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Abstract

We study generalized continued fraction expansions of the form

a1

N +

a2

N +

a3

N + · · · ,

where N is a fixed positive integer and the partial numerators ai are positive integers for
all i. We call these expansions dnN expansions and show that every positive real number
has infinitely many dnN expansions for each N . In particular we study the dnN expansions
of rational numbers and quadratic irrationals. Finally we show that every positive real
number has for each N a dnN expansion with bounded partial numerators.
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1. Introduction

In [1] Anselm and Weintraub introduced a generalization of simple con-
tinued fractions, the cfN expansion

a0 +
N

a1 +

N

a2 +

N

a3 + · · ·
,

where N is a fixed positive integer, a0 is a non-negative integer and ai is a
positive integer for every i. They showed that every positive real number
has infinitely many cfN expansions for all N > 1 and studied the properties
of these expansions for rational numbers and quadratic irrationals. In par-
ticular, they focused on the so-called best cfN expansion, where the partial
denominators ai are chosen as large as possible and which is unique for each
real number.
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In this paper we flip the roles of the partial numerators and denominators
of the cfN expansions and study generalized continued fraction expansions
of the form

a1
N +

a2
N +

a3
N + · · ·

, (1)

where N is a fixed positive integer and ai are positive integers. We shall call
these continued fractions dnN expansions and denote them by 〈a1, a2, . . .〉N .
While a general study of the dnN expansions of real numbers doesn’t seem
to have been done, continued fractions of form (1) have been studied quite
a lot. For example, Ramanujan presented many such continued fractions in
his notebooks ([2],[3]). Among them were

1 =
x+N

N +

(x+N)2 −N2

N +

(x+ 2N)2 −N2

N +

(x+ 3N)2 −N2

N + · · ·
,

where x 6= −kN for all positive integers k,

1 + 2N2
∞∑
k=1

(−1)k

(N + k)2
=

1

N +

12

N +

1 · 2
N +

22

N +

2 · 3
N +

32

N + · · ·
(2)

and perhaps most famously Ramanujan’s AGM continued fraction

RN (a, b) =
a

N +

b2

N +

(2a)2

N +

(3b)2

N +

(4a)2

N +

(5b)2

N + · · ·

that satisfies the remarkable equation

RN
(
a+ b

2
,
√
ab

)
=
RN (a, b) +RN (b, a)

2

connecting the arithmetic and geometric mean of numbers a and b ([4]).
Some examples of well-known dnN expansions for real numbers are Lord
Brouncker’s dn2 expansion

π =
8

2 +

2

2 +

32

2 +

52

2 + · · ·

(see [6]), the dn1 expansion

ln 2 = R1(1, 1) =
1

1 +

12

1 +

22

1 +

32

1 + · · ·

(see [4]), and the dn1 expansion

ζ(2)− 1 =
π2

6
− 1 =

1

1 +

12

1 +

1 · 2
1 +

22

1 +

2 · 3
1 +

32

1 + · · ·

derived from (2).
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We will begin with some preliminaries in Section 2, followed by the dnN
algorithm in Section 3. We will show that every positive real number has
infinitely many dnN expansions for every N and define a special dnN ex-
pansion called the least dnN expansion. In Sections 4 and 5 we will examine
the dnN expansions of positive rational numbers and positive real quadratic
irrationals, respectively. We will prove that for any rational number there
exist infinitely many finite, periodic and aperiodic dnN expansions, and that
for any quadratic irrational number there exist infinitely many periodic and
aperiodic dnN expansions. Special attention is paid to the least dnN expan-
sion of these numbers. In Section 6 we will show that every positive real
number has a dnN expansion with bounded partial numerators.

In this paper, we denote the set of positive integers with Z+ and the set
of non-negative integers with N.

2. On continued fractions

We begin with some preliminaries on (generalized) continued fractions

b0 +
a1

b1 +
a2

b2 + · · ·
= b0 +

∞

K
n=1

an
bn

= b0 +
a1
b1 +

a2
b2 + · · ·

, (3)

where the partial numerators an and the partial denominators bn are positive
integers for all n ∈ Z+ and b0 ∈ Z. If the limit of the n:th convergent

An
Bn

= b0 +
a1
b1 +

a2
b2 + · · ·+

an
bn

at infinity exists, it is called the value of the continued fraction. The nu-
merators An and denominators Bn of the convergents can be obtained from
the recurrence relations{

An+2 = bn+2An+1 + an+2An,

Bn+2 = bn+2Bn+1 + an+2Bn
(4)

with initial values A0 = b0, B0 = 1, A1 = b0b1 + a1 and B1 = b1. These
relations imply the formula

An+1

Bn+1
− An
Bn

=
(−1)na1 . . . an+1

BnBn+1
,

valid for all n ∈ N. If continued fraction (3) converges to τ ∈ R, then

τ = b0 +
∞∑
k=0

(−1)ka1 . . . ak+1

BkBk+1
, (5)
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as shown for example in [5]. Using recurrence relations (4) and the standard
error estimates of alternating series we get

bn+2a1 . . . an+1

BnBn+2
<

∣∣∣∣τ − An
Bn

∣∣∣∣ < a1 . . . an+1

BnBn+1
. (6)

We can also determine the sign of τ − An/Bn since equations (4) and (5)
imply

A0

B0
<
A2

B2
< . . . <

A2k

B2k
< τ <

A2l+1

B2l+1
< . . . <

A3

B3
<
A1

B1
(7)

for all k, l ∈ N.
As the partial coefficients an and bn of continued fraction (3) are pos-

itive integers for all n ∈ Z+, the following theorem gives us a convergence
criterion.

Theorem 2.1. [The Seidel-Stern Theorem] Let an and bn be positive
real numbers for all n. Then the continued fraction K

∞
n=1

an
bn

converges if
and only if the Stern-Stolz series

∞∑
n=1

bn

n∏
k=1

a
(−1)n−k+1

k (8)

diverges to ∞.

Proof. See [7], Chapter III, Theorem 3 and the subsequent Remark
2.

Corollary 2.2. Let an and bn be positive integers for all n. If the se-
quence (an) has a bounded subsequence, then the continued fraction K

∞
n=1

an
bn

converges.

Proof. Let us assume that (an) has a bounded subsequence (aki) such
that aki ≤ M for all i ∈ Z+ and some M ∈ Z+. Without loss of generality,
we may also assume that ki+1 ≥ ki + 2. By denoting

Sn =
n∏
k=1

a
(−1)n−k+1

k

the Stern-Stolz series of the continued fraction K
∞
n=1

an
bn

can be written as∑∞
n=1 bnSn, where S1 = 1/a1 and Sn+1 = 1/(Snan+1). Now either Ski ≥ 1

or Ski < 1 and Ski+1 = 1/(Skiaki+1) > 1/M so

∞∑
n=1

bnSn ≥
∞∑
i=1

(Ski + Ski+1) ≥
∞∑
i=1

1

M
→∞.

Hence the Stern-Stolz series of K
∞
n=1

an
bn

diverges to infinity and by Theorem

2.1 the continued fraction K
∞
n=1

an
bn

converges.
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We say that the (infinite) expansion 〈a1, a2, . . .〉N is (eventually) periodic
if there exist positive integers k and m such that ai = ai+k for every i ≥ m.
Then we denote

〈a1, a2, . . .〉N = 〈a1, . . . , am−1, am, . . . , am+k−1〉N .

Every periodic dnN expansion converges by Corollary 2.2 since the partial
numerators of periodic continued fractions are bounded. It is easy to see that
every periodic dnN expansion represents a rational number or a quadratic
irrational.

Finally, we recall some useful results from the theory of simple continued
fractions

c0 +
1

c1 +

1

c2 + · · ·
= [c0; c1, c2, . . .],

which are a special case of continued fractions (3) with an = 1 and bn = cn
for all n. We denote the convergents of the simple continued fraction expan-
sion by Cn/Dn. As is well known, the simple continued fraction expansion
of a real number τ is finite if and only if τ is rational and periodic if and
only if τ is a quadratic irrational. Especially,

√
d = [c0; c1, . . . , ck−1, 2c0],

where d is a positive non-square integer, c0 = b
√
dc and ci = ck−i for all

1 ≤ i ≤ k − 1 (see [8]).
For simple continued fractions error estimates (6) take the form

1

(dn+1 + 2)D2
n

<
dn+2

DnDn+2
<

∣∣∣∣τ − Cn
Dn

∣∣∣∣ < 1

DnDn+1
<

1

dn+1D2
n

, (9)

which suggests the convergents Cn/Dn are good approximants for τ . In a
way they are the only very good approximants as the following Theorem
shows:

Theorem 2.3. If τ is a real number, p ∈ Z and q ∈ N are coprime and∣∣∣∣τ − p

q

∣∣∣∣ < 1

2q2
,

then p/q is a convergent of the simple continued fraction expansion of τ .

For the proof, see for example Lemma 2.33 in [5].

3. The dnN expansion

Through the rest of this paper, N is a fixed positive integer and τ0 is an
arbitrary positive real number unless stated otherwise.

We now present the dnN algorithm for obtaining a dnN expansion for
τ0:
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1) Let i = 1.

2) Choose a positive integer ai such that ai/τi−1 ≥ N .

3) Let τi = ai
τi−1
−N . If τi = 0, terminate. Otherwise let i = i + 1 and go

to step 2.

As the only criterion for choosing each ai is to keep τi non-negative, we
can obtain uncountably many dnN expansions for τ0. However, we would
like our continued fraction to converge to the number τ0. Therefore the
partial numerators ai should be chosen so that the series

∞∑
n=1

n∏
k=1

a
(−1)n−k+1

k

diverges to infinity, which in the case of dnN expansions implies the diver-
gence of the Stern-Stolz series (8).

Lemma 3.1. If the dnN expansion obtained for τ0 by the dnN algorithm
converges, then it converges to τ0.

Proof. By induction,

τ0 =
An +An−1τn
Bn +Bn−1τn

.

Then ∣∣∣∣τ0 − An
Bn

∣∣∣∣ =

∣∣∣∣An +An−1τn
Bn +Bn−1τn

− An
Bn

∣∣∣∣
=

∣∣∣∣AnBn +An−1Bnτn −AnBn −AnBn−1τn
Bn(Bn +Bn−1τn)

∣∣∣∣
=

τn
∏n
i=1 ai

Bn(Bn +Bn−1τn)
<

∏n
i=1 ai

BnBn−1
.

Since the continued fraction converges, we have

lim
n→∞

∏n
i=1 ai

BnBn−1
= 0

by (5), and hence lim
n→∞

An/Bn = τ0.

In the multitude of possibilities for choosing the partial numerators there
is a natural method for making the choices uniquely, and that is by choosing
each ai to be as small as possible. Since the smallest positive integer ai such
that τi = ai/τi−1 −N ≥ 0 is dNτi−1e, we give the following definition:
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Definition 1. The dnN expansion of τ0 obtained from the dnN algo-
rithm by choosing ai = dNτi−1e for every i is the least dnN expansion of
τ0.

Theorem 3.2. The least dnN expansion of τ0 converges.

Proof. If the least dnN expansion of τ0 is finite, we interpret it as
converging. Let the least dnN expansion 〈a1, a2, . . .〉N of τ0 be infinite. If
τi ≥ 1, then

0 < τi+1 =
dNτie
τi
−N <

Nτi + 1

τi
−N =

1

τi
≤ 1

so there are infinitely many i such that τi ≤ 1. Since τi ≤ 1 implies that
ai+1 = dNτie ≤ N , there are infinitely many i such that ai ≤ N . There-
fore the sequence (ai) has a bounded subsequence, so by Corollary 2.2 the
continued fraction 〈a1, a2, . . .〉N converges and by Lemma 3.1 it converges
to τ0.

We have now established that every positive real number has at least
one converging dnN expansion. In fact, there are uncountably many such
expansions since we may choose ai = dNτi−1e + 1 instead of ai = dNτi−1e
and still get a converging dnN expansion. From this point forward, when
we talk about a dnN expansion 〈a1, a2, . . .〉N of a positive real number τ0,
we indicate that the expansion converges to τ0, that is τ0 = 〈a1, a2, . . .〉N .

Example 1. Here are some least dnN expansions of different numbers.

τ0 N least dnN expansion of τ0
5/17 1 〈1, 3, 1, 3〉1

10 〈3, 2〉10√
2 1 〈2, 1〉1

2 〈3, 1, 13, 1, 21, 1, 24, 1, 27, 1, 136, 1, 140, 1, 7849, . . .〉2
7 〈10, 1, 50〉7

π 1 〈4, 1, 3, 1, 7, 1, 37, 1, 71, 1, 449, 1, 657, 1, 991, . . .〉1
2 〈7, 1, 5, 1, 17, 1, 20, 1, 108, 1, 204, 1, 239, 1, 326, . . .〉2

e 1 〈3, 1, 9, 1, 24, 1, 65, 1, 67, 1, 335, 1, 881, 1, 1152, . . .〉1
7 〈20, 3, 10, 2, 23, 2, 5, 6, 4, 5, 9, 2, 4, 2, 22, . . .〉7

4. Rational numbers

Throughout this section τ0 = p/q is a positive rational number with
p, q ∈ Z+.
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Theorem 4.1. Let (kj) be a sequence of positive integers such that kjq >
N for all j. Then

p

q
= 〈k1p, k21q2 −N2, k1(p+Nq), k2p, k

2
2q

2 −N2, k2(p+Nq), . . .〉N

= ∞
j=1〈kjp, k2j q2 −N2, kj(p+Nq)〉N . (10)

Proof. With the choices
a3j−2 = kjp,

a3j−1 = k2j q
2 −N2,

a3j = kj(p+Nq)

for all j ∈ Z+ we get inductively from the dnN algorithm that

τ3j−2 =
kjp

p/q
−N = kjq −N > 0,

τ3j−1 =
k2j q

2 −N2

kjq −N
−N = kjq

and

τ3j =
kj(p+Nq)

kjq
−N =

p

q
= τ0.

Hence we obtain the dnN expansion

∞
j=1〈kjp, k2j q2 −N2, kj(p+Nq)〉N .

Using the same notation as in the proof of Corollary 2.2, if S3j−3 ≤ 1, then
since kjq ≥ N + 1, we have

S3j =
a3j−1

a3j−2a3jS3j−3
>

k2j q
2 −N2

k2j p(p+Nq)
≥ q2(2N + 1)

p(p+Nq)(N + 1)2
.

Therefore the sequence (S3j) is bounded below by a positive constant and
the Stern-Stolz series of continued fraction (10) diverges to infinity. Then
the convergence of continued fraction (10) to p/q follows from Theorem 2.1
and Lemma 3.1.

Corollary 4.2. The rational number p/q has infinitely many periodic
dnN expansions and uncountably many aperiodic dnN expansions.

Proof. By Theorem 4.1 the rational number p/q has the dnN expansion
(10) for any sequence of positive integers (kj) that satisfies kjq > N for all
j. If (kj) is periodic of period length m, then the dnN expansion

p

q
= ∞

j=1〈kjp, k2j q2 −N2, kj(p+Nq)〉N
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is periodic of period length 3m at most. As there are infinitely many peri-
odic sequences (kj), it follows that there are infinitely many periodic dnN
expansions for p/q.

On the other hand, if we choose the sequence (kj) to be such that it has
a strictly increasing subsequence, then the dnN exapansion (10) is aperiodic
because it contains arbitrarily large partial numerators. As there are un-
countably many such sequences (kj), there are uncountably many aperiodic
dnN expansions for p/q.

Example 2. Let τ0 = 22/7 and N = 13. It is then that Theorem 4.1
gives the dn13 expansion

22

7
= ∞

j=1〈22kj , 49k2j − 169, 127kj〉13,

where the sequence (kj) satisfies kj ≥ 2 for all j. Using different sequences
(kj) we get the following dn13 expansions:

(kj) dn13 expansion of 22/7

kj = 2 for all j 〈44, 27, 254〉13
k2i−1 = 2, k2i = 3 〈44, 27, 254, 66, 272, 381〉13
kj = j + 1 for all j 〈44, 27, 254, 66, 272, 381, 88, 615, . . .〉13

In Example 1 both of the least dnN expansions calculated for 5/17 were
finite. It turns out this is the case for every least dnN expansion of a positive
rational number.

Theorem 4.3. The least dnN expansion of τ0 = p/q is finite.

Proof. Let us denote P0 = p, Q0 = q and S0 = P0+Q0. By the division
algorithm there exist unique q1, r1 ∈ N such that NP0 = q1Q0 + r1, where
0 < r1 ≤ Q0. Then dNP0/Q0e = q1 + 1. Using the dnN algorithm we have

τ1 =
dNP0/Q0e
P0/Q0

−N =
Q0(q1 + 1)−NP0

P0
=
Q0 − r1
P0

.

If r1 = Q0, then τ1 = 0 and the algorithm terminates. If 0 < r1 < Q0, we
put P1 = Q0 − r1 and Q1 = P0. Note that now

S0 = P0 +Q0 > P0 +Q0 − r1 = P1 +Q1 = S1.

Suppose we have reached τi = Pi/Qi, Pi, Qi ∈ Z+ and Si = Pi +Qi. By the
division algorithm there exist unique qi+1, ri+1 ∈ N such that

NPi = qi+1Qi + ri+1,

where 0 < ri+1 ≤ Qi. Then dNPi/Qie = qi+1 + 1 and

τi+1 =
dNPi/Qie
Pi/Qi

−N =
Qi(qi+1 + 1)−NPi

Pi
=
Qi − ri+1

Pi
.
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If ri+1 = Qi, then τi+1 = 0 and the algorithm terminates. If 0 < ri+1 < Qi,
we put Pi+1 = Qi − ri+1 and Qi+1 = Pi. Then

Si = Pi +Qi > Pi +Qi − ri+1 = Pi+1 +Qi+1 = Si+1.

Because the sequence (Si) is a strictly decreasing sequence of positive inte-
gers and Qi > 0, it follows there must exist an n ∈ Z+ such that Pn = 0.
Then τn = 0 and the algorithm terminates. Thus the least dnN expansion
of τ0 is finite.

We get infinitely many finite dnN expansions for p/q by choosing the
first finitely many ai as we please and then making the least choice from
there on.

5. Quadratic irrationals

Let us start by noting that because there are uncountably many infinite
dnN expansions for every positive real number but there exist only count-
ably many periodic dnN expansions, it follows that every positive quadratic
irrational number has uncountably many aperiodic dnN expansions.

Throughout this section τ0 is a positive real quadratic irrational. Now
there exist P,Q, d ∈ Z such that τ0 = (

√
d + P )/Q, d ≥ 2 is not a perfect

square and Q
∣∣ (d−P 2) (see for example [8], Lemma 10.5). Then we denote

Q′ = |(d− P 2)/Q| = |
√
d− P |τ0.

Lemma 5.1. If |P | <
√
d and k ∈ Z+ is such that k(

√
d−P ) > N , then

τ0 = 〈kQ′, D − 2kPN −N2, D〉N , (11)

where D = k2(d− P 2).

Proof. Since |P | <
√
d and τ0 is positive, it follows that Q and D are

positive and Q′ = (d− P 2)/Q. If we choose a1 = kQ′, we get from the dnN
algorithm

τ1 =
kQ′

τ0
−N =

k(d− P 2)√
d+ P

−N = k
√
d− (kP +N) > 0.

As k(
√
d+ P ) +N > 0, we may continue by choosing

a2 = D − 2kPN −N2 = k2d− (kP +N)2 = (k(
√
d+ P ) +N)τ1 > 0

and get

τ2 =
(k(
√
d+ P ) +N)τ1

τ1
−N = k

√
d+ kP > 0.
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Finally with a3 = D we have

τ3 =
k2(d− P 2)

k
√
d+ kP

−N = k
√
d− (kP +N) = τ1,

and thus we get the periodic expansion τ0 = 〈kQ′, D − 2kPN −N2, D〉N .

Theorem 5.2. There exists a periodic dnN expansion of the positive real
quadratic irrational τ0.

Proof. We begin by constructing the desired dnN expansion for τ0. Let
us denote P0 = P , Q0 = Q and R0 = 1. Let k1 be the smallest positive
integer such that k1|

√
d − P0| > N and a1 = k1Q

′. Then we get from the
dnN algorithm

τ1 =
a1
τ0
−N =

k1|
√
d− P0|τ0
τ0

−N = k1|
√
d− P0| −N > 0.

Now we denote τ1 = R1

√
d+ P1, where{

R1 = k1 and P1 = −k1P0 −N, when
√
d > P0,

R1 = −k1 and P1 = k1P0 −N, when
√
d < P0.

If τi = Ri
√
d + Pi, we choose ai+1 = ki+1|R2

i d − P 2
i |, where ki+1 is the

smallest positive integer such that ki+1|Ri
√
d− Pi| > N and get

τi+1 =
ki+1|R2

i d− P 2
i |

Ri
√
d+ Pi

−N = ki+1|Ri
√
d− Pi| −N > 0.

Then we denote τi+1 = Ri+1

√
d+ Pi+1, where{

Ri+1 = ki+1Ri and Pi+1 = −ki+1Pi −N, when Ri
√
d > Pi,

Ri+1 = −ki+1Ri and Pi+1 = ki+1Pi −N, when Ri
√
d < Pi.

It remains to be shown that the dnN expansion 〈a1, a2, . . .〉N constructed
above is periodic. Note that if we choose k in Lemma 5.1 to be as small
as possible, then the periodic dnN expansion (11) is a special case of the
dnN expansion under study. Therefore it suffices to show that there exists
a j ≥ 1 such that Rj is positive and

|Pj | < |Rj
√
d| = Rj

√
d =

√
R2
jd

in which case Lemma 5.1 gives us the periodicity.
Suppose on the contrary that

|Pi| > |Ri
√
d| for all i ≥ 1. (12)
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Then Pi is positive for all i because τi = Ri
√
d + Pi is positive for all i. If

ki = 1 for every large i, then Pi+1 = Pi−N and Ri+1 = −Ri for every large
i. In this case the sequence (Pi) is a strictly decreasing sequence of integers
and so there exists a j such that Pj < 0, which we can’t have. Hence there
exist infinitely many j such that kj > 1. This implies that the sequence
(|Ri|) is tending to infinity so there exists an n such that |Ri

√
d| > N for

all i ≥ n.
Let m ≥ n be such that km+1 ≥ 2. As km+1 is the least positive integer

such that

km+1Pm − km+1Rm
√
d = km+1|Pm −Rm

√
d| > N,

then
(km+1 − 1)Pm − (km+1 − 1)Rm

√
d < N.

Combining the above inequalities yields

0 < km+1Pm − km+1Rm
√
d−N < Pm −Rm

√
d < N, (13)

where the last inequality holds because km+1 ≥ 2. Since Pm > |Rm
√
d| > N

and Pm −Rm
√
d < N , then Rm > 0 and

Pm+1 −Rm+1

√
d = km+1Pm −N + km+1Rm

√
d > 3N.

Thus km+2 = 1 and by (13) we have

Pm+2 = Pm+1 −N = km+1Pm − 2N < km+1Rm
√
d = Rm+2

√
d,

where Rm+2 = km+1Rm is positive. This is a contradiction with assumption
(12). Thus there exists a j ≥ 1 such that Rj is positive and |Pj | < Rj

√
d

and by Lemma 5.1

τ0 = 〈a1, a2, . . . , aj , D/kj+1, D − 2kj+1PjN −N2, D〉N ,

where D = k2j+1(R
2
jd− P 2

j ).

Since we may choose the first finitely many ai as we please and then con-
tinue as described in Lemma 5.1 and Theorem 5.2, every positive quadratic
irrational has infinitely many different periodic dnN expansions.

Example 3. Let τ0 = (7 +
√

10)/13 and N = 4. Constructing the dn4

expansion described in Theorem 5.2 we get

k1 = 2, a1 = 6, τ1 = 10− 2
√

10,

k2 = 1, a2 = 60, τ2 = 6 + 2
√

10,

k3 = 13, a3 = 52, τ3 = 26
√

10− 82,

k4 = 1, a4 = 36, τ4 = 26
√

10 + 78,

k5 = 1, a5 = 676, τ5 = 26
√

10− 82 = τ3

12



and so
7 +
√

10

13
= 〈6, 60, 52, 36, 676〉4.

We now turn our attention to the least dnN expansions of positive real
quadratic irrationals. In [1] it is conjectured that the best cfN expansion of
a positive quadratic irrational is not periodic for every N . It seems likely
that this is the case for the least dnN expansion as well. For example the
dn1 expansion of

√
3 is

√
3 = 〈2, 1, 6, 1, 10, 1, 11, 1, 18, 1, 50, 1, 65, 1, 750, 1, 8399, 1, 11727, 1, 12855,

1, 66368, 1, 281130, 1, 437015, 1, 482182, 1, 643701, 1, 743770, 1,

2808107, 1, 11306550, 1, 12268089, 1, 24304646, 1, 98323268, 1, . . .〉1,

where the partial numerators seem to alternate between 1 and a rapidly
increasing sequence of positive integers.

However, there are some cases when we can find a periodic least dnN
expansion. Recall that if |P | <

√
d and k ∈ Z+ is such that k(

√
d−P ) > N ,

then by Lemma 5.1

τ0 = 〈kQ′, D − 2kPN −N2, D〉N , (14)

where D = k2(d− P 2).

Theorem 5.3. Let |P | <
√
d and k ∈ Z+ be such that k(

√
d− P ) > N .

Then expansion (14) is the least dnN expansion of τ0 if and only if

0 < (
√
d− P )− N

k
<

1

(
√
d+ P )k2

. (15)

Proof. As noted in the proof of 5.1, in this case the numbers Q, Q′ and
D are positive integers. Expansion (14) is the least dnN expansion if and
only if ai = dNτi−1e for every i. Since expansion (14) is periodic, it suffices
to check that kQ′ = dNτ0e, D−2kPN−N2 = dNτ1e and D = dNτ2e. From
the proof of 5.1 we have that τ1 = k

√
d− (kP +N) and τ2 = k

√
d+ kP . If

D = dNτ2e then

k2(d− P 2) = dNk(
√
d+ P )e = Nk(

√
d+ P ) + c, (16)

where 0 < c < 1. Now

kQ′ = N

√
d+ P

Q
+

c

kQ
= Nτ0 +

c

kQ
,

where 0 < c/kQ < 1 and

D − 2kPN −N2 = Nk(
√
d+ P )− 2kPN −N2 + c

= N(k
√
d− (kP +N)) + c = Nτ1 + c,

13



so kQ′ = dNτ0e and D − 2kPN − N2 = dNτ1e. It is therefore enough to
study when D = dNτ2e.

By (16) D = dNτ2e if and only if

0 < c = k2(d− P 2)−Nk(
√
d+ P ) = k(

√
d+ P )(k(

√
d− P )−N) < 1,

which is equivalent to (15).

Remark. If
√
d + P > 2, then by Theorem 2.3 and inequalities (7)

condition (15) can hold only if N/k is an even convergent of the simple
continued fraction expansion of

√
d− P . If

√
d− P = [c0; c1, . . . , cm−1, cm],

then by (9) we have

1

(c2n+1 + 2)D2
2n

< (
√
d− P )− C2n

D2n
<

1

c2n+1D2
2n

(17)

for all n ∈ N. Thus, if there exists a c2n+1 >
√
d + P , then by Theorem

5.3 expansion (14) is the least dnN expansion of τ0 when N = C2n+lm and
k = D2n+lm for any l ∈ N. By contrast, if c2n+1 + 2 <

√
d + P for all n,

then (14) is never the least dnN expansion of τ0.

Theorem 5.4. Let τ0 =
√
d where d is a positive integer and not a

perfect square. If m is a positive integer, then
√
d = 〈2kd, 2(k2d−m2), k2d−m2〉2m, (18)

where k is a positive integer such that k
√
d > m. Expansion (18) is the least

dn2m expansion of
√
d if and only if

0 <
√
d− m

k
<

1

2k
√
d
. (19)

Proof. Let k be a positive integer such that k
√
d > m. By choosing

a1 = 2kd we get from the dnN algorithm

τ1 =
2kd√
d
− 2m = 2(k

√
d−m) > 0.

We continue by choosing a2 = 2(k2d−m2) > 0 and get

τ2 =
2(k2d−m2)

2(k
√
d−m)

− 2m = k
√
d−m > 0.

Finally, with a3 = k2d−m2 we have

τ3 =
k2d−m2

k
√
d−m

− 2m = k
√
d−m = τ2

14



and hence we get periodic expansion (18).

Now a1 = 2kd = d2m
√
de if and only if 0 < 2kd − 2m

√
d < 1 which is

equivalent to (19). If inequality (19) holds, then

0 < a2 − 2mτ1 = 2(k
√
d−m)(k

√
d+m− 2m) <

1

2d

and

0 < a3 − 2mτ2 = (k
√
d−m)(k

√
d+m− 2m) <

1

4d

so a2 = d2mτ1e and a3 = d2mτ2e. Hence expansion (18) is the least dn2m

expansion of
√
d if and only if inequality (19) holds.

Remark. By (17) inequality (19) has infinitely many solutions in m/k
for every

√
d, as we may choose m = C2n and k = D2n when n is large

enough. Consequently every irrational
√
d has infinitely many periodic least

dnN expansions.

Example 4. Periodic least dnN expansions given by Theorem 5.3:

τ0 N least dnN expansion of τ0√
K2 + 1 K 〈K2 + 1, 1〉K√

2 7 〈10, 1, 50〉7
1+
√
5

2 1 〈2, 1, 4〉1
−2+

√
13

3 5 〈3, 4, 9〉5

Periodic least dnN expansions given by Theorem 5.4:

τ0 N least dnN expansion of τ0√
2 14 〈20, 2, 1〉14√
3 10 〈18, 4, 2〉10√
6 44 〈108, 4, 2〉44

Other periodic least dnN expansions:

τ0 N least dnN expansion of τ0√
7 13 〈35, 3, 2, 59, 2〉13

3 +
√

2 1 〈5, 1, 7, 1, 14〉1
6+
√
3

2 5 〈20, 1, 4, 1, 2, 2, 1, 5, 5〉5

6. Bounded partial numerators

One of the major open questions of Diophantine approximation is if the
simple continued fraction expansions of algebraic numbers of degree greater
than 2 have bounded partial denominators. In the case of dnN expansions
the analogue is quickly solved. In fact, we show below that for every positive

15



real number there exists a dnN expansion that has partial numerators from
a set of two digits only.

Lemma 6.1. Let α1 and α2 be positive integers such that α1 < α2 and

α1α2/(α1 + α2) ≥ N2, (20)

and denote

τm =
−(N2 + α2 − α1) +

√
(N2 + α2 − α1)2 + 4α1N2

2N
,

τM =
−(N2 − α2 + α1) +

√
(N2 + α2 − α1)2 + 4α1N2

2N
= τm +

α2 − α1

N

and I = [τm, τM ]. If τ0 ∈ I, there exists a dnN expansion τ0 = 〈a1, a2, . . .〉N
such that ai ∈ {α1, α2} for all i.

Proof. As the positive solutions x to equations

x =
α1

N + α2
N+x

and x =
α2

N + α1
N+x

are x = τm and x = τM , respectively, it follows that

τm = 〈α1, α2〉N and τM = 〈α2, α1〉N .

Let us denote T1(x) = α1/(N +x) and T2(x) = α2/(N +x) for x ∈ I. Then

T1(τM ) = τm, T2(τm) = τM , T1(τm) =
α1

α2
τM and T2(τM ) =

α2

α1
τm.

Because

α1

α2
τM =

α1

α2

(
τm +

α2 − α1

N

)
≥ α2

α1
τm

⇔ α1(α2 − α1)

α2N
· α1α2

α2
2 − α2

1

=
α2
1

N(α2 + α1)
≥ τm

⇔ 2α2
1

(α2 + α1)
+N2 + α2 − α1 ≥

√
(N2 + α2 − α1)2 + 4α1N2

⇔ α3
1

α2 + α1
+ α1(N

2 + α2 − α1) ≥ (α2 + α1)N
2

⇔ α1α2

α2 + α1
≥ N2,

then inequality (20) implies that T1(τm) ≥ T2(τM ). Therefore

T1(I) ∪ T2(I) = [τm, T1(τm)] ∪ [T2(τM ), τM ] = [τm, τM ] = I. (21)
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Let τ0 ∈ I. As the functions T1 and T2 are injective on I, then by (21) there
exists a τ1 ∈ I such that

τ0 =
a1

N + τ1
⇔ τ1 =

a1
τ0
−N,

where a1 ∈ {α1, α2}. Similarily, if τi ∈ I, then there exists a τi+1 ∈ I such
that

τi =
ai+1

N + τi+1
⇔ τi+1 =

ai+1

τi
−N,

where ai+1 ∈ {α1, α2}. It follows by induction that τ0 = 〈a1, a2, a3, . . .〉N ,
where ai ∈ {α1, α2} for all i.

Theorem 6.2. Let τ0 be a positive real number. Then there exist positive
integers α1 and α2 such that τ0 = 〈a1, a2, . . .〉N , where ai ∈ {α1, α2} for all
i.

Proof. Due to Lemma 6.1 it is sufficient to show that there exist pos-
itive integers α1 and α2 such that α1 < α2, α1α2/(α1 + α2) ≥ N2 and
τ0 ∈ [τm, τM ], where τm and τM are as in Lemma 6.1. Now

τm =
−(N2 + α2 − α1) +

√
(N2 + α2 − α1)2 + 4α1N2

2N

=
N2 + α2 − α1

2N

(
−1 +

√
1 +

4α1N2

(N2 + α2 − α1)2

)
.

Since the function

f(x) = x

(
−1 +

√
1 +

α1

x2

)
is strictly decreasing and tends to 0 as x tends to infinity for all positive α1,
then

τm < τ0 < τm +
α2 − α1

N
= τM (22)

when α2 − α1 is large enough. Because

α1α2

α1 + α2
=

1

1/α1 + 1/α2
≥ α1

2
,

then we may choose α1 ≥ 2N2 and α2 such that α2−α1 is large enough for
(22) to hold true.

Example 5. Here are the first 20 digits of some dn1 expansions with
bounded numerators.

τ0 {a, b} bounded dnN expansion of τ0
3
√

2 {2, 4} 〈2, 2, 4, 2, 4, 2, 2, 2, 2, 2, 4, 4, 4, 4, 4, 4, 4, 2, 2, 4, . . .〉1
π {2, 5} 〈5, 2, 5, 2, 2, 5, 5, 2, 2, 2, 2, 5, 5, 2, 2, 5, 2, 5, 5, 5, . . .〉1
e {3, 7} 〈7, 3, 3, 7, 7, 7, 3, 3, 7, 3, 7, 3, 3, 7, 3, 3, 3, 7, 3, 3, . . .〉1

ln 2 {2, 4} 〈2, 4, 2, 2, 4, 4, 4, 4, 4, 4, 4, 4, 2, 2, 4, 2, 2, 4, 4, 4, . . .〉1
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