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Abstract. The bandwidth theorem of Böttcher, Schacht and Taraz states that any n-vertex

graph G with minimum degree
(
k−1
k

+ o(1)
)
n contains all n-vertex k-colourable graphs H with

bounded maximum degree and bandwidth o(n). Recently a subset of the authors proved a

random graph analogue of this statement: for p �
( log n

n

)1/∆
a.a.s. each spanning subgraph G

of G(n, p) with minimum degree
(
k−1
k

+ o(1)
)
pn contains all n-vertex k-colourable graphs H

with maximum degree ∆, bandwidth o(n), and at least Cp−2 vertices not contained in any
triangle. This restriction on vertices in triangles is necessary, but limiting.

In this paper we consider how it can be avoided. A special case of our main result is that,

under the same conditions, if additionally all vertex neighbourhoods in G contain many copies
of K∆ then we can drop the restriction on H that Cp−2 vertices should not be in triangles.

1. Introduction

One major topic of research in extremal graph theory is to determine minimum degree conditions
on a graph G which force it to contain copies of a spanning subgraph H. The primal example of
such a theorem is Dirac’s theorem [5], which states that if δ(G) ≥ 1

2v(G) then G is Hamiltonian.
Optimal results of this type were established for a wide range of other spanning subgraphs H with
bounded maximum degree such as powers of Hamilton cycles, trees, or F -factors for any fixed
graph F (see e.g. [14] for a survey). In particular, we have the following two results.

Theorem 1. For each integer k ≥ 3, if n is sufficiently large and G is an n-vertex graph with
δ(G) ≥ k−1

k n, then G contains a collection of
⌊
n
k

⌋
vertex-disjoint copies of Kk, and also the

(k − 1)st distance power of a Hamilton cycle.

The first statement here is the Hajnal-Szemerédi Theorem [8] (which actually holds for all n)
and the second is the Pósa-Seymour conjecture, proved by Komlós, Sárközy and Szemerédi [13];
the kth power of a Hamilton cycle is the graph obtained from a Hamilton cycle by joining all pairs
of vertices at distance k or less.

One characteristic all these graphs H have in common is that they have sublinear bandwidth.
The bandwidth of a labelling of the vertex set of H by integers 1, . . . , n is the minimum b such
that |i − j| ≤ b for every edge ij of H. The bandwidth of H is the minimum bandwidth among
all its labellings. The relevance of this parameter was highlighted in [4], where the following
asymptotically optimal general result was proved.

Theorem 2 (Bandwidth Theorem [4]). For every γ > 0, ∆ ≥ 2, and k ≥ 1, there exist β > 0 and
n0 ≥ 1 such that for every n ≥ n0 the following holds. If G is a graph on n vertices with minimum
degree δ(G) ≥

(
k−1
k + γ

)
n and if H is a k-colourable graph on n vertices with maximum degree

∆(H) ≤ ∆ and bandwidth at most βn, then G contains a copy of H. �

More recently, the transference of extremal results from dense graphs to sparse graphs became
a research focus. Again, a prime example, due to Lee and Sudakov [15], is that if Γ = G(n, p)

is a typical binomial random graph with p ≥ C logn
n , for some large C, then any G ⊆ Γ with

minimum degree
(

1
2 + o(1)

)
pn is Hamiltonian. This is a transference of Dirac’s theorem to sparse

random graphs. Further such results exist, all focused on finding small-bandwidth subgraphs (for
a comprehensive list see, e.g., the recent survey [3]). One can also ask similar questions in other
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sparse graphs than random graphs—for example for sufficiently pseudorandom graphs—but we
will not focus on this question here.

As for the classical extremal statements, it is desirable to have a result covering a very general
class of spanning subgraphs. This is achieved in [1], where the following transference of the
Bandwidth Theorem to sparse random graphs is proved.

Theorem 3 (Sparse Bandwidth Theorem [1, Theorem 6]). For each γ > 0, ∆ ≥ 2, and k ≥ 1,
there exist constants β∗ > 0 and C∗ > 0 such that the following holds asymptotically almost surely

for Γ = G(n, p) if p ≥ C∗
(

logn
n

)1/∆
. Let G be a spanning subgraph of Γ with δ(G) ≥

(
k−1
k + γ

)
pn,

and let H be a k-colourable graph on n vertices with ∆(H) ≤ ∆, bandwidth at most β∗n, and with
at least C∗p−2 vertices which are not contained in any triangles of H. Then G contains a copy of
H. �

Note however that this result is not quite what one would expect as a transference of the
Bandwidth Theorem. There is an additional restriction that some vertices of H may not be in
triangles. This restriction is necessary, since in a sparse random graph an adversary who creates
G from Γ can typically remove only a tiny fraction of the edges at each vertex and still make
the neighbourhoods of Ω(p−2) vertices into independent sets. This prompts the question how we
should restrict the adversary so that any H with small maximum degree and sublinear bandwidth
is contained in G? Our main result answers this question. As the statement is somewhat technical,
let us first give the required condition for a transference of Theorem 1.

Theorem 4. For each γ > 0 and k,∆ ≥ 2, there exists a constant C∗ > 0 such that the following

holds asymptotically almost surely for Γ = G(n, p) if p ≥ C∗
(

logn
n

)1/∆
. Let G be a spanning sub-

graph of Γ with δ(G) ≥
(
k−1
k + γ

)
pn, such that for each v ∈ V (G) there are at least γp(

k−1
2 )(pn)k−1

copies of Kk−1 in NG(v).
If ∆ = k − 1, then G contains

⌊
n
k

⌋
vertex-disjoint copies of Kk.

If ∆ = 2k − 2, then G contains the (k − 1)st distance power of a Hamilton cycle.

Observe that the extra condition we put on G here is that each vertex neighbourhood contains
a constant (but perhaps rather small) fraction of the copies of Kk−1 which it has in Γ. Obviously,
if there is a vertex of G which is not in any copy of Kk, then that vertex cannot be in a Kk-factor
or in a (k−1)st power of a Hamilton cycle, and as observed above, the minimum degree condition
on G does not force all vertices to be contained in copies of Kk, so this structural condition is
necessary.

The parameter ∆ here is simply the maximum degree of the subgraph of G we want to find,
and it determines the probability p we can work with. We do not believe that our results are
optimal in terms of the probability. It is well known that if p � n2/(k+1) then asymptotically
almost surely each vertex of G(n, p) is contained in far fewer copies of Kk than edges. If we choose
a vertex set X of size n/(2k) and delete all edges outside X which are contained in copies of Kk,
we obtain a subgraph G which satisfies the conditions of Theorem 4 (provided γ is small) but in
which at most n/2 vertices can be covered by disjoint copies of Kk. It seems reasonable to believe
that this construction in fact indicates the optimal probability for Theorem 4, though we cannot
prove it.

So far, we have seen (Theorem 3) that if H is a bounded degree graph in which Ω(p−2) vertices
are not in triangles, then the natural transference of the Bandwidth Theorem is true, and that
to transfer Theorem 1, where we consider a graph H where all vertices are in copies of Kk, then
we need to insist that all vertices of G are in a reasonable number of copies of Kk. The obvious
generalisation is that if H is a graph where some Ω(p−2) vertices have s-colourable neighbourhoods
(where we choose s minimal such that this is the case), then we need to insist that all vertices
of G are in a reasonable number of copies of Ks+1. This however turns out to be false: we will
give in Section 6.2 an example of a graph H which satisfies this condition (for s = 2) but which
need not be a subgraph of G satisfying the conditions of our Theorem 5. The correct condition
is that some Ω(p−2) vertices have neighbourhoods which are coloured with s colours in a fixed
k-colouring of H, and this is the content of our main theorem below.
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Theorem 5 (Main result). For each γ > 0, ∆ ≥ 2, k ≥ 2 and 1 ≤ s ≤ k−1, there exist constants
β∗ > 0 and C∗ > 0 such that the following holds asymptotically almost surely for Γ = G(n, p) if

p ≥ C∗
(

logn
n

)1/∆
. Let G be a spanning subgraph of Γ with δ(G) ≥

(
k−1
k + γ

)
pn, such that for each

v ∈ V (G) there are at least γp(
s
2)(pn)s copies of Ks in NG(v). Let H be a graph on n vertices with

∆(H) ≤ ∆, bandwidth at most β∗n and suppose that there is a proper k-colouring of V (H) and
at least C∗p−2 vertices in V (H) whose neighbourhood contains only s colours. Then G contains a
copy of H.

The observant reader may note that Theorem 5 does not actually imply Theorem 4 if k does
not divide n, since the (k − 1)st distance power of a Hamilton cycle is not k-colourable. Much as
with the Bandwidth Theorem, this can be dealt with by allowing an extra colour ‘zero’ on a few
carefully chosen vertices of H. Our main technical theorem, Theorem 22 in Section 3, makes this
precise and does imply Theorem 4.

We should comment on the relation between this result and the recent work of Fischer, Škorić,
Steger and Trujić [6], who show ‘triangle-resilience’ for the square of a Hamilton cycle. Triangle-
resilience is a stronger condition to impose on G than our Theorem 5 would require for proving
the existence of the square of a Hamilton cycle, so in this sense our result is stronger. However

we can only work with p�
(

logn
n

)1/4
, whereas in [6] p may be as small as Cn−1/2 log3 n. This is

rather close to the lower bound p = n−1/2 at which point even a typical G(n, p) does not contain
the square of a Hamilton cycle, so in this sense the result of [6] is much stronger. It would be
very interesting to improve the probability bounds in our result. But the method of [6] uses the
structure of the square of a Hamilton cycle in an essential way (in particular that it has constant
bandwidth), and it is not clear how one might use their ideas in our more general situation.

1.1. Outline of the paper. We prove Theorem 5 by making use of the sparse regularity lemma
of Kohayakawa and Rödl [10, 11], the sparse blow-up lemma of [2], and several lemmas from [1].
In Section 2 we give the definitions and results necessary to state and use the sparse regularity
lemma and the sparse blow-up lemma, and also a few probabilistic lemmas. In Section 3 we give
a somewhat more general statement (Theorem 22) than Theorem 5, which allows for graphs H
which are not quite k-colourable, and outline briefly how to prove it using various lemmas.

The basic proof strategy, and most of the lemmas, are taken from [1]. The main exception is the
pre-embedding lemma, Lemma 25, which replaces the ‘Common Neighbourhood Lemma’ of [1].
An outline of the idea, followed by the proof of this lemma, is provided in Section 4. This lemma
requires new ideas and is the main work of this paper. The setup that this pre-embedding lemma
creates also entails a number of modifications to the proof from [1], which need some work. The
details are given in Section 5, where we give the proof of the main technical theorem, Theorem 22.

Finally, we finish with some concluding remarks in Section 6. In particular, while we prove that
Θ(p−2) vertices of H need to have neighbourhoods containing s colours, we do not pin down the
value of the multiplicative constant hidden by this notation. Our methods should allow for this
more accurate result in some simple cases, and we comment on how there. We also discuss what
one can say if Γ is not truly random, but only satisfies some quasirandomness condition.

Acknowledgements. We thank an anonymous referee for valuable comments.

2. Preliminaries

Throughout the paper log denotes the natural logarithm. We assume that the order n of all
graphs tends to infinity and therefore is sufficiently large whenever necessary. Our graph-theoretic
notation is standard. In particular, given a graph G its vertex set is denoted by V (G) and its edge
set by E(G). Let A,B ⊆ V be disjoint vertex sets. We denote the number of edges between A
and B by e(A,B). For a vertex v ∈ V (G) we write NG(v) for the neighbourhood of v in G and
NG(v,A) := NG(v)∩A for the neighbourhood of v restricted to A. Finally, let degG(v) := |NG(v)|
be the degree of v in G. For the sake of readability, we do not make any effort to optimise the
constants in our theorems and proofs.
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2.1. The sparse regularity method. Now we introduce some definitions and results of the
regularity method as well as related tools that are essential in our proofs. In particular, we state a
minimum degree version of the sparse regularity lemma (Lemma 9) and the sparse blow-up lemma
(Lemma 13). Both lemmas use the concept of regular pairs. Let G = (V,E) be a graph, ε, d > 0,
and p ∈ (0, 1]. Moreover, let X,Y ⊆ V be two disjoint nonempty sets. The p-density of the pair
(X,Y ) is defined as

dG,p(X,Y ) :=
eG(X,Y )

p|X||Y |
.

We now define regular, and super-regular, pairs. Note that what we are calling ‘regular’ is some-
times referred to as ‘lower-regular’ by contrast with ‘fully-regular’ (sometimes just called ‘regular’)
pairs in which an upper bound on p-densities is also imposed. It is immediate from the definition
of the latter that a fully-regular pair is also lower-regular, with the same parameters; the converse
is false.

Definition 6 (regular pairs, fully-regular pairs, super-regular pairs). The pair (X,Y ) is called
(ε, d, p)G-regular if for every X ′ ⊆ X and Y ′ ⊆ Y with |X ′| ≥ ε|X| and |Y ′| ≥ ε|Y | we have
dG,p(X

′, Y ′) ≥ d − ε. It is called (ε, d, p)G-regular if there is some d′ ≥ d such that for every
X ′ ⊆ X and Y ′ ⊆ Y with |X ′| ≥ ε|X| and |Y ′| ≥ ε|Y | we have

∣∣dG,p(X ′, Y ′)− d′∣∣ ≤ ε.
If (X,Y ) is (ε, d, p)G-regular, and in addition we have

|NG(x, Y )| ≥ (d− ε) max
(
p|Y |,degΓ(x, Y )/2

)
and

|NG(y,X)| ≥ (d− ε) max
(
p|X|,degΓ(y,X)/2

)
for every x ∈ X and y ∈ Y , then the pair (X,Y ) is called (ε, d, p)G-super-regular.

A direct consequence of the definition of (ε, d, p)-regular pairs is the following proposition about
the sizes of neighbourhoods in regular pairs.

Proposition 7. Let (X,Y ) be (ε, d, p)-regular. Then there are less than ε|X| vertices x ∈ X with
|N(x, Y )| < (d− ε)p|Y |. �

The following proposition is another immediate consequence of Definition 6. It states that an
(ε, d, p)-regular pair is still regular if only a linear fraction of its vertices is removed.

Proposition 8. Let (X,Y ) be (ε, d, p)-regular and suppose X ′ ⊆ X and Y ′ ⊆ Y satisfy |X ′| ≥
µ|X| and |Y ′| ≥ ν|Y | with some µ, ν > 0. Then (X ′, Y ′) is ( ε

min{µ,ν} , d, p)-regular. �

In order to state the sparse regularity lemma, we need some more definitions. A partition V =
{Vi}i∈{0,...,r} of the vertex set of G is called an (ε, p)G-regular partition of V (G) if |V0| ≤ ε|V (G)|
and (Vi, Vi′) forms an (ε, 0, p)G-fully-regular pair for all but at most ε

(
r
2

)
pairs {i, i′} ∈

(
[r]
2

)
. It is

called an equipartition if |Vi| = |Vi′ | for every i, i′ ∈ [r]. The partition V (or the pair (G,V)) is
called (ε, d, p)G-regular on a graph R with vertex set [r] if (Vi, Vi′) is (ε, d, p)G-regular for every
{i, i′} ∈ E(R). The graph R is referred to as the (ε, d, p)G-reduced graph of V, the partition classes
Vi with i ∈ [r] as clusters, and V0 as the exceptional set. We also say that V (or the pair (G,V)) is
(ε, d, p)G-super-regular on a graph R′ with vertex set [r] if (Vi, Vi′) is (ε, d, p)G-super-regular for
every {i, i′} ∈ E(R′).

Analogously to Szemerédi’s regularity lemma for dense graphs, the sparse regularity lemma,
proved by Kohayakawa, Rödl, and Scott [10, 11, 16], asserts the existence of an (ε, p)-regular
partition of constant size of any sparse graph. We state a minimum degree version of this lemma,
whose proof can be found in the appendix of [1].

Lemma 9 (Minimum degree version of the sparse regularity lemma). For each ε > 0, each
α ∈ [0, 1], and r0 ≥ 1 there exists r1 ≥ 1 with the following property. For any d ∈ [0, 1], any p > 0,
and any n-vertex graph G with minimum degree αpn such that for any disjoint X,Y ⊆ V (G) with
|X|, |Y | ≥ εn

r1
we have e(X,Y ) ≤

(
1 + 1

1000ε
2
)
p|X||Y |, there is an (ε, p)G-regular equipartition of

V (G) with (ε, d, p)G-reduced graph R satisfying δ(R) ≥ (α−d−ε)|V (R)| and r0 ≤ |V (R)| ≤ r1. �
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We will need the following version of the sparse regularity lemma (see e.g. [1, Lemma 29] for a
proof), allowing for a partition equitably refining an initial partition with parts of very different
sizes. Given a partition V (G) = V1 ·∪ · · · ·∪ Vs, we say a partition {Vi,j}i∈[s],j∈[t] is an equitable
(ε, p)-regular refinement of {Vi}i∈[s] if |Vi,j | = |Vi,j′ | ± 1 for each i ∈ [s] and j, j′ ∈ [t], and there

are at most εs2t2 pairs (Vi,j , Vi′,j′) which are not (ε, 0, p)-fully-regular.

Lemma 10 (Refining version of the sparse regularity lemma). For each ε > 0 and s ∈ N there
exists t1 ≥ 1 such that the following holds. Given any graph G, suppose V1 ·∪· · · ·∪Vs is a partition of
V (G). Suppose that e(Vi) ≤ 3p|Vi|2 for each i ∈ [s], and e(Vi, Vi′) ≤ 2p|Vi||Vi′ | for each i 6= i′ ∈ [s].
Then there exist sets Vi,0 ⊆ Vi for each i ∈ [s] with |Vi,0| < ε|Vi|, and an equitable (ε, p)-regular
refinement {Vi,j}i∈[s],j∈[t] of {Vi \ Vi,0}i∈[s] for some t ≤ t1. �

A key ingredient in the proof of our main theorem is the so-called sparse blow-up lemma
established in [2]. Given a subgraph G ⊆ Γ = G(n, p) with p � (log n/n)1/∆ and an n-vertex
graph H with maximum degree at most ∆ with vertex partitions V and W, respectively, the
sparse blow-up lemma guarantees under certain conditions a spanning embedding of H in G
which respects the given partitions. In order to state this lemma we need some definitions.

Let G and H be graphs on n vertices with partitions V = {Vi}i∈[r] of V (G) and W = {Wi}i∈[r]

of V (H). We say that V and W are size-compatible if |Vi| = |Wi| for all i ∈ [r]. If there exists an
integer m ≥ 1 such that m ≤ |Vi| ≤ κm for every i ∈ [r], then we say that (G,V) is κ-balanced.
Given a graph R on r vertices, we call (H,W) an R-partition if for every edge {x, y} ∈ E(H) with
x ∈Wi and y ∈Wi′ we have {i, i′} ∈ E(R). The following definition allows for image restrictions
in the sparse blow-up lemma.

Definition 11 (Restriction pair). Let ε, d > 0, p ∈ [0, 1], and let R be a graph on r vertices.
Furthermore, let G be a (not necessarily spanning) subgraph of Γ = G(n, p) and let H be a graph
given with vertex partitions V = {Vi}i∈[r] and W = {Wi}i∈[r], respectively, such that (G,V) and
(H,W) are size-compatible R-partitions. Let I = {Ix}x∈V (H) be a collection of subsets of V (G),
called image restrictions, and J = {Jx}x∈V (H) be a collection of subsets of V (Γ) \ V (G), called
restricting vertices. For each i ∈ [r] we define Ri ⊆ Wi to be the set of all vertices x ∈ Wi for
which Ix 6= Vi. We say that I and J are a (ρ, ζ,∆,∆J)-restriction pair if the following properties
hold for each i ∈ [r] and x ∈Wi.

(RP 1) We have |Ri| ≤ ρ|Wi|.
(RP 2) If x ∈ Ri, then Ix ⊆

⋂
u∈Jx NΓ(u, Vi) is of size at least ζ(dp)|Jx||Vi|.

(RP 3) If x ∈ Ri, then |Jx|+ degH(x) ≤ ∆ and if x ∈Wi \Ri, then Jx = ∅.
(RP 4) Each vertex in V (G) appears in at most ∆J of the sets of J .
(RP 5) We have

∣∣⋂
u∈Jx NΓ(u, Vi)

∣∣ = (p± εp)|Jx||Vi|.
(RP 6) If x ∈ Ri, for each xy ∈ E(H) with y ∈Wj ,

the pair
(
Vi ∩

⋂
u∈Jx

NΓ(u), Vj ∩
⋂
v∈Jy

NΓ(v)
)

is (ε, d, p)G-regular.

The sparse blow-up lemma needs not all pairs in the reduced graph R to be super-regular, but
only those in a subgraph R′ of R. This, however, is only possible if a good proportion of H is
embedded to the pairs in R′. The following definition of buffer-sets makes this requirement precise.
Moreover, we need certain regularity inheritance properties for the pairs in R′.

Definition 12 ((ϑ,R′)-buffer, regularity inheritance). Let R and R′ be graphs on vertex set [r]
with R′ ⊆ R. Suppose that (H,W) is an R-partition and that (G,V) is a size-compatible (ε, d, p)G-

regular partition with reduced graph R. We say that the family W̃ = {W̃i}i∈[r] of subsets W̃i ⊆Wi

is an (ϑ,R′)-buffer for H if

(i ) |W̃i| ≥ ϑ|Wi| for all i ∈ [r], and

(ii ) for each i ∈ [r] and each x ∈ W̃i, the first and second neighbourhood of x go along R′,
i.e., for each {x, y}, {y, z} ∈ E(H) with y ∈ Wj and z ∈ Wk we have {i, j} ∈ E(R′) and
{j, k} ∈ E(R′).
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We say (G,V) has one-sided inheritance on R′ if for every {i, j}, {j, k} ∈ E(R′) and every v ∈ Vi
the pair

(
NΓ(v, Vj), Vk

)
is (ε, d, p)G-regular. We say (G,V) has two-sided inheritance on R′ for W̃

if for each i, j, k ∈ V (R′) such that there is a triangle xixjxk in H with xi ∈ W̃i, xj ∈ Wj , and
xk ∈Wk the following holds. For every v ∈ Vi the pair

(
NΓ(v, Vj), NΓ(v, Vk)

)
is (ε, d, p)G-regular.

Now we can finally state the sparse blow-up lemma.

Lemma 13 (Sparse blow-up lemma [2, Lemma 1.21]). For each ∆, ∆R′ , ∆J , ϑ, ζ, d > 0, κ > 1
there exist εBL, ρ > 0 such that for all r1 there is a CBL such that for p ≥ CBL(log n/n)1/∆ the
random graph Γ = Gn,p asymptotically almost surely satisfies the following.

Let R be a graph on r ≤ r1 vertices and let R′ ⊆ R be a spanning subgraph with ∆(R′) ≤ ∆R′ .
Let H and G ⊆ Γ be graphs given with κ-balanced, size-compatible vertex partitions W = {Wi}i∈[r]

and V = {Vi}i∈[r] with parts of size at least m ≥ n/(κr1). Let I = {Ix}x∈V (H) be a family of
image restrictions, and J = {Jx}x∈V (H) be a family of restricting vertices. Suppose that

(BUL 1) ∆(H) ≤ ∆, for every edge {x, y} ∈ E(H) with x ∈ Wi and y ∈ Wj we have {i, j} ∈
E(R) and W̃ = {W̃i}i∈[r] is an (ϑ,R′)-buffer for H,

(BUL 2) (G,V) is (εBL, d, p)G-regular on R, (εBL, d, p)G-super-regular on R′, has one-sided in-

heritance on R′, and two-sided inheritance on R′ for W̃,
(BUL 3) I and J form a (ρ, ζ,∆,∆J)-restriction pair.

Then there is an embedding φ : V (H)→ V (G) such that φ(x) ∈ Ix for each x ∈ H. �

Observe that in the blow-up lemma for dense graphs, proved by Komlós, Sárközy, and Sze-
merédi [12], one does not need to explicitly ask for one- and two-sided inheritance properties since
they are always fulfilled by dense regular partitions. This is, however, not true in general in the
sparse setting. The following two lemmas will be very useful whenever we need to redistribute
vertex partitions in order to achieve some regularity inheritance properties.

Lemma 14 (One-sided regularity inheritance [2]). For each εOSRIL, αOSRIL > 0 there exist ε0 > 0 and
C > 0 such that for any 0 < ε < ε0 and 0 < p < 1 asymptotically almost surely Γ = G(n, p) has the
following property. For any disjoint sets X and Y in V (Γ) with |X| ≥ C max

(
p−2, p−1 log n

)
and

|Y | ≥ Cp−1 log n, and any subgraph G of Γ[X,Y ] which is (ε, αOSRIL, p)G-regular, there are at most
Cp−1 log(en/|X|) vertices z ∈ V (Γ) such that (X ∩NΓ(z), Y ) is not (εOSRIL, αOSRIL, p)G-regular. �

Lemma 15 (Two-sided regularity inheritance [2]). For each εTSRIL, αTSRIL > 0 there exist ε0 >
0 and C > 0 such that for any 0 < ε < ε0 and 0 < p < 1, asymptotically almost surely
Γ = Gn,p has the following property. For any disjoint sets X and Y in V (Γ) with |X|, |Y | ≥
C max{p−2, p−1 log n}, and any subgraph G of Γ[X,Y ] which is (ε, αTSRIL, p)G-regular, there are
at most C max{p−2, p−1 log(en/|X|)} vertices z ∈ V (Γ) such that

(
X ∩NΓ(z), Y ∩NΓ(z)

)
is not

(εTSRIL, αTSRIL, p)G-regular. �

Finally, we need a statement about random subpairs of regular pairs (which is used to prove
Lemma 15).

Corollary 16 ([7, Corollary 3.8]). For any d, β, ε′ > 0 there exist ε0 > 0 and C such that for
any 0 < ε < ε0 and 0 < p < 1, if (X,Y ) is an (ε, d, p)-regular pair in a graph G, then the number
of pairs X ′ ⊆ X and Y ′ ⊆ Y with |X ′| = w1 ≥ C/p and |Y ′| = w2 ≥ C/p such that (X ′, Y ′) is an

(ε′, d, p)-regular pair in G is at least (1− βmin(w1,w2))
(|X|
w1

)(|Y |
w2

)
. �

2.2. Concentration inequalities. We close this section with two of Chernoff’s bounds for ran-
dom variables that follow a binomial (Theorem 18) and a hypergeometric distribution (Theo-
rem 19), respectively, and the following useful observation. Roughly speaking, it states that
a.a.s. nearly all vertices in G(n, p) have approximately the expected number of neighbours within
large enough subsets (for a proof see e.g. [1, Proposition 18]).

Proposition 17. For each ε > 0 there exists a constant C > 0 such that for every 0 < p < 1
asymptotically almost surely Γ = G(n, p) has the property that for any sets X,Y ⊆ V (Γ) with
|X| ≥ Cp−1 log n and |Y | ≥ Cp−1 log(en/|X|) the following holds.
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(a ) If X and Y are disjoint, then e(X,Y ) = (1± ε)p|X||Y |.
(b ) We have e(X) ≤ 2p|X|2.
(c ) At most Cp−1 log(en/|X|) vertices v ∈ V (Γ) satisfy

∣∣|NΓ(v,X)| − p|X|
∣∣ > εp|X|. �

We use the following version of Chernoff’s Inequalities (see e.g. [9, Chapter 2] for a proof).

Theorem 18 (Chernoff’s Inequality, [9]). Let X be a random variable which is the sum of inde-
pendent Bernoulli random variables. Then we have for ε ≤ 3/2

P
[
|X − E[X]| > εE[X]

]
< 2e−ε

2E[X]/3 .

Furthermore, if t ≥ 6E[X] then we have

P
[
X ≥ E[X] + t

]
≤ e−t .

�

Finally, let N , m, and s be positive integers and let S and S′ ⊆ S be two sets with |S| = N and
|S′| = m. The hypergeometric distribution is the distribution of the random variable X that is
defined by drawing s elements of S without replacement and counting how many of them belong
to S′. It can be shown that Theorem 18 still holds in the case of hypergeometric distributions (see
e.g. [9], Chapter 2 for a proof) with E[X] = ms/N .

Theorem 19 (Hypergeometric inequality, [9]). Let X be a random variable is hypergeometrically
distributed with parameters N , m, and s. Then for any ε > 0 and t ≥ εms/N we have

P
[
|X −ms/N | > t

]
< 2e−ε

2t/3 .

�

We require the following technical lemma, which is a consequence of the hypergeometric in-
equality stated in Theorem 19.

Lemma 20. For each ε+
0 , d

+ > 0 there exists ε+ > 0, and for each ε, d > 0 there exists ε− > 0,
such that for each η > 0 and ∆ there exists C such that the following holds for each p > 0.

Let W ⊆ [n], let t ≤ 100n∆+1, and let T1, . . . , Tt be subsets of W . Let G be a graph on W .
For each i ∈ [t] let (Xi, Yi) be a pair which is either (ε+, d+, p)G-regular, or (ε−, d, p)G-regular
(respectively), and which satisfies m|Xi|/|W |,m|Yi|/|W | ≥ 2Cp−1 log n.

For each m ≤ |W | there is a set S ⊆W of size m such that for each i ∈ [t]

|Ti ∩ S| = m
|W | |Ti| ±

(
η|Ti|+ C log n

)
,

and the pair
(
Xi ∩ S, Yi ∩ S

)
is
(
ε+

0 , d
+, p

)
-regular, or (ε, d, p)-regular (respectively).

Proof. Given ε+
0 , d

+, let ε+ be returned by Corollary 16 for input d+, β = 1
2 and ε+

0 . Given ε, d,

let ε− be returned by Corollary 16 for input d, β = 1
2 and ε. Let C ≥ 30η−2∆ be large enough

for these applications of Corollary 16.
Observe that for each i, the size of Ti ∩ S is hypergeometrically distributed. By Theorem 19,

for each i we have

P
[
|Ti ∩ S| 6= m

|W | |Ti| ±
(
η|Ti|+ C log n

)]
< 2e−η

2C logn/3 <
2

n2+∆
,

so taking the union bound over all i ∈ [t] we conclude that the probability of failure is at most
2t/n2+∆ ≤ 200/n→ 0 as n→∞, as desired.

To obtain the second property, observe that Theorem 19 also implies that we have |Xi∩S|, |Yi∩
S| ≥ Cp−1 log n for each i ∈ [t] with probability tending to one as n → ∞. Conditioning on the
size of |Xi∩S|, the set Xi∩S is a uniformly distributed subset of Xi of size |Xi∩S|, and the same
applies to Yi ∩ S. Now Corollary 16 says that, conditioning on |Xi ∩ S|, |Yi ∩ S| ≥ Cp−1 log n, the

probability that
(
Xi ∩ S, Yi ∩ S

)
fails to have the desired regularity in G is at most 2−Cp

−1 logn,
and taking a union bound over the choices of i the result follows. �
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3. Main technical result and main lemmas

We deduce Theorem 5 from the following technical result (corresponding results also appear in
the predecessor papers [1, 4]). This result is more general in that it allows for an extra colour,
zero, in the colouring of H, provided that this colour does not appear too often.

Definition 21 (Zero-free colouring). Let H be a (k + 1)-colourable graph on n vertices and
let L be a labelling of its vertex set of bandwidth at most βn. A proper (k + 1)- colouring
σ : V (H) → {0, . . . , k} of its vertex set is said to be (z, β)-zero-free with respect to L if any z
consecutive blocks contain at most one block with colour zero, where a block is defined as a set of
the form {(t− 1)4kβn+ 1, . . . , t4kβn} with t ∈ [1/(4kβ)].

Theorem 22 (Main technical result). For each γ > 0, ∆ ≥ 2, k ≥ 2 and 1 ≤ s ≤ k−1, there exist
constants β > 0, z > 0, and C > 0 such that the following holds asymptotically almost surely for

Γ = G(n, p) if p ≥ C
(

logn
n

)1/∆
. Let G be a spanning subgraph of Γ with δ(G) ≥

(
k−1
k + γ

)
pn such

that for each v ∈ V (G) there are at least γp(
s
2)(pn)s copies of Ks in NG(v) and let H be a graph

on n vertices with ∆(H) ≤ ∆ that has a labelling L of its vertex set of bandwidth at most βn, a
(k + 1)-colouring that is (z, β)-zero-free with respect to L and where the first

√
βn vertices in L

are not given colour zero and the first βn vertices in L include Cp−2 vertices whose neighbourhood
contains only s colours. Then G contains a copy of H.

The basic proof strategy for this theorem is analogous to the proof strategy for [1, Theorem 23].
Eventually, we will apply the sparse blow-up lemma, Lemma 13, to embed most of H into G, and
we need to obtain the necessary conditions for this lemma. The difficulty is that, whatever regular
partition of G we take, there may be some exceptional vertices which are ‘badly behaved’ with
respect to this partition. Our first main lemma, the following Lemma for G, states that there is
a partition with only few such vertices, which we collect in a set V0. These vertices will be dealt
with in a pre-embedding stage before the application of the sparse blow-up lemma.

For the application of the sparse blow-up lemma the following two graphs Bkr and Kk
r , which

we shall find as subgraphs of the reduced graph of G, are essential. Let r, k ≥ 1 and let Bkr be the
backbone graph on kr vertices. That is, we have

V (Bkr ) := [r]× [k]

and for every j 6= j′ ∈ [k] we have {(i, j), (i′, j′)} ∈ E(Bkr ) if and only if |i− i′| ≤ 1. Let Kk
r ⊆ Bkr

be the spanning subgraph of Bkr that is the disjoint union of r complete graphs on k vertices
given by the following components: the complete graph Kk

r [{(i, 1), . . . , (i, k)}] is called the i-th
component of Kk

r for each i ∈ [r].
A vertex partition V ′ = {Vi,j}i∈[r],j∈[k] is called k-equitable if

∣∣|Vi,j |−|Vi,j′ |∣∣ ≤ 1 for every i ∈ [r]
and j, j′ ∈ [k]. Similarly, an integer partition {ni,j}i∈[r],j∈[k] of n (meaning that ni,j ∈ Z≥0 for
every i ∈ [r], j ∈ [k] and

∑
i∈[r]j∈[k] ni,j = n) is k-equitable if |ni,j − ni,j′ | ≤ 1 for every i ∈ [r] and

j, j′ ∈ [k].
The Lemma for G then guarantees a k-equitable partition for G whose reduced graph Rkr

contains a copy of the backbone graph Bkr , is super-regular on Kk
r ⊆ Bkr , and satisfies certain

regularity inheritance properties.

Lemma 23 (Lemma for G, [1, Lemma 24]). For each γ > 0 and integers k ≥ 2 and r0 ≥ 1 there
exists d > 0 such that for every ε ∈

(
0, 1

2k

)
there exist r1 ≥ 1 and C∗ > 0 such that the following

holds a.a.s. for Γ = G(n, p) if p ≥ C∗ (log n/n)
1/2

. Let G = (V,E) be a spanning subgraph of Γ
with δ(G) ≥

(
k−1
k + γ

)
pn. Then there exists an integer r with r0 ≤ kr ≤ r1, a subset V0 ⊆ V

with |V0| ≤ C∗p−2, a k-equitable vertex partition V = {Vi,j}i∈[r],j∈[k] of V (G) \ V0, and a graph

Rkr on the vertex set [r]× [k] with Kk
r ⊆ Bkr ⊆ Rkr , with δ(Rkr ) ≥

(
k−1
k + γ

2

)
kr, and such that the

following is true.

(G 1) n
4kr ≤ |Vi,j | ≤

4n
kr for every i ∈ [r] and j ∈ [k],

(G 2) V is (ε, d, p)G-regular on Rkr and (ε, d, p)G-super-regular on Kk
r ,

(G 3) both
(
NΓ(v, Vi,j), Vi′,j′

)
and

(
NΓ(v′, Vi,j), NΓ(v, Vi′,j′)

)
are (ε, d, p)G-regular pairs for ev-

ery {(i, j), (i′, j′)} ∈ E(Rkr ) and v ∈ V \ V0,
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(G 4) |NΓ(v, Vi,j)| = (1± ε)p|Vi,j | for every i ∈ [r], j ∈ [k] and every v ∈ V \ V0.

The next step is to find a partition of H which more or less matches that of G. This partition
of H defines an assignment of the vertices of H to the clusters of G. In other words, we assign
the vertices in V (H) indices (i, j) of the partition V, such that about |Vi,j | vertices are assigned
(i, j) and all edges of H are assigned to edges of Rkr . In fact, the lemma states further that most
edges of H are assigned to edges of Kk

r , and only those incident to vertices of a small set of special
vertices X may be assigned to other edges of Rkr .

Lemma 24 (Lemma for H, [1, Lemma 25]). Given D, k, r ≥ 1 and ξ, β > 0 the following holds
if ξ ≤ 1/(kr) and β ≤ 10−10ξ2/(Dk4r). Let H be a D-degenerate graph on n vertices, let L
be a labelling of its vertex set of bandwidth at most βn and let σ : V (H) → {0, . . . k} be a
proper (k + 1)-colouring that is (10/ξ, β)-zero-free with respect to L, where the colour zero does
not appear in the first

√
βn vertices of L. Furthermore, let Rkr be a graph on vertex set [r] × [k]

with Kk
r ⊆ Bkr ⊆ Rkr such that for every i ∈ [r] there exists a vertex zi ∈

(
[r] \ {i}

)
× [k] with{

zi, (i, j)
}
∈ E(Rkr ) for every j ∈ [k]. Then, given a k-equitable integer partition {mi,j}i∈[r],j∈[k]

of n with n/(10kr) ≤ mi,j ≤ 10n/(kr) for every i ∈ [r] and j ∈ [k], there exists a mapping
f : V (H) → [r] × [k] and a set of special vertices X ⊆ V (H) such that we have for every i ∈ [r]
and j ∈ [k]

(H 1) mi,j − ξn ≤ |f−1(i, j)| ≤ mi,j + ξn,
(H 2) |X| ≤ ξn,
(H 3) {f(x), f(y)} ∈ E(Rkr ) for every {x, y} ∈ E(H),
(H 4) y, z ∈ ∪j′∈[k]f

−1(i, j′) for every x ∈ f−1(i, j) \X and xy, yz ∈ E(H), and

(H 5) f(x) =
(
1, σ(x)

)
for every x in the first

√
βn vertices of L.

Our next lemma concerns the pre-embedding stage, in which we cover the vertices in V0 ⊆ V (G)
with vertices of H. For this purpose we use the vertices of H whose neighbourhood contains only s
colours. Let x be one of these vertices, let H ′ be the subgraph of H induced on all vertices of
distance at most s+1 from x (including x), and let T be the set of those vertices in H ′ of distance
exactly s + 1 from x. We cover a vertex v of V0 by embedding x onto v, and we also embed all
other vertices in the corresponding H ′ which are not in T . This creates image restrictions on the
vertices of G to which we can embed the vertices in T . For the application of Lemma 13 we need
that these image restrictions satisfy certain conditions, and that this pre-embedding preserves the
super-regularity of the remaining partition of G. For achieving the latter we take a random induced
subgraph G′ of G containing roughly µn vertices, and perform the pre-embedding in G′ only. In
each cluster of G, the subgraph G′ selects roughly a µ-fraction of the vertices, and the induced
partitions on G′ and on G−V (G′) are also super-regular. The next lemma states that we can also
obtain suitable image restrictions for the vertices in T while performing the pre-embedding in G′.

This lemma is a main difference to the proof in [1] and is the place where we need that the
neighbourhood of every vertex in G has a certain density of Ks’s. Another difference to our proof
strategy that this lemma creates, is that it selects a clique {q1, . . . , qk} in R, which might not be
one of the cliques of the chosen Kk

r ⊆ R, and the vertices of T are assigned to the corresponding
clusters in G (that is, the image restriction of y ∈ T is a subset of the cluster Vqj to which it is
assigned). This assignment may well differ from the assignment given by the Lemma for H, so in
our proof of Theorem 22 we need to adapt to this difference by reassigning some more H-vertices.

Lemma 25 (Pre-embedding lemma). For ∆, k ≥ 2, 2 ≤ s ≤ k−1, and γ, d > 0 with d ≤ γ
32 there

exists ζ > 0 such that for every ε′ > 0 there exists ε0 > 0 such that for all 0 < ε < ε0, all µ > 0
and r ≥ 105γ−1, there exists a constant C∗ > 0 such that the random graph Γ = G(n, p) a.a.s. has

the following property if p ≥ C∗
(

logn
n

)1/∆
. Suppose we have the following setup.

(P 1) H ′ is a graph with ∆(H ′) ≤ ∆, with a root vertex x, and no vertex at distance greater
than s+ 1 from x.

(P 2) ρ is a proper k-colouring of V (H ′) in which N(x) receives at most s colours, and T is
the set of vertices in H ′ at distance exactly s+ 1 from x.
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(P 3) G is a spanning subgraph of Γ with δ(G) ≥
(
k−1
k + γ

)
pn with an (ε, p)-regular partition

V (G) = V0 ·∪V1 ·∪ · · · ·∪Vr with (ε, d, p)-reduced graph R, and such that n
4r ≤ |Vi| ≤

4n
r for

all i ∈ [r].
(P 4) G′ ⊆ G is a graph with |V (G′)| = (1 ± ε)µn, with δ(G′) ≥

(
k−1
k + γ

)
p|V (G′)|, and

|NG′(W )| ≤ 2µnpt for any set W ⊆ V (G′) of size t ≤ ∆. Suppose further that
|Vi ∩ V (G′)| = (1 ± ε)µ|Vi| for each i, and that V0 ∩ V (G′), . . . , Vr ∩ V (G′) is also an
(ε, p)-regular partition of G′ with (ε, d, p)-reduced graph R.

(P 5) v ∈ V (G′) is a vertex such that there are at least γp(
s+1

2 )(µn)s copies of Ks in NG′(v) .

Then there exist a partial embedding φ : V (H ′) \ T → V (G′) of H ′ into G′ and a subset
{q1, . . . , qk} ⊆ [r] with the following properties. For each u, u′ ∈ T , each j ∈ [k], and for
Π(u) = φ

(
NH′(u) ∩Dom(φ)

)
, we have

(P 1’) φ(x) = v.
(P 2’) q1, . . . , qk forms a clique in R.
(P 3’)

∣∣NΓ

(
Π(u)

)
∩ Vqρ(u)

∣∣ = (1± ε′)p|Π(u)||Vqρ(u)
|.

(P 4’)
∣∣NG(Π(u)

)
∩ Vqρ(u)

∩ V (G′)
∣∣ ≥ 2ζp|Π(u)||Vqρ(u)

∩ V (G′)|.
(P 5’) If j 6= ρ(u) and |Π(u)| ≤ ∆−1 then the pair

(
NΓ(Π(u), Vqρ(u)

), Vqj
)

is (ε′, d, p)G-regular.

(P 6’) If uu′ ∈ H ′ then the pair
(
NΓ(Π(u), Vqρ(u)

), NΓ(Π(u′), Vqρ(u′))
)

is (ε′, d, p)G-regular.

After the pre-embedding stage, we want to apply the sparse blow-up lemma to embed the
remainder of H. However, the sizes of the clusters Vi,j from Lemma 23 do not quite match the
sizes of the sets Xi,j from Lemma 24. Also, Lemma 25 embeds some vertices, creating a little
further imbalance, and we need to slightly alter the mapping f from Lemma 24 to accommodate
these pre-embedded vertices. The next lemma allows us to change the sizes of the clusters Vi,j
slightly to match the partition of H, without destroying the properties of the partition of G and
of the pre-embedded vertices we worked to achieve.

Lemma 26 (Balancing lemma, [1, Lemma 27]). For all integers k ≥ 1, r1,∆ ≥ 1, and reals
γ, d > 0 and 0 < ε < min{d, 1/(2k)} there exist ξ > 0 and C∗ > 0 such that the following is

true for every p ≥ C∗ (log n/n)
1/2

and every 10γ−1 ≤ r ≤ r1 provided that n is large enough.
Let Γ be a graph on vertex set [n] and let G = (V,E) ⊆ Γ be a (not necessarily spanning) subgraph
with vertex partition V = {Vi,j}i∈[r],j∈[k] that satisfies n/(8kr) ≤ |Vi,j | ≤ 4n/(kr) for each i ∈ [r],

j ∈ [k]. Let {ni,j}i∈[r],j∈[k] be an integer partition of
∑
i∈[r],j∈[k] |Vi,j |. Let Rkr be a graph on the

vertex set [r]× [k] with minimum degree δ(Rkr ) ≥
(
(k − 1)/k + γ/2

)
kr such that Kk

r ⊆ Bkr ⊆ Rkr .
Suppose that the partition V satisfies the following properties for each i ∈ [r], each j 6= j′ ∈ [k],
and each v ∈ V . Suppose we have

(B 1) ni,j − ξn ≤ |Vi,j | ≤ ni,j + ξn,
(B 2) V is

(
ε
4 , d, p

)
G

-regular on Rkr and
(
ε
4 , d, p

)
G

-super-regular on Kk
r ,

(B 3)
(
NΓ(v, Vi,j), Vi,j′

)
and

(
NΓ(v, Vi,j), NΓ(v, Vi,j′)

)
are

(
ε
4 , d, p

)
G

-regular, and

(B 4) |NΓ(v, Vi,j)| =
(
1± ε

4

)
p|Vi,j |.

Then, there exists a partition V ′ = {V ′i,j}i∈[r],j∈[k] of V such that for each i ∈ [r], each j 6= j′ ∈ [k],
and each v ∈ V we have

(B 1’) |V ′i,j | = ni,j,

(B 2’) |Vi,j4V ′i,j | ≤ 10−10ε4k−2r−2
1 n,

(B 3’) V ′ is (ε, d, p)G-regular on Rkr and (ε, d, p)G-super-regular on Kk
r ,

(B 4’)
(
NΓ(v, V ′i,j), V

′
i,j′

)
and

(
NΓ(v, V ′i,j), NΓ(v, V ′i,j′)

)
are (ε, d, p)G-regular, and

(B 5’) for each 1 ≤ s ≤ ∆ and for each v1, . . . , vs ∈ [n]∣∣∣ ⋂
i∈[s]

NΓ(v1, Vi,j)4
⋂
i∈[s]

NΓ(v1, V
′
i,j)
∣∣∣ ≤ 10−10ε4k−2r−2

1 degΓ(v1, . . . , vs) + C∗ log n .

After applying Lemma 26 it remains only to check that the conditions of Lemma 13 are met to
complete the embedding of H and thus the proof of Theorem 22.
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4. Proof of the pre-embedding lemma

Before outlining how this proof works in general, let us briefly explain how it would work in a
simple case. If all vertices of H ′ are adjacent to the root x (as would be the case, for example, if H
is a Kk-factor), then the set T is empty, and hence most of the properties we need are vacuously
true. We just have to find an embedding of H ′ to G′ extending x → v. We apply the Sparse
Regularity Lemma to NG′(v), and (since there are many copies of Ks in that neighbourhood) we
are guaranteed to find s clusters W ′1, . . . ,W

′
s among which every pair is (ν0, d

′, p)-regular. Here
ν0 is a regularity parameter which is small compared to 1/v(H ′) but quite a lot larger than the
ε regularity we get from the Lemma for G; and d′ is roughly d. We now use a standard sparse
regularity vertex-by-vertex embedding method. That is, we begin by assigning to each vertex
y ∈ V (H ′) \ {x} a candidate set W ′ρ(y). By construction, all candidate sets are reasonably large,

and if y and y′ are adjacent in H ′ then their candidate sets form a (ν0, d
′, p)-regular pair. This is

the initial setup.
We now embed vertices one at a time: when we embed a vertex y, we insist on embedding it to

its current candidate set, and we then update the candidate sets of its neighbours by intersecting
them with NG(y). We can do this in such a way that the two properties mentioned above are
maintained, i.e. all candidate sets are reasonably large and adjacent vertices’ candidate sets form
a regular pair (with a regularity parameter which is not necessarily as small as ν0, but does not
get too much larger). To show this is possible we use the definition of a regular pair, plus the
regularity inheritance Lemmas 14 and 15. The argument that we can do this — i.e. given a
collection of reasonably large candidate sets with the above regularity properties, we can embed
one more vertex to its candidate set and maintain that our remaining vertices have reasonably
large candidate sets with the regularity properties — is given in Claim 2 below.

The difficulty comes when T is not empty. What we want to do is to obtain a similar initial
setup: the neighbours of x in H ′ should be given candidate sets as before, while the vertices
in T should be given candidate sets chosen from {Vq1 , . . . , Vqk}, where V1, . . . , Vr is the ambient
regular partition with reduced graph R supplied to the lemma, and q1, . . . , qk form some clique
in R. The remaining vertices should somehow be given candidate sets such that (as above) every
vertex has a reasonably large candidate set, and adjacent vertices have candidate sets which form
(ν0, d

′, p)-regular pairs. If we can do this, then using the above mentioned Claim 2 repeatedly to
embed V (H ′) \ T will automatically give all the required properties for the vertices in T .

The reason why getting this initial setup is tricky is that the only way we can ensure that the
Sparse Regularity Lemma gives us a regular partition consistent with the ambient partition is to
apply the refining version, Lemma 10, with clusters of the ambient partition as the input. Ideally,
we would simply input the ambient partition and NG′(v) as the sets to refine. We would then get
a fine partition with a corresponding fine (ν, d′, p)-reduced graph. As above, we would be able
to find W ′1, . . . ,W

′
s contained in NG′(v) which form a clique in the fine reduced graph which are

candidate sets for the neighbours of x. In addition, from the minimum degree condition it follows
that any k vertices in the fine reduced graph have a common neighbour which is contained in
some part of the ambient partition, and we can use this to greedily find candidate sets for the
vertices of H ′ further from x until finally we can assign candidate sets for the vertices of T which
are contained in the ambient partition.

This ideal strategy fails for the following reason. The fine partition will have too many parts:
that is, a part of the fine partition contained in any Vi will be a very tiny (much smaller than ε)
fraction of Vi, and hence the candidate sets for vertices of T will not be sufficiently large for (P 4’).
The reason that this occurs is that the number of parts into which we split Vi depends on the
number of parts of the input partition we give to Lemma 10, which in turn depends on ε (and
these dependencies are not in our favour).

What we therefore do is to fix a number ` of parts of the ambient partition, and a set L of `
parts, where ` is not too large (in particular it is tiny compared to ε−1) and we use Lemma 10
with input only the Vi with i ∈ L and NG′(v). This breaks the above undesired dependency
in our constant choices. In order to make the argument go through, however, we need

⋃
i∈L Vi
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to ‘witness’ the minimum degree of G. It turns out that if ` is not too small, then choosing L
uniformly at random works for this latter purpose. We justify this in Claim 1.

Proof of Lemma 25. First we fix all constants that we need throughout the proof. Let ∆, k ≥ 2
and γ, d > 0 be given. Recall d ≤ γ

32 by assumption of the lemma. Let d′ = min( 1
2d, 10−5kγ) and

choose ξ = 10−62−kγ and an integer

` = max
(
1000ξ−6 log ξ−1, 100 · 2kγ−1

)
.

Let ν∗∆−1,∆−1 = ν∗i,∆ = ν∗∆,i = 1
100∆8−∆d′∆ for i ∈ [∆]. For each (i, j) ∈ {0, . . . ,∆−1}2 \{(∆−

1,∆−1)} in reverse lexicographic order, we choose ν∗i,j ≤ ν∗i+1,j , ν
∗
i,j+1, ν

∗
i+1,j+1 not larger than the

ε0 returned by Lemma 14 for both input ν∗i+1,j and d′, and for input ν∗i,j+1 and d′, and not larger

than the ε0 returned by Lemma 15 for input ν∗i+1,j+1 and d′. Choose ν0 = min
(
ν∗0,0,

d′

2 , 10−5γ
)
.

Now, Lemma 10 with input ν2
0/(16`2) and 2` returns t1.

Set ζ =
(
d′

4

)∆
/4t1. Given ε′, let ε∗∗∆ = ε′ and for every i ∈ (∆ − 1, . . . , 1, 0), let ε∗∗i ≤ ε∗∗i+1

be returned by Lemma 14 with input εOSRIL = ε∗∗i+1 and αOSRIL = d. Next, let ε∗∆−1,∆−1 = ε′ and

ε∗i,∆ = ε∗∆,i = 1 for i ∈ [∆]. For each (i, j) ∈ {0, . . . ,∆ − 1}2 \ {(∆ − 1,∆ − 1)} in reverse
lexicographic order, we choose ε∗i,j ≤ ε∗i+1,j , ε

∗
i,j+1, ε

∗
i+1,j+1 not larger than the ε0 returned by

Lemma 14 for both input ε∗i+1,j and d, and for input ε∗i,j+1 and d, and not larger than the ε0

returned by Lemma 15 for input ε∗i+1,j+1 and d.

We choose ε0 ≤ ε∗∗0 , ε∗0,0, ν0

2t1
small enough such that (1 + ε0)∆ ≤ 1 + ε′ and (1− ε0)∆ ≥ 1− ε′.

Given r ≥ 105γ−1, ε with 0 < ε ≤ ε0, and µ > 0, let C be a large enough constant for all of
the above calls to Lemmas 14 and 15, and for Proposition 17 with input ε0. Finally, we choose
C∗ = 1010∆d′−∆`t1rµ

−1.

Let Γ = G(n, p) with p ≥ C∗(log n/n)
1/∆

. Then Γ satisfies a.a.s. the properties stated in
Lemma 14, Lemma 15, Proposition 17 and Lemma 10 with the parameters specified above. We
assume from now on that Γ satisfies these good events and has these properties. Let G′, v ∈ V (G′),
G, {Vi}i∈{0,...,r}, H ′, x ∈ V (H ′), the k-colouring ρ of V (H ′), and the (ε, d, p)-reduced graph R,
be as in the statement of the lemma. Since ε ≤ ε0, R is also an (ε0, d, p)-reduced graph.

To be able to apply Lemma 10 we need to choose a suitable subset of the clusters {Vi}i∈{0,...,r}
of bounded size. As the clusters {Vi}i∈{0,...,r} might be of different sizes and we will want to have
a minimum degree condition on the reduced graph, we will consider a weighted version of this
degree that takes the cluster sizes into account.

Claim 1. There exists L ⊆ [r] of size ` such that R∗ := R[L] satisfies the following weighted
minimum degree condition, where V ∗ =

⋃
i∈L Vi.

∀i ∈ L :
∑

j∈NR(i)∩L

|Vj |
|V ∗|

≥
(
k − 1

k
+
γ

5

)
.

Additionally, we have that

W :=

{
w ∈ NG′(v) : |NG′(w) ∩ V ∗| ≥

(
k − 1

k
+
γ

5

)
p|V ∗ ∩ V (G′)|

}
has size at least (1− ξ)|NG′(v)| and there are at least 1

2γp
(s+1

2 )(µn)
s

copies of Ks in W .

Proof. We choose a subset L ⊆ [r] of size ` uniformly at random. First, we will transfer the
minimum degree of G to the reduced graph and show that with high probability the minimum
degree is preserved on the chosen clusters. Recall that G satisfies a minimum degree of δ(G) ≥
(k−1
k + γ)pn and that the cluster sizes satisfy

4n

r
≥ |Vi| ≥

n

4r
≥ Cp−1 log n . (1)

Without loss of generality, we may assume that no Vi forms an irregular pair with more than
√
ε

of the clusters, otherwise, add it to V0, which over all clusters increases the size of V0 by at most
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4
√
εn. Fix i ∈ [r]. Proposition 17 applied to the edges between Vi and V0 implies that

e(Vi, V0) ≤ 2p(ε+ 4
√
ε)n|Vi| and e(Vi) ≤ 2p|Vi|2 ≤ 2p

16

r
n|Vi| .

Also, we can bound the number of edges from Vi to other clusters that are in pairs which are not
dense or (ε, p)-regular by

e
(
Vi,

⋃
j∈R\NR(i)

Vj

)
≤ dpn|Vi|+ 2p · 4

√
εn|Vi| .

Putting the above together, we obtain that

e
(
Vi,

⋃
j∈NR(i)

Vj

)
≥
(
k − 1

k
+ γ − 2ε− 16

√
ε− d− 32

r

)
pn|Vi| .

As, again by Proposition 17, the number of edges between any Vi and Vj is at most (1+ε0)|Vi||Vj |,
we get that∑

j∈NR(i)

|Vj |r
|V (G)|

≥
(
k − 1

k
+ γ − 2ε− 16

√
ε− d− 32

r

)
(1 + ε0)

−1
r ≥

(
k − 1

k
+
γ

2

)
r .

By the size conditions on the clusters, the relative sizes wj :=
|Vj |r
|V (G)| take values in ( 1

4 , 4). We now

consider

w′j = ξ bwj/ξc ,
the discretisation of wj into steps of size ξ. Of these discretised weights, we will ignore those that
occur fewer than ξ2r times. We lose at most a factor of 4ξ due to the discretisation as all weights
are at least 1

4 . Also weights in ( 1
4 , 4) occuring fewer than ξ2r times contribute at most 16ξr to the

sum, so we get the lower bound∑
j∈NR(i)

w′j ≥ (1− 4ξ)

(
k − 1

k
+
γ

2

)
r − 16ξr ≥

(
k − 1

k
+
γ

3

)
r .

We can now apply the hypergeometric inequality (Theorem 19) to all possible rounded weight
values separately. For any j ∈ [r] the probability that j is in L is `/r and so for a given density in
( 1

4 , 4), which occurs, say, θr times, the probability that this density is chosen fewer than (1− ξ)θ`
times is at most 2e−ξ

2·ξθ`/3 ≤ 2e−ξ
5`/3. This implies by the union bound that with probability at

most 4ξ−12e−ξ
5`/3 we do not have∑

j∈NR(i)∩L

wj ≥ (1− ξ)
(
k − 1

k
+
γ

3

)
`

r
r ≥

(
k − 1

k
+
γ

4

)
` . (2)

So by the union bound the expected number of vertices in R∗ that do not satisfy (2) is at most

`8ξ−1e−ξ
5`/3 < 1/10, where the inequality is by choice of `. By Markov’s inequality, the probability

that there is any such vertex in R∗ is thus at most 1/10. By the same discretisation of wj and
application of the hypergeometric inequality to the discretised weights, we can also deduce that

|V ∗| = |V (G)|
r

∑
i∈L

wi = (1± 100ξ)
`

r

∑
i∈[r]

wi = (1± 100ξ)(1± ε)`|V (G)|
r

(3)

with probability at least 9/10. Putting (2) and (3) together implies that with probability at least
8/10 the first claimed statement holds.

For the claim, we also require that the minimum degree condition of the vertices in NG′(v)
carries over to the chosen clusters for most vertices. Fix w in NG′ . For j ∈ [r] we consider the
weighted p-density, which may take values in (0, 5), defined by

dw,j = dG,p({w}, Vj ∩ V (G′))
|Vj ∩ V (G′)|r
|V (G′)|

.
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Accounting for the exceptional set V0 with Proposition 17, the minimum degree condition on G′

of (k−1
k + γ)p|V (G′)| implies that these weighted p-densities satisfy∑

j∈[r]

dw,j ≥
(
k − 1

k
+ γ − 2ε

)
r ≥

(
k − 1

k
+
γ

2

)
r .

Similarly to before, we consider d′w,i = ξbdw,i/ξc, the discretisation of dw,i into steps of size ξ.
Of these discretised weighted densities, we ignore those that occur fewer than ξ2r times and those
that are smaller than

√
ξ. The small densities contribute at most

√
ξr to the sum and we lose a

factor of at most
√
ξ due to the discretisation for larger values. Also weights in (

√
ξ, 5) occurring

fewer than ξ2r times contribute at most 25ξr to the sum, so we get the lower bound∑
i∈[r]

d′w,i ≥ (1−
√
ξ)

(
k − 1

k
+
γ

2
−
√
ξ − 25ξ

)
r ≥

(
k − 1

k
+
γ

3

)
r .

Applying the hypergeometric inequality to all density values separately as before, we get that for

any w ∈ NG′(v) with probability at most 5ξ−12e−ξ
5`/3 ≥ ξ/10 we do not have∑

i∈L
d′w,i ≥ (1− ξ)

(
k − 1

k
+
γ

3

)
`

r
r ≥

(
k − 1

k
+
γ

4

)
`

r
r . (4)

So the expected number of vertices in NG′(v) not satisfying (4) is at most ξ|NG′(v)|/10. By
Markov’s inequality, with probability at least 9/10 at most a fraction ξ of vertices in NG′(v)
violate (4). And in particular all vertices satisfying (4) have at least

(1− 100ξ)(1− ε)
(
k − 1

k
+
γ

4

)
(1− ε)µp|V ∗| ≥

(
k − 1

k
+
γ

5

)
p|V ∗ ∩ V (G′)|

neighbours in V ∗ ∩ V (G′) if (3) holds. So indeed with probability at least 7/10 the first two
claimed statements hold, so assume we chose L such that they do.

For the claim it only remains to show the lower bound on the number of cliques in W . It follows,
by inductively building up cliques, from the assumption in the lemma that any t ≤ ∆ vertices of
G′ have at most 2ptµn common neighbours in G′, that v and each w ∈ NG′(v) are contained in
at most

s∏
t=2

2ptµn = p(
s+1

2 )−1(2µn)
s−1

copies of Ks+1. Since |W | ≥ (1− ξ)|NG′(v)|, the number of copies of Ks which are in NG′(v) but

not W is at most ξ|NG′(v)| · p(
s+1

2 )−1(2µn)s−1. Since |NG′(v)| ≤ 2µpn, and NG′(v) contains at

least γp(
s+1

2 )(µn)s copies of Ks, there are at least

γp(
s+1

2 )(µn)
s − ξ · 2µpn · p(

s+1
2 )−1(2µn)

s−1 ≥ 1
2γp

(s+1
2 )(µn)

s

copies of Ks in W . �

Let {Wi}i∈[`] be an arbitrary equipartition of W into ` parts (so that the fine partition we
are about to obtain has enough parts in W ). We apply Lemma 10 to G′ with the 2`-part initial
partition {(Vi∩V (G′))\W}i∈L∪{Wi}i∈[`] and input parameter ν2

0/(16`2). This returns a partition
refining each of these sets into 1 ≤ t ≤ t1 clusters {Vi,j}i∈L,j∈[t] ∪ {Wi,j}i∈[`],j∈[t] together with
small exceptional sets {Vi,0 : i ∈ L} ∪ {Wi,0 : i ∈ [`]}. From the definition of a regular refinement,

there are at most
ν2
0

16`2 · (2`t)
2 irregular pairs in this partition, and in particular at most ν0t of the

clusters form an irregular pair with more than ν0t of the clusters. Include the vertices of all those
clusters in the exceptional sets, which now make up a fraction of at most 2ν0 of the vertices.

We now want to obtain s clusters W ′1, . . . ,W
′
s in {Wi,j}i∈[`],j∈[t] that are pairwise (ν0, d

′, p)-

regular. Assume for a contradiction that no such clusters exist. So each Kk in W must either
contain an edge meeting an exceptional set Wi,0, one which does not lie in a (ν0, d

′, p)-regular pair
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or one that is contained completely in some set Wi,j for i ∈ [`] and j ∈ [t]. Note that we have for
all i ∈ [`] and j ∈ [t] that

|Wi,j | ≥
1

2`t1
|W | ≥ µnp

4`t1
≥ Cp−1 log n .

So we may apply Proposition 17 to bound the number of edges within and between clusters. Using
the upper bound on common neighbourhoods in G′ given in the lemma statement to bound the
number of edges meeting the exceptional sets, we obtain that deleting at most

2ν0|W |2p2µn+ 2p(ν0 + d′)|W |2 + `2p(|W |/`)2 ≤ (8ν0 + 8ν0 + 8d′ + 2/`)p3µ2n2

edges would remove all cliques from W . Again by the upper bound on common neighbourhoods
in G′ given in the lemma any of these edges is contained in at most

s∏
t=3

2ptµn = p(
s+1

2 )−3(2µn)
s−2

copies of Ks+1 together with v. So there would be at most

(16ν0 + 8d′ + 2/`)p3µ2n2p(
s+1

2 )−3(2µn)
s−2

< 1
2γp

(s+1
2 )(µn)

s

copies of Ks in W , a contradiction. It follows that there are some s clusters in W which are
pairwise (ν0, d

′, p)-regular. Let W ′1, . . . ,W
′
s in {Wi,j}i∈[`],j∈[t] be pairwise (ν0, d

′, p)-regular.

Because the vertices of W each have at least
(
k−1
k + γ

5

)
p|V ∗ ∩ V (G′)| G′-neighbours in V ∗,

the number of edges leaving each cluster W ′i to V ∗ is at least |W ′i |
(
k−1
k + γ

5

)
p|V ∗ ∩ V (G′)|. By

Proposition 17, and because at most ν0t irregular pairs leave W ′i , at most (1 + ε0)p|W ′i |ν0|V ∗ ∩
V (G′)| of these edges lie in irregular pairs. By definition, at most d′p|W ′i ||V ∗ ∩ V (G′)| of these
edges lie in pairs of relative density less than d′. Thus the remaining edges lie in (ν0, d

′, p)-regular
pairs, and there are at least |W ′i |

(
k−1
k + γ

6

)
p|V ∗∩V (G′)| of these edges. Since the number of edges

between W ′i and any given Vi′,j′ is at most (1 + ε0)p|W ′i ||Vi′,j′ | by Proposition 17, we obtain∑
Vi′,j′ : (W ′i ,Vi′,j′ ) is (ν0,d′,p)−regular

|Vi′,j′ |
|V ∗ ∩ V (G′)|

≥
(
k − 1

k
+
γ

8

)
. (5)

Now we can choose the clusters into which we will embed the vertices of H ′. We choose
sequentially

(qs+1, js+1), . . . , (qk+1, jk+1) ∈ L× [t]

such that for each 1 ≤ i ≤ s and each s + 1 ≤ i′ ≤ k + 1, the pair
(
W ′i , Vqi′ ,ji′ ∩ V (G′)

)
is

(ν0, d
′, p)-regular, and for each s+ 1 ≤ i′ < i′′ ≤ k + 1 the pair (q′i, qi′′) is an edge of R∗. This is

possible by (5) and Claim 1, which give a weighted minimum degree condition that implies that
for any k clusters (in W or V ∗ or a mixture) there is a cluster in V ∗ which satisfies the given
condition with respect to all k clusters.

We then choose pairs (qs, js), . . . , (q1, j1) in that order sequentially such that for each a ∈
{s, . . . , 1} the clusters

W ′1, . . . ,W
′
a−1, Vqa,ja , Vqa+1,ja+1 , . . . , Vqk+1,jk+1

satisfy the same condition, i.e. for each 1 ≤ i ≤ a and each a + 1 ≤ i′ ≤ k + 1, the pair(
W ′i , Vqi′ ,ji′ ∩ V (G′)

)
is (ν0, d

′, p)-regular, and for each a+ 1 ≤ i′ < i′′ ≤ k + 1 the pair (q′i, qi′′) is

an edge of R∗. Note that by choice of ε0, if (qi′ , qi′′) is an edge of R∗ then the pair
(
Vqi′ ,ji′ ∩V (G′)\

W,Vqi′′ ,ji′′ ∩V (G′)\W
)

is (ν0, d
′, p)-regular in G′. For convenience, we let V ′i := Vqi,ji ∩V (G′)\W

for each 1 ≤ i ≤ k + 1.
We will embed H ′ − ({x} ∪ T ) into the chosen clusters, i.e. W ′1, . . . ,W

′
s, V

′
1 , . . . , V

′
k+1, using the

regularity embedding strategy mentioned above. We will need to embed some vertices of H ′ which
are not neighbours of x into the sets W ′i . For this to work, each such vertex u needs to have at
most ∆− 3 neighbours which we embed before u, and the aim of the next arguments is to assign
vertices of H ′ to clusters, and put an order on V (H ′), which ensures this.

Recall that ρ is a proper k-colouring of H ′ which uses only s colours on N(x). Reordering
the colours if necessary, let us assume ρ uses only colours in [s] on N(x). We define a proper
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(k + 1)-vertex colouring ρ′ : V (H ′)→ [k + 1] inductively as follows. Initially we set ρ′(w) = ρ(w)
for all w in H ′. Let

Uρ′ =

s⋃
i=2

{
w ∈ N i(x) : ρ′(w) ≤ s− i+ 1

}
,

where N i(x) refers to the vertices at distance i from x. If Uρ′ contains a vertex w with no

neighbour in ρ′
−1

(i) for some ρ′(w)+1 ≤ i ≤ k+1, we set ρ′(w) = i (if there are several such i, we
choose one arbitrarily). We repeat this step until Uρ′ contains no such vertices. Since the colour
of any given vertex only increases through this process, the recolouring procedure must terminate
eventually. The resulting ρ′ has the following property: if u is any vertex with d(x, u) ≥ 2 and
d(x, u) + ρ′(u) ≤ s + 1, then u has a neighbour in each of the colour classes ρ′(u) + 1, . . . , k + 1.
In particular, since ρ′(u) ≤ s − 1 (as otherwise d(x, u) + ρ′(u) ≤ s + 1 is impossible), and since
s ≤ k − 1 by assumption of the lemma, u has a neighbour in each of the colour classes k − 1, k
and k + 1. Observe that no vertex in these colour classes is in Uρ′ by definition.

Note that the colouring remains unchanged on N(x) and the vertices at distance s+ 1 from x.
We define an order <ρ′ on V (H ′)\{x} by putting first all the vertices of Uρ′ in an arbitrary order,
then the remaining vertices of V (H ′) \ (T ∪ {x}) in an arbitrary order, and finally the vertices of
T in an arbitrary order. With the colouring ρ′ defined as above, this gives us, for all u at distance
at least two from x with ρ′(u) + d(x, u) ≤ s+ 1:

|pred<ρ′ (u) ∩N(u)| = |{u′ : u′ <ρ′ u, u
′ ∈ N(u)}| ≤ ∆− 3 . (6)

Now we can assign the vertices of H ′ to clusters. For u ∈ V (H ′), let

Vu = Vqρ′(u)
and Cu =

{
W ′ρ′(u) if ρ′(u) + d(x, u) ≤ s+ 1

Vqρ′(u),jρ′(u)
otherwise.

We now iteratively embed the vertices of H ′ in the order specified above respecting the assignments
to clusters. The following claim, which we prove by induction on the number of embedded vertices,
encapsulates the conditions we maintain through this embedding. Here, as in the statement of the
lemma, we set Π(u) = φ

(
NH′(u) ∩ Dom(φ)

)
, and recall that T is the vertices in H ′ at distance

exactly s+ 1 from v.

Claim 2. For each integer 0 ≤ z ≤ |V (H ′) \ T | − 1 there exists an embedding φ of the first z
vertices of H ′ \ (T ∪ {x}) (w.r.t. to the order <ρ′) into G such that

(I 1) for every u ∈ Dom(φ) we have φ(u) ∈ Cu,

and for every u, u′ ∈ H ′ \ (Dom(φ) ∪ {x}), where u′ ∈ NH′(u) we have the following.

(I 2) |NG(Π(u), Cu)| ≥
(
d′

4

)|Π(u)|
p|Π(u)||Cu|,

(I 3) |NΓ(Π(u), Cu)| = (1± ν0)
|Π(u)|

p|Π(u)||Cu|,
(I 4)

(
NΓ(Π(u), Cu), NΓ(Π(u′), Cu′)

)
is (ν∗|Π(u)|,|Π(u′)|, d

′, p)G-regular.

Also, if d(x, u) + ρ′(u), d(x, u′) + ρ′(u′) > s+ 1 we have

(L 1) if |Π(u)| ≤ ∆− 1 then
(
NΓ(Π(u), Vu), Vqj

)
is (ε∗∗|Π(u)|, d, p)G-regular for each j 6= ρ′(u),

(L 2) |NΓ(Π(u), Vu)| = (1± ε0)
|Π(u)|

p|Π(u)||Vu|,
(L 3)

(
NΓ(Π(u), Vu), NΓ(Π(u′), Vu′)

)
is (ε∗|Π(u)|,|Π(u′)|, d, p)G-regular.

Proof. We prove the claim inductively, starting with z = 0 and φ the empty embedding. We
first check that the claimed properties hold for this embedding. (I 1) is true vacuously. Since
Π(u) = ∅ for each u ∈ V (H ′) \ {x}, the various neighbourhoods in Cu and Cu′ are equal to Cu
and Cu′ . So (I 2) and (I 3) hold trivially, and (I 4) holds by choice of the W ′i and by choice of ν∗0,0.
Similarly, (L 1) and (L 3) hold because by choice of the qj the pair (Vqj , Vqj′ ) is (ε, d′, p)-regular

for each 1 ≤ j < j′ ≤ k + 1, and (L 2) holds trivially.
We now have to show the induction step holds; suppose that for some 0 ≤ z < |V (H ′) \ T | − 1,

the map φ is an embedding of the first z vertices of H ′ − (T ∪ {x}) satisfying the conclusion of
Claim 2. Let w be the (z + 1)st vertex of H ′ − (T ∪ {x}). We aim to show the existence of an
embedding φ′ extending φ satisfying the conclusion of Claim 2 for z + 1.
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To do this, it is enough to show that, for each statement among (I 2)–(I 4) and (L 1)–(L 3)
separately, the number of vertices in NG

(
Π(w), Cw

)
which cause the given statement to fail is

small compared to
∣∣NG(Π(w), Cw

)∣∣; then we choose a vertex y in that set (so guaranteeing (I 1))
which causes none of the statements to fail, and have the desired embedding φ ∪ {w → y}. We
therefore record some lower bounds on

∣∣NG(Π(w), Cw
)∣∣.

Suppose d(x,w) ≥ 2 and d(x,w) + ρ′(w) ≤ s + 1, or if d(x,w) = 1 and w has two neighbours
in H ′ − x which come after w in <ρ′ . In the first case, by (6), we have |Π(w)| ≤ ∆ − 3. In the
second case, since w has three neighbours in H ′ which do not come before it in <ρ′ (as x is not in
that order at all) we have |Π(w)| ≤ ∆− 3. In either case, by (I 2), we get∣∣NG(Π(w), Cw

)∣∣ ≥ (d′4 )∆−3
p∆−3|Cw| ≥

(
d′

4

)∆−3
p∆−2 · µn4`t1

≥ 100C∆2p−2 log n , (7)

where the final inequality uses p ≥ C∗
(

logn
n

)1/∆
and the choice of C∗. By a similar calculation, if

either d(x,w) = 1 and w has a neighbour coming after in in <ρ′ , or d(x,w) + ρ′(w) > s + 1 and
w has a neighbour coming after it in <ρ′ , we have∣∣NG(Π(w), Cw

)∣∣ ≥ (d′4 )∆−1
p∆−1 · µn

4`t1r
≥ 100C∆2p−1 log n . (8)

Finally, if either d(x,w) = 1 or d(x,w) + ρ′(w) > s+ 1, we get∣∣NG(Π(w), Cw
)∣∣ ≥ (d′4 )∆p∆ · µn

4`t1r
≥ 100C∆2 log n . (9)

We now estimate the fraction of
∣∣NG(Π(w), Cw

)∣∣ which causes each of the desired statements
to fail. The statement (I 2) can only fail for a neighbour u of w, and then only if we choose
y ∈ NG

(
Π(w), Cw

)
which has too few neighbours in NG

(
Π(u), Cu

)
. But by (I 4) these two sets

are on either side of a
(
ν∗|Π(w)|,|Π(u)|, d

′, p)G-regular pair, and by (I 2) and (I 3) the latter covers

more than a ν∗∆,∆-fraction of NΓ

(
Π(u), Cu

)
. So by regularity, at most ν∗∆,∆|NΓ

(
Π(w), Cw

)∣∣ vertices

of
∣∣NG(Π(w), Cw

)∣∣ can cause (I 2) to fail for u. Using (I 2) and (I 3), and summing over the at

most ∆ choices of u, we see that at most a 8∆d′−∆∆ν∗∆,∆-fraction of
∣∣NG(Π(w), Cw

)∣∣ cause (I 2)
to fail.

For (I 3), we note that embedding w can only cause this statement to fail if w has at least one
neighbour in H ′ coming after it in <ρ′ , and in this case by (7) and (8), we have

∣∣NG(Π(w), Cw
)∣∣ ≥

100C∆2p−1 log n. Now a vertex y ∈ NG
(
Π(w), Cw

)
can only cause (I 3) to fail if it has the wrong

number of neighbours in NΓ

(
Π(u), Cu

)
for some neighbour u of w. Because the good event of

Proposition 17 occurs, this happens for at most Cp−1 log n vertices, and summing over the at most
∆ choices of u, we see that at most a 1

100 -fraction of
∣∣NG(Π(w), Cw

)∣∣ cause (I 3) to fail.
For (I 4), we need to be a bit more careful. To start with, if there are no neighbours of w

coming after w in <ρ′ , then no matter how we embed w we cannot make (I 4) fail. Suppose
first that there are neighbours of w coming after w in <ρ′ , but that no two such neighbours are
adjacent. As above, by (7) and (8), we have

∣∣NG(Π(w), Cw
)∣∣ ≥ 100C∆2p−1 log n. By (I 4), a

vertex y ∈ NG
(
Π(w), Cw

)
can only cause (I 4) to fail for a given u, u′ if u is a neighbour of w

and u′ is not, and y is one of the at most Cp−1 log n vertices which fail to inherit regularity, as
guaranteed by the good event of Lemma 14. Summing over the at most ∆2 choices of u, u′, we see
that in this case at most a 1

100 -fraction of
∣∣NG(Π(w), Cw

)∣∣ cause (I 4) to fail. The remaining case
is that there are two adjacent neighbours of w coming after w in <ρ′ . In this case we need the
good events of Lemmas 14 and 15, and consequently for given u, u′ up to Cp−2 log n vertices might
fail to inherit regularity. But in this case by (7) we have

∣∣NG(Π(w), Cw
)∣∣ ≥ 100C∆2p−2 log n, and

again in this case at most a 1
100 -fraction of

∣∣NG(Π(w), Cw
)∣∣ cause (I 4) to fail.

The proofs that at most a 1
100 -fraction of

∣∣NG(Π(w), Cw
)∣∣ cause any one of (L 1)–(L 3) are

essentially identical, and we omit the details.
Summing up, by choice of ν∗∆,∆ and since |V (H ′)| ≤

∑s+1
i=0 ∆i, we see that at least half of∣∣NG(Π(w), Cw

)∣∣ consists of vertices y such that φ ∪ {w → y} satisfies the conclusions of Claim 2
for z + 1, completing the induction step and hence the proof of the claim. �
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Now we can conclude the proof of Lemma 25. Given an embedding of H ′− (T ∪{x}) satisfying
the conclusions of Claim 2, we extend it to an embedding φ of H ′−T by setting φ(x) = v. This is a
valid embedding since we embedded all neighbours of x to W , and we obtain (P 1’). Property (P 2’)
holds by choice of the q1, . . . , qk. For every vertex u in T we have that Cu = Vqρ′(u),jρ′(u)

and

|Cu| ≥ |Vqρ′(u)
∩V (G′)|/2t1. So by the choice of ζ, (P 4’) follows from (I 2). The choice of constants

ensures that the remaining statements in the lemma are a direct consequence of (L 1)-(L 3). �

5. Proof of the main technical result

The proof of Theorem 22 is broadly similar to the proof of [1, Theorem 23]. Again, basically
the idea is that we apply the lemmas of Section 3 in order to first find a well-behaved partition of
G and a corresponding partition of H. We then deal with the few badly-behaved vertices of G by
sequentially pre-embedding onto them some vertices of H whose neighbourhoods contain at most
s colours. Lemma 25 deals with this pre-embedding, and sets up for the vertices which are not pre-
embedded but which have pre-embedded neighbours restriction sets in the sense of Definition 11.
We then adjust the partition of H to fit this pre-embedding, and balance the partition of G to
match. Finally, we see that the conditions of Lemma 13 are met, and that lemma completes the
desired embedding of H in G.

As in [1], there are two slightly subtle points. The first is that for ∆ = 2 we can have Cp−2 > pn,
so that we should be worried that we come to some badly-behaved vertex of G onto which we wish
to pre-embed and discover that all its neighbours have already been used in pre-embedding. As
in [1], this is easy to handle: at each step we choose the badly-behaved vertex with most neighbours
already embedded to. It is easy to check that this ordering avoids the above problem. The second,
more serious, problem is that we need restriction sets fulfilling the conditions of Definition 11.
Although Lemma 25 gives us pre-embeddings satisfying these conditions, we might destroy the
conditions when we pre-embed later vertices. The condition we could destroy is simply that we
need each restriction set to be reasonably large; the danger is that we pre-embed many vertices to
some restriction set. The solution to this is (as in [1]) to select a set S, whose size is linear in n
but small, using Lemma 20 to avoid large intersections with any possible restriction set. When we
apply Lemma 25 to cover a badly-behaved vertex v, we will pre-embed to v and to some vertices
chosen from S, and not to any other vertex. The badly-behaved vertices are not (by construction)
in any restriction set, while S has small intersection with all restriction sets, so that even removing
all of S would not make the restriction sets too small.

The only point in the proof where we really need to do more than in [1] (apart from using
Lemma 25 to pre-embed) is that we need to ensure the conditions of Lemma 25 are met. When
we wish to cover a badly-behaved v, its neighbourhood within the set S must contain many copies
of Ks. Further, some vertices of S will have been used in earlier pre-embeddings, and we need
to ensure that these used vertices do not hit too many of the copies of Ks. For this, we apply
the sparse regularity lemma, Lemma 10, to G

[
NG(v)

]
before choosing S. We will see that (since

NG(v) contains many copies of Ks) we find a set of s clusters in NG(v) such that all the pairs are
relatively dense and regular. When we use Lemma 20 to choose S, we also insist that S contains a
significant fraction of each of these clusters. The order in which we cover badly-behaved vertices
ensures that a (slightly smaller but still) significant fraction of each cluster is not used by the
previous pre-embedding; and we find the desired many copies of Ks in NG(v) ∩ S as a result.

As a final observation, Lemma 25 (P 4’) gives us something which looks like an image restriction
set suitable for Definition 11—but it is a subset of S. A careful reader will see from the constant
choices below that it is therefore too small for Lemma 13. However, the fact that S is selected
at random allows us to deduce the existence of a larger image restriction set which is suitable for
Lemma 13.

Proof of Theorem 22. Given γ > 0, we set d+ = 2−s−5γ and ε+
s−2 = 16−s(d+)2s/s. For each

i = s − 3, s − 4, . . . , 0 sequentially, let 0 < ε+
i ≤ ε+

i−1 be sufficiently small for Lemma 15 with

input d+ and ε+
i+1. Let ε+ ≤ ε+

0 be small enough for an application of Lemma 20 with input d+
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and ε+
0 . Let t+1 be returned by Lemma 10 for input ε+ and d1/d+e, and let α+ = 1

4d
+/t+1 . Let

γ+ = 2−4s2(d+)−2s2(t+1 )−s. Note we have γ+ < γ.

We now choose d ≤ γ+

32 not larger than the d given by Lemma 23 for input γ, k and r0 := 105γ−1.
We let α be the ζ returned by Lemma 25 for input ∆, k, s, γ+ and d. We set D = ∆ and let εBL

be returned by Lemma 13 for input ∆, ∆R′ = 3k, ∆J = ∆, ϑ = 1
100D , ζ = 1

4α, d and κ = 64.

Next, putting ε∗ := 1
8εBL into Lemma 25 (with earlier parameters as above) returns ε0 > 0. We

set ε = min(ε0, d, ε
∗/4∆, 1/100k), and set ε− ≤ ε small enough for Lemma 20 with input as

above and d, ε. Now Lemma 23, for input ε− and earlier constants as above, returns r1. At last,
Lemma 26, for input k, r1, ∆, γ, d and 8ε, returns ξ > 0. Without loss of generality, we may
assume ξ < 10(10kr1), and set β = 10−12ξ2/(∆k4r2

1). Let µ = ε2/(100000kr1). Next, suppose C∗

is large enough for Lemma 25, and also to play the rôle of C in each of these other lemmas, and also
for Proposition 17 with input ε, for Lemma 15 with input d+ and each of ε+

i for i = 1, . . . , s− 2,
and for Lemma 20 with input εµ2, ε, min(d, d+) and ∆.

We set C = 10100k2r2
1ε
−2ξ−1∆1000k3

µ−∆C∗ and z = 10/ξ. Given p ≥ C
(

log
n

)
, a.a.s. Γ = G(n, p)

satisfies the good events of each of the lemmas and propositions listed above with each of the
specified inputs.

In addition, for each set W of at most ∆ vertices of G(n, p), the size of the common neigh-
bourhood NG(n,p)(W ) is distributed as a binomial random variable with mean p|W |(n− |W |). By

Theorem 18, the probability that the outcome is (1±ε)p|W |n is at least 1−n−(∆+1) for sufficiently
large n. By the union bound, we conclude that a.a.s. G(n, p) satisfies

for each W ⊆ V
(
G(n, p)

)
with |W | ≤ ∆ we have

∣∣NG(n,p)(W )
∣∣ = (1± ε)p|W |n . (10)

Suppose that Γ = G(n, p) satisfies these good events. Let G be a spanning subgraph of Γ such
that δ(G) ≥

(
k−1
k + γ

)
pn and such that for each v ∈ V (G) the neighbourhood NG(v) contains at

least δp(
s
2)(pn)s copies of Ks. Let H be a graph on n vertices with ∆(H) ≤ ∆. Let σ be a proper

colouring of V (H) using colours {0, . . . , k}, and let L be a labelling of V (H) with bandwidth at
most βn with the following properties. The colouring σ is (z, β)-zero-free with respect to L, the
first

√
βn vertices of L do not use the colour zero, and the first βn vertices of L contain Cp−2

vertices whose neighbourhood contains only s colours.
We now claim that for each v ∈ V (G) we can find s large subsets of NG(v) all pairs of which

are dense and regular in G. This forms a ‘robust witness’ that each vertex neighbourhood in G
contains many copies of Ks.

Claim 3. For each v ∈ V (G), there exist sets Qv,1, . . . , Qv,s ⊆ NG(v) each of size at least α+pn
such that for each i < j the pair (Qv,i, Qv,j) is (ε+, d+, p)-regular in G.

Proof. We apply Lemma 10 with input ε+ and d1/d+e to G
[
NG(v)

]
, with an arbitrary equiparti-

tion into d1/d+e sets as an initial partition. Note that the conditions of Lemma 10 are satisfied
because the good event of Proposition 17 holds. We obtain an (ε, p)-regular partition of NG(v)
whose non-exceptional parts are of size between α+pn and 8α+pn, by choice of α+ and since∣∣NG(v)

∣∣ > 1
2pn. If there exist s parts in this partition all pairs of which form (ε+, d+, p)-regular

pairs, then these parts form the desired Qv,1,. . . ,Qv,s. So we may assume for a contradiction
that no such s parts exist. It follows that when we delete all edges within parts, meeting the
exceptional sets, in irregular pairs, and in pairs of density less than d+p, we remove all copies of
Ks from G

[
NG(v)

]
.

The total number of such edges is, since the good event of Proposition 17 holds, at most

(d+)−1 · 8p3n2(d+)2 + 2p(2ε+pn)(2pn) + 4ε+p3n2 + 4d+p3n2 ≤ (12ε+ + 12d+)p3n2

≤ 2−sγp3n2 ,

where the final inequality is by choice of d+ and ε+. We now estimate simply how many copies
of Ks+1 a given edge e, together with v, can make in Γ. Since by (10) any `-tuple of vertices of Γ
has at most 2p`n common neighbours, the number of copies of K4 containing e and v is at most
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2p3n, and inductively the number of copies of Ks+1 containing e and v is at most
s∏
`=3

2p`n = 2s−2p(
s+1

2 )−3ns−2 .

Putting these estimates together we see that the total number of copies of Ks in G
[
NG(v)

]
is at

most 1
2γp

(s+1
2 )ns. This is the desired contradiction, completing the proof. �

We apply Lemma 23 to G, with input γ, k, r0 and ε−, to obtain an integer r with 10γ−1 ≤ kr ≤
r1, a set V0 ⊆ V (G) with |V0| ≤ C∗p−2, a k-equitable partition V =

{
Vi,j
}
i∈[r],j∈[k]

of V (G) \ V0,

and a graph Rkr on [r]× [k] with minimum degree δ(Rkr ) ≥
(
k−1
k + γ

2

)
kr, such that Kk

r ⊆ Bkr ⊆ Rkr
and such that the following hold.

(G 1a) n
4kr ≤ |Vi,j | ≤

4n
kr for every i ∈ [r] and j ∈ [k],

(G 2a) V is (ε−, d, p)G-regular on Rkr and (ε−, d, p)G-super-regular on Kk
r ,

(G 3a) both
(
NΓ(v, Vi,j), Vi′,j′

)
and

(
NΓ(v, Vi,j), NΓ(v, Vi′,j′)

)
are (ε−, d, p)G-regular pairs for

every {(i, j), (i′, j′)} ∈ E(Rkr ) and v ∈ V \ V0, and
(G 4a) |NΓ(v, Vi,j)| = (1± ε)p|Vi,j | for every i ∈ [r], j ∈ [k] and every v ∈ V \ V0.

Given i ∈ [r], because δ(Rkr ) > (k − 1)r, there exists v ∈ V (Rkr ) adjacent to each (i, j) with
j ∈ [k]. This, together with our assumptions on H, allow us to apply Lemma 24 to H, with
input D, k, r, 1

10ξ and β, and with mi,j := |Vi,j | + 1
kr |V0| for each i ∈ [r] and j ∈ [k], choosing

the rounding such that the mi,j form a k-equitable integer partition of n. Since ∆(H) ≤ ∆, in
particular H is ∆-degenerate. Let f : V (H) → [r] × [k] be the mapping returned by Lemma 24,
let Wi,j := f−1(i, j), and let X ⊆ V (H) be the set of special vertices returned by Lemma 24. For
every i ∈ [r] and j ∈ [k] we have

(H 1a) mi,j − 1
10ξn ≤ |Wi,j | ≤ mi,j + 1

10ξn,
(H 2a) |X| ≤ ξn,
(H 3a) {f(x), f(y)} ∈ E(Rkr ) for every {x, y} ∈ E(H),
(H 4a) y, z ∈

⋃
j′∈[k] f

−1(i, j′) for every x ∈ f−1(i, j) \X and xy, yz ∈ E(H), and

(H 5a) f(x) =
(
1, σ(x)

)
for every x in the first

√
βn vertices of L.

We let F be the first βn vertices of L. By definition of L, in F there are at least Cp−2 vertices
whose neighbourhood in H receives at most s colours from σ.

Next, we apply Lemma 20, with input εµ2 and ∆, to choose a set S ⊆ V (G) of size µn. We let
the Ti of Lemma 20 be all sets which are common neighbourhoods in Γ of at most ∆ vertices of
Γ, and all sets which are common neighbourhoods in G of at most ∆ vertices of Γ into any set of
V, together with the sets Vi,j for i ∈ [r] and j ∈ [k], and the sets Qv,i for v ∈ V (G) and i ∈ [s].
We let the regular pairs (Xi, Yi) of Lemma 20 be the pairs (Qv,i, Qv,j) for 1 ≤ i < j ≤ s and
v ∈ V (G), and all regular pairs (Vi,j , Vi′,j′) ∈ Rkr .

The result of Lemma 20 is that for any 1 ≤ ` ≤ ∆, any V ∈ V, and any vertices u1, . . . , u` of
V (G), we have ∣∣∣S ∩ ⋂

1≤i≤`

NΓ(ui)
∣∣∣ = (1± εµ)µ

∣∣∣ ⋂
1≤i≤`

NΓ(ui)
∣∣∣± εµp`n ,∣∣∣S ∩ V ∩ ⋂

1≤i≤`

NG(ui)
∣∣∣ = (1± εµ)µ

∣∣∣V ∩ ⋂
1≤i≤`

NG(ui)
∣∣∣± εµp`n

4kr , and∣∣S ∩ Vi,j∣∣ = (1± 1
2ε)µ|Vi,j | for each i ∈ [r] and j ∈ [k] ,

(11)

where we use the fact p ≥ C
(

logn
n

)1/∆
and choice of C to deduce C∗ log n < εµp∆n

4kr . Furthermore,

for each v ∈ V (G) and 1 ≤ i < j ≤ s the pair
(
Qv,i ∩ S,Qv,j ∩ S

)
is
(
ε+

0 , d
+, p)-regular in G, and

for each (Vi,j , Vi′,j′) ∈ Rkr the pair
(
Vi,j ∩ U, Vi′,j′ ∩ U

)
is (ε, d, p)-regular in G.

Our next task is to create the pre-embedding that covers the vertices of V0. We use the following
algorithm, starting with φ0 the empty partial embedding.

Suppose this algorithm does not fail, terminating with t = t∗ and with a final embedding
φ := φt∗ . Let H ′ = H \Dom(φ). Then φ is an embedding of H

[
V (H) \ V (H ′)

]
into V (G) which
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Algorithm 1: Pre-embedding

1 t := 0 ;

2 while V0 \ Im(φt) 6= ∅ do
44 Let vt+1 ∈ V0 \ Im(φt) maximise

∣∣NG(v) ∩ S ∩ Im(φt)
∣∣ over v ∈ V0 \ Im(φt) ;

5 Choose xt+1 ∈ F such that
∣∣σ(NH(x)

)∣∣ ≤ s and dist
(
xt+1,Dom(φt)

)
≥ 100k2 ;

6 Ht+1 := H
[{
y ∈ V (H) : dist(xt+1, y) ≤ s+ 1

}]
;

7 Let G′t+1 be the maximum subgraph of G
[
(S ∪ {vt+1}) \ Im(φt)

]
with minimum degree

(
k−1
k + γ

4

)
µpn ;

8 Let φ and q1, . . . , qk be given by Lemma 25 with input G′t+1, H ′t+1 and colouring

σ|V (H′) ;

9 φt+1 := φt ∪ φ ;

10 foreach y ∈ Ht+1 such that dist(xt+1, y) = s+ 1 do
11 Let f∗∗(y) := qσ(y) ;

12 Let Jy := φ
(
Dom(φ) ∩NH(y)

)
;

13 Let I ′y := NG(Jy) ∩ Vqσ(y)
∩ V (G′t+1) ;

14 end

15 t := t+ 1 ;

16 end

covers V0 and is contained in V0 ∪ S. The algorithm in addition defines f∗∗(y) ∈ Rkr , Jy ⊆ S and
I ′y ⊆ S for each y ∈ V (H ′) which has H-neighbours in Dom(φ). The meanings of these are as
follows. When we apply the sparse blow-up lemma, we will embed y to the cluster Vf∗∗(y). We
will need to image restrict y (as in Definition 11), and the image restricting vertices will be Jy.
The set I ′y will not be the image restriction we use, but we will deduce the existence of a suitable
image restriction from I ′y. Before we explain this, we first claim that the algorithm does not fail,
and the requirements of Lemma 25 are met at each iteration.

Claim 4. Algorithm 1 does not fail, and the conditions of Lemma 25 are met at each iteration.

Proof. Observe that in total we embed at most ∆s+2 vertices in each iteration, and the number
of iterations is at most |V0| ≤ C∗p−2, so that the total number of vertices we embed is at most
C∗∆s+2p−2.

We begin by discussing the choice of vt+1. Suppose that at some time t we pick a vertex
v = vt+1 such that

∣∣NG(v)∩S∩ Im(φt)
∣∣ > 1

2α
+µpn. For each t− 1

4∆−s−2µα+pn ≤ t′ < t, we have∣∣NG(v) ∩ S ∩ Im(φt′)
∣∣ > 1

4α
+µpn, yet at each of these times v is not picked, so that the vertex

picked at each time t′ has at least 1
4α

+µpn neighbours in Im(φt)∩ S, and in particular in Im(φt),

a set of size at most C∗∆s+2p−2. Let Z be a superset of Im(φt) of size at least C∗p−1 log n. Now
the good event of Proposition 17 states that in Γ at most C∗p−1 log n vertices of Γ have more
than 2p|Z| < 1

4α
+µpn neighbours in Z. Since 1

4∆−s−2µα+pn > C∗p−1 log n by choice of p, this
is a contradiction. We conclude that at each time t, the vertex vt+1 picked at time t satisfies∣∣NG(v) ∩ S ∩ Im(φt)

∣∣ ≤ 1
2α

+µpn.
From this point on we consider a fixed time t, and write v rather than vt+1, and φ for φt, and

so on.
Since we cover at most C∗∆s+2p−2 vertices, so we have |S \ Im(φ)| = (1 ± 1

2ε)µn. Now, to

obtain the maximum subgraph of G
[
(S ∪ {v}) \ Im(φ)

]
with minimum degree

(
k−1
k + γ

4

)
µpn, we

successively remove vertices whose degree is too small until no further remain. We claim that
less than 1

8µα
+pn vertices are removed, and v is not one of the vertices removed. To see this,

observe that every vertex has at least
(
k−1
k + γ

2

)
µpn neighbours in S by (11). Suppose for a

contradiction that there is a set Z of 1
8µα

+pn vertices which are the first removed from S in this

process. Then each vertex of Z has at least 1
4γµpn neighbours in Z ∪ Im(φ), which by choice of

α+ is a contradiction to the good event of Proposition 17.
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We conclude
∣∣(S ∪ {v}) \ Im(φ)

∣∣ = (1 ± ε)µn. Since v has at least
(
k−1
k + γ

2

)
µpn neighbours

in S, of which at most 1
2α

+µpn are in Im(φ) and at most |Z| are in Z, the vertex v is not

removed. Furthermore, for each i ∈ [s] we have |Qv,i ∩ V (G′)
∣∣ ≥ 1

2

∣∣Qv,i ∩ S∣∣. We now use this to
count copies of Ks in NG′(v). We choose for i = 1, . . . , s sequentially vertices in Qv,i ∩ V (G′), at
each step choosing a vertex wi which is adjacent to the previous vertices, and which is such that
w1, . . . , wi have at least (d+ − ε+

s−2)ipi|Qv,j | common G-neighbours in each Qv,j for j > i, and

have (1± ε)ipi|Qv,j | common Γ-neighbours in each Qv,j for j > i, and the pair( ⋂
`∈[i]

NΓ(w`, Qv,j),
⋂
`∈[i]

NΓ(w`, Qv,j′)
)

is (ε+
i , d

+, p)-regular in G for each i < j < j′ ≤ s. Note that all these properties hold when i = 0
vertices have been chosen. Assuming these properties hold when we come to choose wi, there are
at least 21−i(d+)i−1pi−1|Qv,i| vertices of Qv,i which are adjacent to all previously chosen vertices.
If i = s then all of these are valid choices. If i < s, by Propositions 7 and 8, and because the good
event of Proposition 17 holds, at most

s · 4i(d+)1−iε+
s−2p

i−1|Qv,i|+ s · C∗p−1 log n

vertices of Qv,i cause the numbers of G- or Γ-common neighbours in some Qv,j for j > i to go
wrong. Finally, if i = s− 1 then there is no choice of i < j < j′ ≤ s and so no failure of regularity
can occur, while if i < s − 1 then by the good event of Lemma 15 the number of vertices which
cause a failure of regularity is at most s2C∗p−2 log n. By choice of ε+

s−2 and p, in total at least

2−i(d+)i−1pi−1|Qv,i| vertices of Qv,i are thus valid choices for wi. Finally, by choice of γ+ the

total number of copies of Ks in NG′(v) is at least 2γ+p(
s
2)
(
p|S|

)s ≥ γ+p(
s+1

2 )(µn)s, as desired.

The remaining conditions of Lemma 25 are simpler to check. By (11) we have
∣∣NG′(W )

∣∣ ≤∣∣NΓ(W ) ∩ S
∣∣ ≤ 2µnp|W | for any W ⊆ V (G′) of size at most ∆. The graph G with the regular

partition (Vi,j)i∈[r],j∈[k], with reduced graph Rkr , has the required minimum degree. By (11) the

intersection of the part Vi,j with S has size (1± 1
2ε)µ|Vi,j |, so that |Vi,j ∩V (G′)| = (1±ε)µ|Vi,j | as

required. Furthermore the regular pairs of R intersected with S are regular, and so by Proposition 8
the subpairs obtained by intersecting with V (G′) (which is, except for v, contained in S; and v is
in V0 hence not in any of these pairs) are also sufficiently regular. Finally, the graph Ht+1 chosen
at each time t satisfies the conditions of Lemma 25 by definition. Note that we can at each step
choose xt+1 and hence Ht+1 because there are at least Cp−2 vertices of F whose neighbourhood is
coloured with at most s colours; even after embedding all of V0, the domain of φ contains at most

C∗∆s+2p−2 vertices, and hence at most C∗∆s+100k2+3p−2 < Cp−2 vertices of H are too close to
Dom(φ). �

We next define image restricting vertex sets and create an updated homomorphism f∗ :
V (H ′) → [r] × [k]. The former is easier. Let X∗∗ consist of the vertices of H ′ which have at
least one H-neighbour in Dom(φ). The vertices of Dom(φ) are partitioned according to the xt
chosen at each time in Algorithm 1, and because these vertices are chosen far apart in H, any
vertex y of X∗∗ is at distance s + 1 from some xt. The neighbours in H ′ of y are either also at
distance s + 1 in H from xt and not adjacent to any vertices of Dom(φ) corresponding to other
xt′ , or they are not adjacent to any vertex of Dom(φ) at all. It follows that for each y ∈ X∗∗ the
quantities f∗∗(y), Jy and I ′y are set exactly once in the running of Algorithm 1. By Lemma 25

and (11), given y ∈ X∗∗, we have |I ′y| ≥ 2αp|Jy||(1− ε)µ|Vf∗∗(y)|. We claim this implies∣∣NG(Jy) ∩ Vf∗∗(y)

∣∣ ≥ αp|Jy|∣∣Vf∗∗(y)

∣∣ . (12)

Indeed, suppose for a contradiction that (12) fails. Since I ′y is by construction contained in S, we

have |I ′y| ≤
∣∣NG(Jy) ∩ Vf∗∗(y) ∩ S

∣∣. Using (11) to estimate the size of the latter set, we get

|I ′y| ≤ (1± εµ)µ · αp|Jy|
∣∣Vf∗∗(y)

∣∣+ εµp|Jy|n
4kr < 2αp|Jy||(1− ε)µ|Vf∗∗(y)| ,

where the final inequality is by choice of ε and since |Vf∗∗(y)| ≥ n
4kr by (G 1a). This is in contra-

diction to the lower bound on |I ′y| from Lemma 25 stated above.
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We construct the updated homomorphism as follows. We will have f∗(y) = f(y) for all vertices

which are not within distance s +
(
k+1

2

)
of Dom(φ) in H. Given a vertex x of H chosen at some

time t in Algorithm 1, we set f∗(y) for each y at distance between s + 1 and s +
(
k+1

2

)
from x

in H as follows. We will generate a collection Z1, . . . , Z(k+1
2 ) of copies of Kk in Rkr , each labelled

with the integers 1, . . . , k. For each i = 1, . . . ,
(
k+1

2

)
, if y is at distance s + i from x in H, then

we set f∗(y) to be the label σ(y) cluster of Zi. The properties of the sequence Z1, . . . , Z(k+1
2 )

we require are the following. First, Z1 is the clique returned by the application of Lemma 25 at
x with the labelling given by that lemma. Second, Z(k+1

2 ) is the clique
(
V1,1, . . . , V1,k

)
, labelled

1, . . . , k in that order. Third, for each i = 2, . . . ,
(
k+1

2

)
, each cluster of Zi is adjacent in Rkr to each

differently-labelled cluster of Zi−1. Assuming such a sequence of cliques exists, the resulting f∗

has the properties that each vertex y of X∗∗ is assigned by f∗ to f∗∗(y), that each edge of H ′ is

mapped by f∗ to an edge of Rkr , and that f and f∗ disagree on at most C∗p−2∆s+(k+1
2 )+3 vertices

of H ′, all in the first
√
βn vertices of L. These will be the properties we need of f∗. Note that

this definition is consistent, in that it does not attempt to set f∗(y) to two different clusters for
any y, because the vertices chosen at each step of Algorithm 1 are at pairwise distance at least
100k2. It remains only to show that the desired sequence of cliques always exists.

Claim 5. For any k-cliques Z1 and Z(k+1
2 ) in Rkr a sequence Z1, . . . , Z(k+1

2 ) with the above prop-

erties exists.

Proof. By the minimum degree of Rkr , any k-set in V (Rkr ) has at least one common neighbour. We
will use this fact at each step in the following algorithm. Set t = 2. We loop through j = 1, . . . , k−1
sequentially. For each value of j we perform the following operation.

For each i = j + 1, . . . , k sequentially, choose a cluster wt of Rkr which is adjacent to all the
clusters of Zt−1 except possibly that labelled i, and which is also adjacent to the cluster of Z(k+1

2 )
labelled j. We let Zt be the clique obtained from Zt−1 by replacing the label i cluster with wt,
which we label i; all other clusters keep their previous label. We increment t.

After performing the i = k operation, we let Zt be obtained from Zt−1 by replacing the label j
cluster of Zt−1 with the label j cluster of Z(k+1

2 ), and increment t. We now proceed with the next

round of the j-loop.
Observe that after the completion of each j-loop, the clusters of Zt−1 labelled 1, . . . , j are the

same as those of Z(k+1
2 ). In particular the given Z(k+1

2 ) has the required adjacencies in Z(k+1
2 )−1

(the final clique constructed in the j = k− 1 loop), while the remaining required adjacencies hold
by construction. �

At this point we complete the proof almost exactly as in [1]. What follows is taken from there,
with only trivial changes, for completeness’ sake.

For each i ∈ [r] and j ∈ [k], let W ′i,j be the set of vertices w ∈ V (H ′) with f∗(w) ∈ Vi,j , and

let X ′ consist of X together with all vertices of H ′ at H-distance 100k2 or less from some xt with
t ∈ [t∗]. The total number of vertices z ∈ V (H) at distance at most 100k2 from some xt is at most

2∆200k2 |V0| < 1
100ξn. Since Wi,j4W ′i,j contains only such vertices, we have

(H 1b) mi,j − 1
5ξn ≤ |W

′
i,j | ≤ mi,j + 1

5ξn,
(H 2b) |X ′| ≤ 2ξn,
(H 3b) {f∗(x), f∗(y)} ∈ E(Rkr ) for every {x, y} ∈ E(H ′), and
(H 4b) y, z ∈

⋃
j′∈[k]W

′
i,j′ for every x ∈W ′i,j \X ′ and xy, yz ∈ E(H ′).

where (H 2b), (H 3b) and (H 4b) hold by (H 2a) and definition of X ′, by definition of f∗, and
by (H 4a) and choice of X ′ respectively.

Furthermore, we have

(G 1a) n
4kr ≤ |Vi,j | ≤

4n
kr for every i ∈ [r] and j ∈ [k],

(G 2a) V is (ε, d, p)G-regular on Rkr and (ε, d, p)G-super-regular on Kk
r ,

(G 3a) both
(
NΓ(v, Vi,j), Vi′,j′

)
and

(
NΓ(v, Vi,j), NΓ(v, Vi′,j′)

)
are (ε, d, p)G-regular pairs for

every {(i, j), (i′, j′)} ∈ E(Rkr ) and v ∈ V \ V0, and
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(G 4a) |NΓ(v, Vi,j)| = (1± ε)p|Vi,j | for every i ∈ [r], j ∈ [k] and every v ∈ V \ V0.

(G 5a)
∣∣Vf∗(x) ∩

⋂
u∈Jx NG(u)

∣∣ ≥ αp|Jx||Vf∗(x)| for each x ∈ V (H ′),

(G 6a)
∣∣Vf∗(x) ∩

⋂
u∈Jx NΓ(u)

∣∣ = (1± ε∗)p|Jx||Vf∗(x)| for each x ∈ V (H ′), and

(G 7a)
(
Vf∗(x) ∩

⋂
u∈Jx NΓ(u), Vf∗(y) ∩

⋂
v∈Jy NΓ(v)

)
is (ε∗, d, p)G-regular for each xy ∈ E(H ′).

(G 8a)
∣∣⋂

u∈Jx NΓ(u)
∣∣ ≤ (1 + ε∗)p|Jx|n for each x ∈ V (H ′),

Properties (G 1a) to (G 4a) are repeated for convenience (replacing ε− with the larger ε). Proper-
ties (G 5a), (G 6a) and (G 8a), are trivial when Jx = ∅. Otherwise, (G 5a) is guaranteed by (12),
and (G 6a) and (G 8a) are guaranteed by Lemma 25. Finally (G 7a) follows from (G 2a) when
Jx, Jy = ∅, and otherwise is guaranteed by Lemma 25, as follows. If both Jx and Jy are non-empty,
then (P 6’) states that the desired pair is (ε∗, d, p)G-regular. If Jx is empty and Jy is not, then
necessarily |Jx| ≤ ∆−1, and by (P 5’) the pair

(
Vf∗(x)∩

⋂
u∈Jx NΓ(u), Vf∗(y)

)
is (ε∗, d, p)G-regular.

For each i ∈ [r] and j ∈ [k], let V ′i,j = Vi,j \ Im(φt∗), and let V ′ = {V ′i,j}i∈[r],j∈[k]. Because
Vi,j \ V ′i,j ⊆ S for each i ∈ [r] and j ∈ [k], using (11) and Proposition 8, and our choice of µ, we
obtain

(G 1b) n
6kr ≤ |V

′
i,j | ≤ 6n

kr for every i ∈ [r] and j ∈ [k],

(G 2b) V ′ is (2ε, d, p)G-regular on Rkr and (2ε, d, p)G-super-regular on Kk
r ,

(G 3b) both
(
NΓ(v, V ′i,j), V

′
i′,j′

)
and

(
NΓ(v, V ′i,j), NΓ(v, V ′i′,j′)

)
are (2ε, d, p)G-regular pairs for

every {(i, j), (i′, j′)} ∈ E(Rkr ) and v ∈ V \ V0, and
(G 4b) |NΓ(v, V ′i,j)| = (1± 2ε)p|Vi,j | for every i ∈ [r], j ∈ [k] and every v ∈ V \ V0.

(G 5b)
∣∣V ′f∗(x) ∩

⋂
u∈Jx NG(u)

∣∣ ≥ 1
2αp

|Jx||V ′f∗(x)|,
(G 6b)

∣∣V ′f∗(x) ∩
⋂
u∈Jx NΓ(u)

∣∣ = (1± 2ε∗)p|Jx||V ′f∗(x)|, and

(G 7b)
(
V ′f∗(x) ∩

⋂
u∈Jx NΓ(u), V ′f∗(y) ∩

⋂
v∈Jy NΓ(v)

)
is (2ε∗, d, p)G-regular.

(G 8b)
∣∣⋂

u∈Jx NΓ(u)
∣∣ ≤ (1 + 2ε∗)p|Jx|n for each x ∈ V (H ′),

We are now almost finished. The only remaining problem is that we do not necessarily have

|W ′i,j | = |V ′i,j | for each i ∈ [r] and j ∈ [k]. Since |V ′i,j | = |Vi,j | ± 2∆200k2 |V0| = mi,j ± 3∆200k2 |V0|,
by (H 1b) we have |V ′i,j | = |W ′i,j | ± ξn. We can thus apply Lemma 26, with input k, r1, ∆, γ, d,
8ε, and r. This gives us sets V ′′i,j with |V ′′i,j | = |W ′i,j | for each i ∈ [r] and j ∈ [k] by (B 1’). Let
V ′′ = {V ′′i,j}i∈[r],j∈[k]. Lemma 26 guarantees us the following.

(G 1c) n
8kr ≤ |V

′′
i,j | ≤ 8n

kr for every i ∈ [r] and j ∈ [k],

(G 2c) V ′′ is (4ε∗, d, p)G-regular on Rkr and (4ε∗, d, p)G-super-regular on Kk
r ,

(G 3c) both
(
NΓ(v, V ′′i,j), V

′′
i′,j′

)
and

(
NΓ(v, V ′′i,j), NΓ(v, V ′′i′,j′)

)
are (4ε∗, d, p)G-regular pairs for

every {(i, j), (i′, j′)} ∈ E(Rkr ) and v ∈ V \ V0, and
(G 4c) we have (1−4ε)p|V ′′i,j | ≤ |NΓ(v, V ′′i,j)| ≤ (1+4ε)p|V ′′i,j | for every i ∈ [r], j ∈ [k] and every

v ∈ V \ V0.
(G 5c)

∣∣V ′′f∗(x) ∩
⋂
u∈Jx NG(u)

∣∣ ≥ 1
4αp

|Jx||V ′′f∗(x)|,
(G 6c)

∣∣V ′′f∗(x) ∩
⋂
u∈Jx NΓ(u)

∣∣ = (1± 4ε∗)p|Jx||V ′f∗(x)|, and

(G 7c)
(
V ′′f∗(x) ∩

⋂
u∈Jx NΓ(u), V ′′f∗(y) ∩

⋂
v∈Jy NΓ(v)

)
is (4ε∗, d, p)G-regular.

Here (G 1c) comes from (G 1b) and (B 2’), while (G 2c) comes from (B 3’) and choice of ε. (G 3c)
is guaranteed by (B 4’). Now, each of (G 4c), (G 5c) and (G 6c) comes from the correspond-
ing (G 4b), (G 5b) and (G 6b) together with (B 5’). Finally, (G 7c) comes from (G 7b) and (G 8b)
together with Proposition 8 and (B 5’).

For each x ∈ V (H ′) with Jx = ∅, let Ix = V ′′f∗(x). For each x ∈ V (H ′) with Jx 6= ∅, let Ix =

V ′′f∗(x)∩
⋂
u∈Jx NG(u). NowW ′ and V ′′ are κ-balanced by (G 1c), size-compatible by construction,

partitions of respectively V (H ′) and V (G) \ Im(φt∗), with parts of size at least n/(κr1) by (G 1c).

Letting W̃i,j := W ′i,j \ X ′, by (H 2b), choice of ξ, and (H 4b), {W̃i,j}i∈[r],j∈[k] is a
(
ϑ,Kk

r

)
-

buffer for H ′. Furthermore since f∗ is a graph homomorphism from H ′ to Rkr , we have (BUL 1).
By (G 2c), (G 3c) and (G 4c) we have (BUL 2), with R = Rkr and R′ = Kk

r . Finally, the pair
(I,J ) =

(
{Ix}x∈V (H′), {Jx}x∈V (H′)

)
form a

(
ρ, 1

4α,∆,∆
)
-restriction pair. To see this, observe

that the total number of image restricted vertices in H ′ is at most ∆2|V0| < ρ|Vi,j | for any i ∈ [r]
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and j ∈ [k], giving (RP 1). Since for each x ∈ V (H ′) we have |Jx|+ degH′(x) = degH(x) ≤ ∆ we
have (RP 3), while (RP 2) follows from (G 5c), and (RP 5) follows from (G 6c). Finally, (RP 6)
follows from (G 7c), and (RP 4) follows since ∆(H) ≤ ∆. Together this gives (BUL 3). Thus,
by Lemma 13 there exists an embedding φ of H ′ into G \ Im(φt∗), such that φ(x) ∈ Ix for each
x ∈ V (H ′). Finally, φ ∪ φt∗ is an embedding of H in G, as desired. �

6. Concluding remarks

6.1. Optimality of Theorem 5. In Theorems 3 and 5, the requirement for C∗p−2 vertices in H
whose neighbourhood contains few colours is optimal up to the value of C∗. However the value
of C∗ we obtain derives from (multiple applications of) the sparse regularity lemma and is hence
very far from optimal. One can use the methods of this paper to obtain an improved (but still far
from sharp) constant, and we expect that one can use the methods of this paper to determine an
optimal C∗ asymptotically, at least for special cases.

The way to obtain this improvement is the following. We work exactly as in the proof of
Theorem 22, except that for each v ∈ V (G) we identify the largest 1 ≤ s ≤ k − 1 for which there
are many copies of Ks in NG(v), and obtain a robust witness for this property as in that proof.
Now when we come to cover the vertices of the set V0 returned by Lemma 23, we use vertices from
zero-free regions of L which are not in the first few vertices of L whenever possible: in particular
this is always possible when we are to cover a vertex which is in many copies of Kk. Our proof,
with trivial modification, shows that this pre-embedding method succeeds. The result is that we

can reduce C∗ to a quantity on the order of ∆100k2

; this number comes from our requirement to
choose vertices in L which are widely separated in H for the pre-embedding onto the vertices of
V0 which are not in many copies of Kk.

When H contains many isolated vertices, this requirement disappears and we can further im-
prove. We believe (but have not attempted to prove) that there is some Ck with the following
property. Let Γ be a typical instance of G(n, p), where p� n−1/k. Suppose G ⊆ Γ has minimum
degree

(
k−1
k + o(1)

)
pn. Then any choice of G contains at most

(
Ck + o(1)

)
p−2 vertices which are

in o
(
p(
k
2)nk−1

)
copies of Kk; on the other hand there is a choice of G which has

(
Ck − o(1)

)
p−2

vertices not in any copy of Kk.
Assuming the above statement to be true, it follows that Ck is the asymptotically optimal C∗

whenever all vertices of H are either isolated or contained in a copy of Kk; for example when H
consists of a (k−1)st power of a cycle together with some isolated vertices. Further generalisation
to (for example) try to establish an optimal value of C∗ in Theorem 3 would be possible; but it
would also presumably depend on the graph structure of H. If the vertices of H which are not in
triangles are far apart in H, then the generalisation is easy (and the answer is the same) but if
they are not generally far apart it seems likely that one would have to use several such vertices to
cover one badly-behaved vertex of G, and hence C∗ would need to be larger than the above Ck.

6.2. Local colourings of H versus global colourings. Recall that Theorem 3 requires some
vertices in H to have neighbourhoods which contain no edges, and that this is necessary because
otherwise we can ‘locally’ avoid H-containment simply by picking a vertex of G(n, p) and removing
all edges in its neighbourhood to form G. Theorem 5 implies that, when H is 3-colourable, this is
really the only obstruction: if we insist that every vertex of G has a reasonable number of edges
in its neighbourhood, then G contains all 3-colourable H with small bandwidth and maximum
degree.

It is natural to guess that a similar ‘local’ obstruction generalises: perhaps for every k, if H is a
k-colourable graph with small bandwidth and constant maximum degree which has Ω(p−2) vertices
whose neighbourhoods are bipartite, then H is guaranteed to be contained in any subgraph G of
G(n, p) with sufficiently high minimum degree and in which every vertex neighbourhood has a
reasonable number of edges.

The purpose of this section is to observe that the above guess is false. Indeed, one cannot
merely consider the chromatic number of vertex neighbourhoods, but really has to take into
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Figure 1. The graph F

account the number of colours used on vertex neighbourhoods in the whole k-colouring of H (as
in the statement of Theorem 5).

Consider the following graph F (see Figure 1). We begin with vertices 1, 2, 3, 4 which form a
clique, and vertices a, b, c, d, e, f which form a cycle of length six (in that order). We join 4 to all
of a, b, c, d, e, f , we join 1 to b, c, e, f , and 2 to a, c, d, f , and 3 to a, b, d, e. Finally we add a vertex
r adjacent to a, b, c, d, e, f .

This graph has the following properties. It is 4-colourable and in any 4-colouring the vertices
a, d have the same colour as 1, the vertices b, e have the same colour as 2, and c, f have the same
colour as 3. All vertices except r are in a copy of K4. The neighbourhood of r is a cycle of order
6, which is bipartite.

Given n divisible by 11, we let H consist of n/11 disjoint copies of F . By Theorem 5, with

s = 3, if G is a subgraph of a typical random graph Γ = G(n, p), where p�
(

logn
n

)1/9
, such that

δ(G) ≥
(

3
4 +γ

)
pn, and in addition the neighbourhood of every vertex of G contains at least γp9n3

copies of K3, then we have H ⊆ G.
Observe that we cannot take s smaller than 3, since in every 4-colouring of F every vertex has

three different colours in its neighbourhood, including r. This is why Theorem 3 requires many
copies of K3 in every vertex neighbourhood. However the neighbourhood of r itself is K3-free, and
in fact bipartite. We now give a construction that shows that it is not enough for every vertex
neighbourhood to contain many edges (or indeed many copies of C6).

We begin by selecting (for some small ε > 0) a set X of εp−1 vertices, and then generating
Γ = G(n, p). With high probability no vertex of X has more than log n neighbours in X, and the
joint neighbourhood Y of X has size at most 2εn. We randomly partition Y = Y1 ∪ Y2 into two
equal parts, and we randomly partition Z := V (Γ) \ (X ∪ Y ) into five equal parts Z1, . . . , Z5.

We let G be the subgraph of Γ obtained by taking all edges from X to Y , all edges between Y1

and Y2, all edges from Y1 to Z \ Z1 and from Y2 to Z \ Z2, and all edges within Z which are not
contained in any Zi. It is easy to check that with high probability G has minimum degree roughly
4
5pn, and that neighbourhoods of all vertices contain many edges (and many copies of C6).

However we claim G does not contain H. Indeed, consider any x ∈ X. Since NG(x) is contained
in Y , the graph G

[
NG(x)

]
is bipartite, so that any copy of F using x must place r ∈ F on x.

Furthermore, the vertices a, b, c, d, e, f must be placed alternating in Y1 and Y2. Without loss of
generality suppose a, c, e ∈ Y1 and b, d, f ∈ Y2. Now each of 1, 2, 3, 4 has at least one neighbour in
{a, c, e}, and at least one neighbour in {b, d, f}, so that none of 1, 2, 3, 4 can be placed in Y , or in
Z1, or in Z2. It follows that none of 1, 2, 3, 4 can be placed in X (since all neighbours of vertices
in X are in Y ), and so all of 1, 2, 3, 4 must be in Z3 ∪ Z4 ∪ Z5. But 1, 2, 3, 4 form a copy of K4 in
F , and Z3 ∪ Z4 ∪ Z5 induces a tripartite subgraph of G, a contradiction.

In this example we cannot have F -copies at any vertex of X, so the best we can do is find
n

v(F ) − Ω(p−1) vertex-disjoint copies of F . This may be asymptotically optimal; we have not

investigated this problem. We note also that it is straightforward to generalise this construction
to higher chromatic numbers k: we add to F further numbered vertices 5, . . . , k, adjacent to all
other vertices but r; and we partition Z into k + 1 parts.
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6.3. Pseudorandom host graphs. In [1], we prove results not only for resilience of the random
graph but also for (n, d, λ)-graphs or more generally (p, ν)-bijumbled graphs (see [1] for the defi-
nitions and precise statements). The proofs for quasirandom graphs there are broadly similar in
style to the proofs for random graphs, and it seems likely that one could, much as there, adapt
the proofs in this paper to obtain similar statements for quasirandom graphs. For example while
Proposition 17 does not hold as written in quasirandom graphs, it is easy to obtain a similar
statement with different error bounds which we could use instead. However, we should note that
there are a few places where we use fine properties (e.g. (10)) of the random graph which do not
have such an analogue in quasirandom graphs. While we tend to feel that one could avoid using
this kind of property with a bit more work, we certainly have not done the work to check that
this is an accurate belief.
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[13] J. Komlós, G. N. Sárközy, and E. Szemerédi. Proof of the Seymour conjecture for large graphs. Ann. Comb.,

2(1):43–60, 1998.
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