i}$. By the division algorithm there exist unique $q_{i+1}, r_{i+1} \in \mathbb{N}$ such that

$$
N P_{i}=q_{i+1} Q_{i}+r_{i+1},
$$

where $0<r_{i+1} \leq Q_{i}$. Then $\left\lceil N P_{i} / Q_{i}\right\rceil=q_{i+1}+1$ and

$$
\tau_{i+1}=\frac{\left\lceil N P_{i} / Q_{i}\right\rceil}{P_{i} / Q_{i}}-N=\frac{Q_{i}\left(q_{i+1}+1\right)-N P_{i}}{P_{i}}=\frac{Q_{i}-r_{i+1}}{P_{i}} .
$$

If $r_{i+1}=Q_{i}$, then $\tau_{i+1}=0$ and the algorithm terminates. If $0<r_{i+1}<Q_{i}$, we put $P_{i+1}=Q_{i}-r_{i+1}$ and $Q_{i+1}=P_{i}$. Then

$$
S_{i}=P_{i}+Q_{i}>P_{i}+Q_{i}-r_{i+1}=P_{i+1}+Q_{i+1}=S_{i+1} .
$$

Because the sequence $\left(S_{i}\right)$ is a strictly decreasing sequence of positive integers and $Q_{i}>0$, it follows there must exist an $n \in \mathbb{Z}_{+}$such that $P_{n}=0$. Then $\tau_{n}=0$ and the algorithm terminates. Thus the least dn_{N} expansion of τ_{0} is finite.

We get infinitely many finite dn_{N} expansions for p / q by choosing the first finitely many a_{i} as we please and then making the least choice from there on.

5. Quadratic irrationals

Let us start by noting that because there are uncountably many infinite dn_{N} expansions for every positive real number but there exist only countably many periodic dn_{N} expansions, it follows that every positive quadratic irrational number has uncountably many aperiodic dn_{N} expansions.

Throughout this section τ_{0} is a positive real quadratic irrational. Now there exist $P, Q, d \in \mathbb{Z}$ such that $\tau_{0}=(\sqrt{d}+P) / Q, d \geq 2$ is not a perfect square and $Q \mid\left(d-P^{2}\right)$ (see for example [8], Lemma 10.5). Then we denote $Q^{\prime}=\left|\left(d-P^{2}\right) / Q\right|=|\sqrt{d}-P| \tau_{0}$.

Lemma 5.1. If $|P|<\sqrt{d}$ and $k \in \mathbb{Z}_{+}$is such that $k(\sqrt{d}-P)>N$, then

$$
\begin{equation*}
\tau_{0}=\left\langle k Q^{\prime}, \overline{D-2 k P N-N^{2}, D}\right\rangle_{N}, \tag{11}
\end{equation*}
$$

where $D=k^{2}\left(d-P^{2}\right)$.
Proof. Since $|P|<\sqrt{d}$ and τ_{0} is positive, it follows that Q and D are positive and $Q^{\prime}=\left(d-P^{2}\right) / Q$. If we choose $a_{1}=k Q^{\prime}$, we get from the dn_{N} algorithm

$$
\tau_{1}=\frac{k Q^{\prime}}{\tau_{0}}-N=\frac{k\left(d-P^{2}\right)}{\sqrt{d}+P}-N=k \sqrt{d}-(k P+N)>0 .
$$

As $k(\sqrt{d}+P)+N>0$, we may continue by choosing

$$
a_{2}=D-2 k P N-N^{2}=k^{2} d-(k P+N)^{2}=(k(\sqrt{d}+P)+N) \tau_{1}>0
$$

and get

$$
\tau_{2}=\frac{(k(\sqrt{d}+P)+N) \tau_{1}}{\tau_{1}}-N=k \sqrt{d}+k P>0 .
$$

Finally with $a_{3}=D$ we have

$$
\tau_{3}=\frac{k^{2}\left(d-P^{2}\right)}{k \sqrt{d}+k P}-N=k \sqrt{d}-(k P+N)=\tau_{1},
$$

and thus we get the periodic expansion $\tau_{0}=\left\langle k Q^{\prime}, \overline{D-2 k P N-N^{2}, D}\right\rangle_{N}$.

Theorem 5.2. There exists a periodic dn_{N} expansion of the positive real quadratic irrational τ_{0}.

Proof. We begin by constructing the desired dn_{N} expansion for τ_{0}. Let us denote $P_{0}=P, Q_{0}=Q$ and $R_{0}=1$. Let k_{1} be the smallest positive integer such that $k_{1}\left|\sqrt{d}-P_{0}\right|>N$ and $a_{1}=k_{1} Q^{\prime}$. Then we get from the dn_{N} algorithm

$$
\tau_{1}=\frac{a_{1}}{\tau_{0}}-N=\frac{k_{1}\left|\sqrt{d}-P_{0}\right| \tau_{0}}{\tau_{0}}-N=k_{1}\left|\sqrt{d}-P_{0}\right|-N>0 .
$$

Now we denote $\tau_{1}=R_{1} \sqrt{d}+P_{1}$, where

$$
\begin{cases}R_{1}=k_{1} \text { and } P_{1}=-k_{1} P_{0}-N, & \text { when } \sqrt{d}>P_{0} \\ R_{1}=-k_{1} \text { and } P_{1}=k_{1} P_{0}-N, & \text { when } \sqrt{d}<P_{0}\end{cases}
$$

If $\tau_{i}=R_{i} \sqrt{d}+P_{i}$, we choose $a_{i+1}=k_{i+1}\left|R_{i}^{2} d-P_{i}^{2}\right|$, where k_{i+1} is the smallest positive integer such that $k_{i+1}\left|R_{i} \sqrt{d}-P_{i}\right|>N$ and get

$$
\tau_{i+1}=\frac{k_{i+1}\left|R_{i}^{2} d-P_{i}^{2}\right|}{R_{i} \sqrt{d}+P_{i}}-N=k_{i+1}\left|R_{i} \sqrt{d}-P_{i}\right|-N>0 .
$$

Then we denote $\tau_{i+1}=R_{i+1} \sqrt{d}+P_{i+1}$, where

$$
\begin{cases}R_{i+1}=k_{i+1} R_{i} \text { and } P_{i+1}=-k_{i+1} P_{i}-N, & \text { when } R_{i} \sqrt{d}>P_{i}, \\ R_{i+1}=-k_{i+1} R_{i} \text { and } P_{i+1}=k_{i+1} P_{i}-N, & \text { when } R_{i} \sqrt{d}<P_{i} .\end{cases}
$$

It remains to be shown that the dn_{N} expansion $\left\langle a_{1}, a_{2}, \ldots\right\rangle_{N}$ constructed above is periodic. Note that if we choose k in Lemma 5.1 to be as small as possible, then the periodic dn_{N} expansion (11) is a special case of the dn_{N} expansion under study. Therefore it suffices to show that there exists a $j \geq 1$ such that R_{j} is positive and

$$
\left|P_{j}\right|<\left|R_{j} \sqrt{d}\right|=R_{j} \sqrt{d}=\sqrt{R_{j}^{2} d}
$$

in which case Lemma 5.1 gives us the periodicity.
Suppose on the contrary that

$$
\begin{equation*}
\left|P_{i}\right|>\left|R_{i} \sqrt{d}\right| \text { for all } i \geq 1 \tag{12}
\end{equation*}
$$

Then P_{i} is positive for all i because $\tau_{i}=R_{i} \sqrt{d}+P_{i}$ is positive for all i. If $k_{i}=1$ for every large i, then $P_{i+1}=P_{i}-N$ and $R_{i+1}=-R_{i}$ for every large i. In this case the sequence $\left(P_{i}\right)$ is a strictly decreasing sequence of integers and so there exists a j such that $P_{j}<0$, which we can't have. Hence there exist infinitely many j such that $k_{j}>1$. This implies that the sequence $\left(\left|R_{i}\right|\right)$ is tending to infinity so there exists an n such that $\left|R_{i} \sqrt{d}\right|>N$ for all $i \geq n$.

Let $m \geq n$ be such that $k_{m+1} \geq 2$. As k_{m+1} is the least positive integer such that

$$
k_{m+1} P_{m}-k_{m+1} R_{m} \sqrt{d}=k_{m+1}\left|P_{m}-R_{m} \sqrt{d}\right|>N
$$

then

$$
\left(k_{m+1}-1\right) P_{m}-\left(k_{m+1}-1\right) R_{m} \sqrt{d}<N
$$

Combining the above inequalities yields

$$
\begin{equation*}
0<k_{m+1} P_{m}-k_{m+1} R_{m} \sqrt{d}-N<P_{m}-R_{m} \sqrt{d}<N \tag{13}
\end{equation*}
$$

where the last inequality holds because $k_{m+1} \geq 2$. Since $P_{m}>\left|R_{m} \sqrt{d}\right|>N$ and $P_{m}-R_{m} \sqrt{d}<N$, then $R_{m}>0$ and

$$
P_{m+1}-R_{m+1} \sqrt{d}=k_{m+1} P_{m}-N+k_{m+1} R_{m} \sqrt{d}>3 N
$$

Thus $k_{m+2}=1$ and by (13) we have

$$
P_{m+2}=P_{m+1}-N=k_{m+1} P_{m}-2 N<k_{m+1} R_{m} \sqrt{d}=R_{m+2} \sqrt{d}
$$

where $R_{m+2}=k_{m+1} R_{m}$ is positive. This is a contradiction with assumption (12). Thus there exists a $j \geq 1$ such that R_{j} is positive and $\left|P_{j}\right|<R_{j} \sqrt{d}$ and by Lemma 5.1

$$
\tau_{0}=\left\langle a_{1}, a_{2}, \ldots, a_{j}, D / k_{j+1}, \overline{D-2 k_{j+1} P_{j} N-N^{2}, D}\right\rangle_{N}
$$

where $D=k_{j+1}^{2}\left(R_{j}^{2} d-P_{j}^{2}\right)$.
Since we may choose the first finitely many a_{i} as we please and then continue as described in Lemma 5.1 and Theorem 5.2, every positive quadratic irrational has infinitely many different periodic dn_{N} expansions.

Example 3. Let $\tau_{0}=(7+\sqrt{10}) / 13$ and $N=4$. Constructing the dn_{4} expansion described in Theorem 5.2 we get

$$
\begin{array}{lll}
k_{1}=2, & a_{1}=6, & \tau_{1}=10-2 \sqrt{10}, \\
k_{2}=1, & a_{2}=60, & \tau_{2}=6+2 \sqrt{10}, \\
k_{3}=13, & a_{3}=52, & \tau_{3}=26 \sqrt{10}-82, \\
k_{4}=1, & a_{4}=36, & \tau_{4}=26 \sqrt{10}+78, \\
k_{5}=1, & a_{5}=676, & \tau_{5}=26 \sqrt{10}-82=\tau_{3}
\end{array}
$$

and so

$$
\frac{7+\sqrt{10}}{13}=\langle 6,60,52, \overline{36,676}\rangle_{4} .
$$

We now turn our attention to the least dn_{N} expansions of positive real quadratic irrationals. In [1] it is conjectured that the best cf_{N} expansion of a positive quadratic irrational is not periodic for every N. It seems likely that this is the case for the least dn_{N} expansion as well. For example the dn_{1} expansion of $\sqrt{3}$ is

$$
\begin{aligned}
\sqrt{3}= & \langle 2,1,6,1,10,1,11,1,18,1,50,1,65,1,750,1,8399,1,11727,1,12855 \\
& 1,66368,1,281130,1,437015,1,482182,1,643701,1,743770,1 \\
& 2808107,1,11306550,1,12268089,1,24304646,1,98323268,1, \ldots\rangle_{1}
\end{aligned}
$$

where the partial numerators seem to alternate between 1 and a rapidly increasing sequence of positive integers.

However, there are some cases when we can find a periodic least dn_{N} expansion. Recall that if $|P|<\sqrt{d}$ and $k \in \mathbb{Z}_{+}$is such that $k(\sqrt{d}-P)>N$, then by Lemma 5.1

$$
\begin{equation*}
\tau_{0}=\left\langle k Q^{\prime}, \overline{D-2 k P N-N^{2}, D}\right\rangle_{N} \tag{14}
\end{equation*}
$$

where $D=k^{2}\left(d-P^{2}\right)$.
TheOrem 5.3. Let $|P|<\sqrt{d}$ and $k \in \mathbb{Z}_{+}$be such that $k(\sqrt{d}-P)>N$. Then expansion (14) is the least dn_{N} expansion of τ_{0} if and only if

$$
\begin{equation*}
0<(\sqrt{d}-P)-\frac{N}{k}<\frac{1}{(\sqrt{d}+P) k^{2}} \tag{15}
\end{equation*}
$$

Proof. As noted in the proof of 5.1, in this case the numbers Q, Q^{\prime} and D are positive integers. Expansion (14) is the least dn_{N} expansion if and only if $a_{i}=\left\lceil N \tau_{i-1}\right\rceil$ for every i. Since expansion (14) is periodic, it suffices to check that $k Q^{\prime}=\left\lceil N \tau_{0}\right\rceil, D-2 k P N-N^{2}=\left\lceil N \tau_{1}\right\rceil$ and $D=\left\lceil N \tau_{2}\right\rceil$. From the proof of 5.1 we have that $\tau_{1}=k \sqrt{d}-(k P+N)$ and $\tau_{2}=k \sqrt{d}+k P$. If $D=\left\lceil N \tau_{2}\right\rceil$ then

$$
\begin{equation*}
k^{2}\left(d-P^{2}\right)=\lceil N k(\sqrt{d}+P)\rceil=N k(\sqrt{d}+P)+c, \tag{16}
\end{equation*}
$$

where $0<c<1$. Now

$$
k Q^{\prime}=N \frac{\sqrt{d}+P}{Q}+\frac{c}{k Q}=N \tau_{0}+\frac{c}{k Q}
$$

where $0<c / k Q<1$ and

$$
\begin{aligned}
D-2 k P N-N^{2} & =N k(\sqrt{d}+P)-2 k P N-N^{2}+c \\
& =N(k \sqrt{d}-(k P+N))+c=N \tau_{1}+c
\end{aligned}
$$

so $k Q^{\prime}=\left\lceil N \tau_{0}\right\rceil$ and $D-2 k P N-N^{2}=\left\lceil N \tau_{1}\right\rceil$. It is therefore enough to study when $D=\left\lceil N \tau_{2}\right\rceil$.

By (16) $D=\left\lceil N \tau_{2}\right\rceil$ if and only if

$$
0<c=k^{2}\left(d-P^{2}\right)-N k(\sqrt{d}+P)=k(\sqrt{d}+P)(k(\sqrt{d}-P)-N)<1,
$$

which is equivalent to (15).
Remark. If $\sqrt{d}+P>2$, then by Theorem 2.3 and inequalities (7) condition (15) can hold only if N / k is an even convergent of the simple continued fraction expansion of $\sqrt{d}-P$. If

$$
\sqrt{d}-P=\left[c_{0} ; \overline{c_{1}, \ldots, c_{m-1}, c_{m}}\right]
$$

then by (9) we have

$$
\begin{equation*}
\frac{1}{\left(c_{2 n+1}+2\right) D_{2 n}^{2}}<(\sqrt{d}-P)-\frac{C_{2 n}}{D_{2 n}}<\frac{1}{c_{2 n+1} D_{2 n}^{2}} \tag{17}
\end{equation*}
$$

for all $n \in \mathbb{N}$. Thus, if there exists a $c_{2 n+1}>\sqrt{d}+P$, then by Theorem 5.3 expansion (14) is the least dn_{N} expansion of τ_{0} when $N=C_{2 n+l m}$ and $k=D_{2 n+l m}$ for any $l \in \mathbb{N}$. By contrast, if $c_{2 n+1}+2<\sqrt{d}+P$ for all n, then (14) is never the least dn_{N} expansion of τ_{0}.

Theorem 5.4. Let $\tau_{0}=\sqrt{d}$ where d is a positive integer and not a perfect square. If m is a positive integer, then

$$
\begin{equation*}
\sqrt{d}=\left\langle 2 k d, 2\left(k^{2} d-m^{2}\right), \overline{k^{2} d-m^{2}}\right\rangle_{2 m}, \tag{18}
\end{equation*}
$$

where k is a positive integer such that $k \sqrt{d}>m$. Expansion (18) is the least $\mathrm{dn}_{2 m}$ expansion of \sqrt{d} if and only if

$$
\begin{equation*}
0<\sqrt{d}-\frac{m}{k}<\frac{1}{2 k \sqrt{d}} \tag{19}
\end{equation*}
$$

Proof. Let k be a positive integer such that $k \sqrt{d}>m$. By choosing $a_{1}=2 k d$ we get from the dn_{N} algorithm

$$
\tau_{1}=\frac{2 k d}{\sqrt{d}}-2 m=2(k \sqrt{d}-m)>0
$$

We continue by choosing $a_{2}=2\left(k^{2} d-m^{2}\right)>0$ and get

$$
\tau_{2}=\frac{2\left(k^{2} d-m^{2}\right)}{2(k \sqrt{d}-m)}-2 m=k \sqrt{d}-m>0 .
$$

Finally, with $a_{3}=k^{2} d-m^{2}$ we have

$$
\tau_{3}=\frac{k^{2} d-m^{2}}{k \sqrt{d}-m}-2 m=k \sqrt{d}-m=\tau_{2}
$$

and hence we get periodic expansion (18).
Now $a_{1}=2 k d=\lceil 2 m \sqrt{d}\rceil$ if and only if $0<2 k d-2 m \sqrt{d}<1$ which is equivalent to (19). If inequality (19) holds, then

$$
0<a_{2}-2 m \tau_{1}=2(k \sqrt{d}-m)(k \sqrt{d}+m-2 m)<\frac{1}{2 d}
$$

and

$$
0<a_{3}-2 m \tau_{2}=(k \sqrt{d}-m)(k \sqrt{d}+m-2 m)<\frac{1}{4 d}
$$

so $a_{2}=\left\lceil 2 m \tau_{1}\right\rceil$ and $a_{3}=\left\lceil 2 m \tau_{2}\right\rceil$. Hence expansion (18) is the least $\mathrm{dn}_{2 m}$ expansion of \sqrt{d} if and only if inequality (19) holds.

Remark. By (17) inequality (19) has infinitely many solutions in m / k for every \sqrt{d}, as we may choose $m=C_{2 n}$ and $k=D_{2 n}$ when n is large enough. Consequently every irrational \sqrt{d} has infinitely many periodic least dn_{N} expansions.

Example 4. Periodic least dn_{N} expansions given by Theorem 5.3:

τ_{0}	N	least dn_{N} expansion of τ_{0}
$\sqrt{K^{2}+1}$	K	$\left\langle\overline{K^{2}+1,1}\right\rangle_{K}$
$\sqrt{2}$	7	$\langle 10, \overline{1,50}\rangle_{7}$
$\frac{1+\sqrt{5}}{2}$	1	$\langle 2, \overline{1,4}\rangle_{1}$
$\frac{-2+\sqrt{13}}{3}$	5	$\langle 3, \overline{4,9}\rangle_{5}$

Periodic least dn_{N} expansions given by Theorem 5.4:

τ_{0}	N	least dn_{N} expansion of τ_{0}
$\sqrt{2}$	14	$\langle 20,2, \overline{1}\rangle_{14}$
$\sqrt{3}$	10	$\langle 18,4, \overline{2}\rangle_{10}$
$\sqrt{6}$	44	$\langle 108,4, \overline{2}\rangle_{44}$

Other periodic least dn_{N} expansions:

τ_{0}	N	least dn_{N} expansion of τ_{0}
$\sqrt{7}$	13	$\langle 35,3, \overline{2,59,2}\rangle_{13}$
$3+\sqrt{2}$	1	$\langle 5,1,7, \overline{1,14}\rangle_{1}$
$\frac{6+\sqrt{3}}{2}$	5	$\langle 20,1,4, \overline{1,2,2,1,5,5}\rangle_{5}$

6. Bounded partial numerators

One of the major open questions of Diophantine approximation is if the simple continued fraction expansions of algebraic numbers of degree greater than 2 have bounded partial denominators. In the case of dn_{N} expansions the analogue is quickly solved. In fact, we show below that for every positive
real number there exists a dn_{N} expansion that has partial numerators from a set of two digits only.

Lemma 6.1. Let α_{1} and α_{2} be positive integers such that $\alpha_{1}<\alpha_{2}$ and

$$
\begin{equation*}
\alpha_{1} \alpha_{2} /\left(\alpha_{1}+\alpha_{2}\right) \geq N^{2}, \tag{20}
\end{equation*}
$$

and denote

$$
\begin{aligned}
\tau_{m} & =\frac{-\left(N^{2}+\alpha_{2}-\alpha_{1}\right)+\sqrt{\left(N^{2}+\alpha_{2}-\alpha_{1}\right)^{2}+4 \alpha_{1} N^{2}}}{2 N}, \\
\tau_{M} & =\frac{-\left(N^{2}-\alpha_{2}+\alpha_{1}\right)+\sqrt{\left(N^{2}+\alpha_{2}-\alpha_{1}\right)^{2}+4 \alpha_{1} N^{2}}}{2 N}=\tau_{m}+\frac{\alpha_{2}-\alpha_{1}}{N}
\end{aligned}
$$

and $I=\left[\tau_{m}, \tau_{M}\right]$. If $\tau_{0} \in I$, there exists a dn_{N} expansion $\tau_{0}=\left\langle a_{1}, a_{2}, \ldots\right\rangle_{N}$ such that $a_{i} \in\left\{\alpha_{1}, \alpha_{2}\right\}$ for all i.

Proof. As the positive solutions x to equations

$$
x=\frac{\alpha_{1}}{N+\frac{\alpha_{2}}{N+x}} \quad \text { and } \quad x=\frac{\alpha_{2}}{N+\frac{\alpha_{1}}{N+x}}
$$

are $x=\tau_{m}$ and $x=\tau_{M}$, respectively, it follows that

$$
\tau_{m}=\left\langle\overline{\alpha_{1}, \alpha_{2}}\right\rangle_{N} \text { and } \tau_{M}=\left\langle\overline{\alpha_{2}, \alpha_{1}}\right\rangle_{N} .
$$

Let us denote $T_{1}(x)=\alpha_{1} /(N+x)$ and $T_{2}(x)=\alpha_{2} /(N+x)$ for $x \in I$. Then

$$
T_{1}\left(\tau_{M}\right)=\tau_{m}, \quad T_{2}\left(\tau_{m}\right)=\tau_{M}, \quad T_{1}\left(\tau_{m}\right)=\frac{\alpha_{1}}{\alpha_{2}} \tau_{M} \quad \text { and } \quad T_{2}\left(\tau_{M}\right)=\frac{\alpha_{2}}{\alpha_{1}} \tau_{m} .
$$

Because

$$
\begin{array}{rlrl}
& & \frac{\alpha_{1}}{\alpha_{2}} \tau_{M}=\frac{\alpha_{1}}{\alpha_{2}}\left(\tau_{m}+\frac{\alpha_{2}-\alpha_{1}}{N}\right) & \geq \frac{\alpha_{2}}{\alpha_{1}} \tau_{m} \\
\Leftrightarrow & \frac{\alpha_{1}\left(\alpha_{2}-\alpha_{1}\right)}{\alpha_{2} N} \cdot \frac{\alpha_{1} \alpha_{2}}{\alpha_{2}^{2}-\alpha_{1}^{2}}=\frac{\alpha_{1}^{2}}{N\left(\alpha_{2}+\alpha_{1}\right)} & \geq \tau_{m} \\
\Leftrightarrow & \frac{2 \alpha_{1}^{2}}{\left(\alpha_{2}+\alpha_{1}\right)}+N^{2}+\alpha_{2}-\alpha_{1} & \geq \sqrt{\left(N^{2}+\alpha_{2}-\alpha_{1}\right)^{2}+4 \alpha_{1} N^{2}} \\
\Leftrightarrow & \frac{\alpha_{1}^{3}}{\alpha_{2}+\alpha_{1}}+\alpha_{1}\left(N^{2}+\alpha_{2}-\alpha_{1}\right) & \geq\left(\alpha_{2}+\alpha_{1}\right) N^{2} \\
\Leftrightarrow & \frac{\alpha_{1} \alpha_{2}}{\alpha_{2}+\alpha_{1}} & \geq N^{2},
\end{array}
$$

then inequality (20) implies that $T_{1}\left(\tau_{m}\right) \geq T_{2}\left(\tau_{M}\right)$. Therefore

$$
\begin{equation*}
T_{1}(I) \cup T_{2}(I)=\left[\tau_{m}, T_{1}\left(\tau_{m}\right)\right] \cup\left[T_{2}\left(\tau_{M}\right), \tau_{M}\right]=\left[\tau_{m}, \tau_{M}\right]=I . \tag{21}
\end{equation*}
$$

Let $\tau_{0} \in I$. As the functions T_{1} and T_{2} are injective on I, then by (21) there exists a $\tau_{1} \in I$ such that

$$
\tau_{0}=\frac{a_{1}}{N+\tau_{1}} \quad \Leftrightarrow \quad \tau_{1}=\frac{a_{1}}{\tau_{0}}-N
$$

where $a_{1} \in\left\{\alpha_{1}, \alpha_{2}\right\}$. Similarily, if $\tau_{i} \in I$, then there exists a $\tau_{i+1} \in I$ such that

$$
\tau_{i}=\frac{a_{i+1}}{N+\tau_{i+1}} \quad \Leftrightarrow \quad \tau_{i+1}=\frac{a_{i+1}}{\tau_{i}}-N
$$

where $a_{i+1} \in\left\{\alpha_{1}, \alpha_{2}\right\}$. It follows by induction that $\tau_{0}=\left\langle a_{1}, a_{2}, a_{3}, \ldots\right\rangle_{N}$, where $a_{i} \in\left\{\alpha_{1}, \alpha_{2}\right\}$ for all i.

Theorem 6.2. Let τ_{0} be a positive real number. Then there exist positive integers α_{1} and α_{2} such that $\tau_{0}=\left\langle a_{1}, a_{2}, \ldots\right\rangle_{N}$, where $a_{i} \in\left\{\alpha_{1}, \alpha_{2}\right\}$ for all i.

Proof. Due to Lemma 6.1 it is sufficient to show that there exist positive integers α_{1} and α_{2} such that $\alpha_{1}<\alpha_{2}, \alpha_{1} \alpha_{2} /\left(\alpha_{1}+\alpha_{2}\right) \geq N^{2}$ and $\tau_{0} \in\left[\tau_{m}, \tau_{M}\right]$, where τ_{m} and τ_{M} are as in Lemma 6.1. Now

$$
\begin{aligned}
\tau_{m} & =\frac{-\left(N^{2}+\alpha_{2}-\alpha_{1}\right)+\sqrt{\left(N^{2}+\alpha_{2}-\alpha_{1}\right)^{2}+4 \alpha_{1} N^{2}}}{2 N} \\
& =\frac{N^{2}+\alpha_{2}-\alpha_{1}}{2 N}\left(-1+\sqrt{1+\frac{4 \alpha_{1} N^{2}}{\left(N^{2}+\alpha_{2}-\alpha_{1}\right)^{2}}}\right)
\end{aligned}
$$

Since the function

$$
f(x)=x\left(-1+\sqrt{1+\frac{\alpha_{1}}{x^{2}}}\right)
$$

is strictly decreasing and tends to 0 as x tends to infinity for all positive α_{1}, then

$$
\begin{equation*}
\tau_{m}<\tau_{0}<\tau_{m}+\frac{\alpha_{2}-\alpha_{1}}{N}=\tau_{M} \tag{22}
\end{equation*}
$$

when $\alpha_{2}-\alpha_{1}$ is large enough. Because

$$
\frac{\alpha_{1} \alpha_{2}}{\alpha_{1}+\alpha_{2}}=\frac{1}{1 / \alpha_{1}+1 / \alpha_{2}} \geq \frac{\alpha_{1}}{2}
$$

then we may choose $\alpha_{1} \geq 2 N^{2}$ and α_{2} such that $\alpha_{2}-\alpha_{1}$ is large enough for (22) to hold true.

Example 5. Here are the first 20 digits of some dn_{1} expansions with bounded numerators.

τ_{0}	$\{a, b\}$	bounded dn_{N} expansion of τ_{0}
$\sqrt[3]{2}$	$\{2,4\}$	$\langle 2,2,4,2,4,2,2,2,2,2,4,4,4,4,4,4,4,2,2,4, \ldots\rangle_{1}$
π	$\{2,5\}$	$\langle 5,2,5,2,2,5,5,2,2,2,2,5,5,2,2,5,2,5,5,5, \ldots\rangle_{1}$
e	$\{3,7\}$	$\langle 7,3,3,7,7,7,3,3,7,3,7,3,3,7,3,3,3,7,3,3, \ldots\rangle_{1}$
$\ln 2$	$\{2,4\}$	$\langle 2,4,2,2,4,4,4,4,4,4,4,4,2,2,4,2,2,4,4,4, \ldots\rangle_{1}$

Acknowledgements The author would like to thank Jaroslav Hančl, Tapani Matala-aho and Kalle Leppälä for their helpful comments.

References

[1] Anselm M., Weintraub S.H., A generalization of continued fractions, J. Number Theory 131 (2011), 2442-2460
[2] Berndt B.C., Ramanujans Notebooks, Part II, Springer-Verlag, New York, USA, 1989
[3] Berndt B.C., Ramanujans Notebooks, Part III, Springer-Verlag, New York, USA, 1991
[4] Borwein J., Crandall R., Fee G., On the Ramanujan AGM fraction. Part I: the realparameter case, Exp. Math. 13 (2004), 275-286
[5] Borwein J., van der Poorten A., Shallit J., Zudilin W., Neverending Fractions: An Introduction to Continued Fractions, Austral. Math. Soc. Lect. Ser. 23, Cambridge University Press, UK, 2014
[6] Dutka J., Wallis's product, Brouncker's continued fraction, and Leibniz's series, Arch. History Exact Sci. 26 (1982), 115-126.
[7] Lorentzen L., Waadeland H., Continued Fractions with Applications, Stud. Comput. Math. 3, North-Holland Publishing Co., Amsterdam, 1992
[8] Rosen K. H., Elementary Number Theory and its applications, 3rd edition, AddisonWesley Publishing Company, USA, 1992

Research unit of mathematical sciences
P.O. Box 8000, 90014 University of Oulu, Finland

[^0]: © XXXX Australian Mathematical Society 0263-6115/XX $\$$ A2.00 +0.00

