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RANDOM AFFINE CODE TREE FRACTALS: HAUSDORFF AND

AFFINITY DIMENSIONS AND PRESSURE

ESA JÄRVENPÄÄ, MAARIT JÄRVENPÄÄ, MENG WU, AND WEN WU

Abstract. We prove that for random affine code tree fractals the affinity di-
mension is almost surely equal to the unique zero of the pressure function. As
a consequence, we show that the Hausdorff, packing and box counting dimen-
sions of such systems are equal to the zero of the pressure. In particular, we do
not presume the validity of the Falconer-Sloan condition or any other additional
assumptions which have been essential in all the previously known results.

1. Introduction

The investigation of dimensional properties of self-affine sets dates back to the
pioneering works of Bedford [3] and McMullen [24]. Besides considering specific
self-affine sets as in [3,24], a natural approach is to seek generic dimension formulae.
In [5], Falconer obtained a dimension formula for generic self-affine sets in terms of
the pressure function under the assumption that the norms of the linear parts of
generating functions are less than 1/3. Later, Solomyak [29] observed that 1/3 can
be replaced by 1/2 which, in turn, is the best possible bound due to an example
given by Przytycki and Urbański [25]. Since the seminal works in [3, 5, 24], there
has been great interest in various problems related to dimensions of self-affine sets.
For recent contributions in this field, see for example [2,4,6–9,13–20,27,28] and the
references therein.
We address the problem of studying a general class of random affine code tree

fractals introduced in [21]. Typically, code tree fractals are locally random but
globally nearly homogeneous mimicking deterministic systems. As explained in [21,
22], our setup includes several random models, for example, homogeneous graph
directed systems [23] and V -variable fractals [1].
In [5], Falconer proved that the Hausdorff dimension of the attractor of an affine

iterated function system is equal to the zero of the pressure for almost all translation
vectors, and well-known examples show that this is genuinely an almost all type of
result. Using Carathéodory’s construction with weights determined by the singular
value function, he introduced a parametrised family of net measures which behaves
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like the Hausdorff measure in the sense that there exists a unique parameter value
where the measure drops from infinity to zero. In what follows, this unique value
is called the affinity dimension. According to [5], the affinity dimension equals the
Hausdorff dimension for almost all translation vectors and, moreover, the affinity
dimension is equal to the unique zero of the pressure, which always exists for self-
affine sets.
As far as the extendability of Falconer’s result for code tree fractals is concerned,

in [21] it is proved that, for all code tree fractals, the affinity dimension equals
the Hausdorff dimension for almost all translation vectors (see also Theorem 2.3).
However, the Hausdorff or affinity dimension need not to be equal to the zero of
the pressure. In particular, the pressure does not necessarily exist. To avoid this
kind of irregular behaviour, a general class of random code tree fractals with a
neck structure was introduced in [21]. In this class, the pressure exists and has
a unique zero almost surely with respect to any shift invariant ergodic probability
measure for which the expectation of the length of the first neck is finite (see [21]
or Theorem 2.1). The problem whether the zero of the pressure is equal to the
Hausdorff dimension was addressed in [21]. It turned out that in the plane under
several additional assumptions this is indeed the case (see [21, Theorem 5.1]).
In many questions involving the pressure of affine systems, the fact that the singu-

lar value function is submultiplicative but not multiplicative causes problems (see,
for example, [7, 10–12]). In our context, the Falconer-Sloan condition, introduced
in [10], is useful for the purpose of overcoming these problems. Indeed, in [22] it
is verified that in the d-dimensional case the Hausdorff dimension of a typical code
tree fractal equals the zero of the pressure under a weak probabilistic version of the
Falconer-Sloan condition ( [22, Theorem 3.2]). As pointed out in [22], the Falconer-
Sloan condition, or another corresponding assumption, is necessary for the method
of proof in [22]. The question whether the result could be true without additional
assumptions remained open. In this paper, we answer this question by proving that
this is indeed the case. Our main theorem states that for typical code tree fractals
the Hausdorff, packing and box counting dimensions are equal to the zero of the
pressure (see Theorem 3.5).
Our methods are completely different from those of [21, 22]. We introduce a new

concept of a neck net measure (see Section 3) resembling the net measure that is
utilised in the definition of the affinity dimension - the essential difference being
that the neck net measure takes into account the neck structure. It turns out
that the affinity dimension is almost surely equal to the neck affinity dimension
(Proposition 3.2) which, in turn, equals the zero of the pressure (Theorem 3.5). The
main part of the proof is to show that the neck affinity dimension is not smaller than
the zero of the pressure. The proof of this fact is based on a careful decomposition
of trees, appearing in the definitions of the pressure and the neck affinity dimension,
into suitable subtrees.
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The paper is organised as follows. In Section 2, we recall the notation from [21,22]
and present results needed for proving our main theorem. In Section 3, we state and
prove the main result.

2. Notation and preliminaries

In this section, we summon notation and preliminaries from [21]. (Note that, for
simplicity, our notation is slightly different from that of [21].) Let Λ be a topological

space. Suppose that F = {F λ = {T λ
i +aλi }

Mλ

i=1|λ ∈ Λ} is a family of iterated function
systems on R

d consisting of affine maps. Here T λ
i : Rd → R

d is a non-singular linear
mapping and aλi ∈ R

d. For brevity, we write fλ
i = T λ

i + aλi for all i = 1, . . . ,Mλ and
λ ∈ Λ. We assume that

(2.1) sup
λ∈Λ,i=1,...,Mλ

|aλi | < ∞

and, moreover, there exist M > 0 and σ, σ ∈ (0, 1) such that

(2.2) M = sup
λ∈Λ

Mλ < ∞

and

(2.3) σ ≤ σd(T
λ
i ) ≤ · · · ≤ σ1(T

λ
i ) = ‖T λ

i ‖ ≤ σ for all λ ∈ Λ and i = 1, ...,Mλ

where σj(T ) is the j-th singular value of a non-singular linear mapping T : Rd → R
d.

Note that F λ may be naturally identified with an element of R(d2+d)Mλ and, thus,
F ⊂

⋃M
i=1R

(d2+d)i, where the disjoint union is endowed with the natural topology.
We suppose that the map λ 7→ F λ is Borel measurable. For s ≥ 0, we denote by
Φs(T ) the multiplicative singular value function of a linear map T : Rd → R

d, that
is,

Φs(T ) =

{
σ1(T )σ2(T ) · · ·σm−1(T )σm(T )

s−m+1, if 0 ≤ s ≤ d

σ1(T )σ2(T ) · · ·σd−1(T )σd(T )
s−d+1, if s > d

where m is the integer such that m− 1 ≤ s < m.
Let I = {1, . . . ,M} and I0 = {∅}. For all k ∈ N, the length of a word τ ∈ Ik is

|τ | = k. We associate to a function ω̃ :
⋃∞

k=0 I
k → Λ a tree rooted at ∅ in a natural

manner: Let Σω̃
∗ ⊂

⋃∞
k=0 I

k be the unique set such that

• ∅ ∈ Σω̃
∗ ,

• if i1 · · · ik ∈ Σω̃
∗ and ω̃(i1 · · · ik) = λ, then i1 · · · ikl ∈ Σω̃

∗ if and only if l ≤ Mλ,
• if i1 · · · ik /∈ Σω̃

∗ , then for all l = 1, . . . ,M , we have i1 · · · ikl /∈ Σω̃
∗ .

The restriction of ω̃ to Σω̃
∗ is called a code tree. In a code tree, we identify the

vertex i1 · · · ik with the function system F ω̃(i1···ik) and, moreover, the edge connecting

i1 · · · ik to i1 · · · ikl with the map f
ω̃(i1···ik)
l . Let Ω̃ be the set of all code trees. A sub

code tree of a code tree ω̃ is the restriction of ω̃ to a subset of Σω̃
∗ which is rooted at
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some vertex i1 · · · ik ∈ Σω̃
∗ and contains all descendants of i1 · · · ik belonging to Σω̃

∗ .

We endow Ω̃ with the topology generated by the sets

{ω̃ ∈ Ω̃ | Σω̃
∗ ∩

k⋃

j=0

Ij = J and ω̃(i) ∈ Ui for all i ∈ J},

where k ∈ N, Ui ⊂ Λ is open for all i ∈ J and J ⊂
⋃k

j=0 I
j is a tree rooted at ∅ and

having all leaves in Ik.

Equip IN with the product topology, and define for all ω̃ ∈ Ω̃

Σω̃ = {i = i1i2 · · · ∈ IN | i1 · · · in ∈ Σω̃
∗ for all n ∈ N}.

Then Σω̃ is compact. For all k ∈ N and i ∈ Σω̃ ∪
⋃∞

j=k I
j, we denote by ik = i1 · · · ik

the initial word of i with length k and use following type of natural abbreviations
for compositions:

f ω̃
ik
= f

ω̃(∅)
i1

◦ f
ω̃(i1)
i2

◦ · · · ◦ f
ω̃(i1···ik−1)
ik

and T ω̃
ik
= T

ω̃(∅)
i1

T
ω̃(i1)
i2

· · ·T
ω̃(i1···ik−1)
ik

.

Note that the maps ω̃ 7→ f ω̃
ik
and ω̃ 7→ T ω̃

ik
are Borel measurable. For all ω̃ ∈ Ω̃, set

Z ω̃(i) = lim
k→∞

f ω̃
ik
(0) and Aω̃ = {Z ω̃(i) | i ∈ Σω̃}.

The attractor Aω̃ is called the code tree fractal corresponding to ω̃. For k ∈ N,

ω̃ ∈ Ω̃ and i ∈ Σω̃, the cylinder of length k determined by i is defined as

[ik] = {j ∈ Σω̃ | jl = il for all l = 1, . . . , k}.

We proceed by recalling the definition of a neck level which is an essential feature
of V -variable fractals, see for example [1]. A neck list N = (Nm)m∈N is a strictly
increasing sequence of natural numbers. We use the notation Ω for a subset of
Ω̃× N

N consisting of elements ω = (ω̃,N) such that

• N = (Nm)m∈N is a neck list and
• if iNm

jl, i
′
Nm

∈ Σω̃
∗ , then i′Nm

jl ∈ Σω̃
∗ and ω̃(iNm

jl) = ω̃(i′Nm
jl).

Neck levels guarantee that the attractor Aω̃ is globally nearly homogeneous in the
sense that if Nm ∈ N is a neck level of ω̃, then all sub code trees of ω̃ rooted at
vertices i ∈ Σω̃

∗ with |i| = Nm are identical.

A function Ξ: Ω → Ω is a shift if Ξ(ω̃,N) = (ω̂, N̂), where N̂m = Nm+1 −N1 for
all m ∈ N and ω̂(jl) = ω̃(iN1jl) for all jl such that iN1jl ∈ Σω̃

∗ . Note that, by the
definition of a neck, the definition of ω̂ does not depend on the choice of iN1 . For
all i ∈ N and ω = (ω̃,N) ∈ Ω, we write Ni(ω) = Ni for the projection of ω onto the
i-th coordinate of N. We equip Ω with the topology generated by cylinders

[(ω̃,N)m] = {(ω̂, N̂) ∈ Ω | N̂i = Ni for all i ≤ m and ω̂(τ) = ω̃(τ)

for all τ with |τ | < Nm}.
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Since ω 7→ N1(ω) is continuous as a projection, the function ω 7→ N1(ω) is Borel
measurable. For any function φ of ω̃, we use the notation φ(ω) to view φ as a
function of ω. Finally, for all n,m ∈ N ∪ {0} with n < m, define

Σω
∗ (n,m) = {iNn(ω)+1 · · · iNm(ω) | iNn(ω)iNn(ω)+1 · · · iNm(ω) ∈ Σω

∗ },

where N0 = 0. For all s ≥ 0, the pressure is defined as follows

(2.4) pω(s) = lim
k→∞

log Sω(k, s)

k

provided that the limit exists. Here

Sω(k, s) =
∑

ik∈Σω
∗

Φs(T ω
ik
)

for all k ∈ N. Since T 7→ Φs(T ) is a continuous function, the map ω 7→ pω(s) is
Borel measurable.
It is well known that for affine iterated function systems the pressure always exists.

For code tree fractals this is not always the case as explained in [21]. However, for
typical random code tree fractals the pressure function exists and has a unique zero
(see [21, Theorem 4.3]).

Theorem 2.1. Assume that P is an ergodic Ξ-invariant Borel probability measure
on Ω such that

∫
Ω
N1(ω) dP (ω) < ∞. Then for P -almost all ω ∈ Ω, the pressure

pω(s) exists for all s ∈ [0,∞[. Furthermore, pω is strictly decreasing and there exists
a unique s0 such that pω(s0) = 0 for P -almost all ω ∈ Ω.

For the purpose of identifying certain translation vectors (for motivation of the

identification, we refer to [21, 22]), we equip the set Λ̂ = {(λ, i) | λ ∈ Λ and i =
1, . . . ,Mλ} with an equivalence relation ∼ satisfying the following assumptions:

• the cardinality A of the set of equivalence classes a := Λ̂/ ∼ is finite,
• for every λ ∈ Λ, we have (λ, i) ∼ (λ, j) if and only if i = j and
• the equivalence classes, regarded as subsets of Λ, are Borel sets.

Using the relation ∼ for the purpose of identifying translation vectors, the set of
equivalence classes a may be viewed as an element of RdA. We write Aω

a
for the

attractor of a code tree ω to emphasise the dependence on a.
For determining the almost sure value of Hausdorff dimension for random affine

code tree fractals, the affinity dimension turns out to be useful. The affinity dimen-
sion is defined in terms of the s-dimensional net measure in the following manner.
Let s ≥ 0. We denote by Ms the s-dimensional net measure defined for all Borel
sets E ⊂ Σω by

Ms(E) = lim
j→∞

Ms
j(E)

where

Ms
j(E) = inf

{∑

ik∈J

Φs(T ω
ik
) | J ⊂ Σω

∗ , E ⊂
⋃

ik∈J

[ik] and k ≥ j
}
.
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The affinity dimension of Σω is defined as

(2.5) αω = inf{s ≥ 0 | Ms(Σω) = 0} = sup{s ≥ 0 | Ms(Σω) = ∞}.

Remark 2.2. According to the standard definition, the affinity dimension is the
unique zero of the pressure determined by the singular value function. Note that
in the case when the maps are similarities, the zero of the pressure equals the
similarity dimension of a self-similar set. In [5], Falconer proved that, for affine
iterated function systems, the pressure exists and its unique zero equals the number
αω defined in (2.5). As pointed out in the introduction, for general code tree fractals
the pressure need not exist and even if it exists, it is not necessarily equal to the
number αω (see [21]). Since αω is defined for any code tree fractal, we prefer it as
the affinity dimension. Our choice is strongly supported by the following theorem.

We denote the Hausdorff dimension by dimH. According to [21, Theorem 3.2], for
all ω ∈ Ω, Hausdorff and affinity dimensions of Aω

a
agree for almost all a.

Theorem 2.3. Assume that σ < 1/2. Let ω ∈ Ω. Then

dimH Aω
a
= min{αω, d} for LdA-almost all a ∈ R

dA.

3. Results

In this section, we state and prove our main result (Theorem 3.5), according
to which, almost surely with respect to any ergodic Ξ-invariant measure having
finite expectation for the first neck level, the Hausdorff, packing and box counting
dimensions of code tree fractals are equal to the zero of the pressure for almost all
translation vectors.
We proceed by verifying auxiliary results. Our first aim is to prove that the

affinity dimension αω is constant almost surely.

Proposition 3.1. Let P be an ergodic Ξ-invariant probability measure on Ω with∫
Ω
N1(ω) dP (ω) < ∞. There exists α ≥ 0 such that αω = α for P -almost all ω ∈ Ω.

Proof. Since
∫
Ω
N1(ω) dP (ω) < ∞, we have N1(ω) < ∞ for P -almost all ω ∈ Ω. For

all such ω ∈ Ω, the definition of Ms
n implies that

(σs)N1(ω)Ms
n(Σ

Ξ(ω)) ≤ Ms
N1(ω)+n(Σ

ω) ≤ (Mσs)N1(ω)Ms
n(Σ

Ξ(ω))

for all s ≥ 0 and n ∈ N. Letting n → ∞, gives

(3.1) (σs)N1(ω)Ms(ΣΞ(ω)) ≤ Ms(Σω) ≤ (Mσs)N1(ω)Ms(ΣΞ(ω)).

From (3.1), we deduce that the set

E(s) := {ω ∈ Ω | Ms(Σω) > 0}

is Ξ-invariant, that is, Ξ−1((E(s)) = E(s). Since Σω is compact and cylinder sets
are open, one may use finite coverings when calculating Ms

j(Σ
ω). Thus, the Borel

measurability of ω 7→ Φs(T ω
ik
) implies that ω 7→ Ms(Σω) is a Borel map and, there-

fore, E(s) is a Borel set. Since P is ergodic, for all s ≥ 0, P (E(s)) is either 0 or 1.
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It follows that αω is a constant for P -almost all ω ∈ Ω, since otherwise there exists
s ≥ 0 such that 0 < P (E(s)) < 1. �

Now we introduce another net measure M̃s on Σω which is similar to the natural
net measure Ms but takes into account the neck structure. For all n ∈ N, let

In = {iNk(ω) ∈ Σω
∗ | k ≥ n}.

For s ≥ 0, the s-dimensional neck net measure M̃s is defined for all Borel subsets
E of Σω by

M̃s(E) = lim
j→∞

M̃s
j(E)

where

M̃s
j(E) = inf

{∑

i∈I

Φs(T ω
i
) | E ⊂

⋃

i∈I

[i] and I ⊂ Ij

}
.

We define the neck affinity dimension of Σω as

(3.2) α̃ω = inf{s ≥ 0 | M̃s(Σω) = 0} = sup{s ≥ 0 | M̃s(Σω) = ∞}.

Since in the definition of M̃s(E) there are more restrictions on possible coverings of

E than in the case of Ms(E), we have Ms(E) ≤ M̃s(E). Hence,

(3.3) αω ≤ α̃ω for all ω ∈ Ω.

It turns out that αω and α̃ω are equal almost surely.

Proposition 3.2. Letting P be an ergodic Ξ-invariant probability measure on Ω
with

∫
Ω
N1(ω) dP (ω) < ∞, we have that αω = α̃ω for P -almost all ω ∈ Ω.

Proof. Observe that there exists a Borel set F ⊂ Ω with P (F ) = 1 such that for all
ω ∈ F and δ > 0, we have

(3.4) Nn+1(ω)−Nn(ω) ≤ δNn(ω)

for sufficiently large n ∈ N. Indeed, since

(3.5) Nn(ω) =

n−1∑

k=0

(
Nk+1(ω)−Nk(ω)

)
=

n−1∑

k=0

N1(Ξ
k(ω)),

Birkhoff’s ergodic theorem gives

lim
n→∞

Nn(ω)

n
= lim

n→∞

1

n

n−1∑

k=0

N1(Ξ
k(ω)) =

∫

Ω

N1(ω) dP (ω)

for P -almost all ω ∈ Ω. This leads to

lim
n→∞

Nn+1(ω)−Nn(ω)

n
= 0 = lim

n→∞

Nn+1(ω)−Nn(ω)

Nn(ω)

for P -almost all ω ∈ Ω, completing the proof of (3.4).
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Now, by (3.3), it suffices to verity that

(3.6) αω ≥ α̃ω for P -almost all ω ∈ F.

For this purpose, consider ω ∈ F and ε > 0. We will show that there exist a finite
Borel measure µω on Σω and a constant c(ω) such that

(3.7) µω[ik] ≤ c(ω)Φα̃ω−ε(T ω
ik
)

for all cylinders [ik] with k ≥ 1. It is shown in the proof of [21, Theorem 3.2] that
this results in

dimH Aω
a
≥ α̃ω − ε for LdA-almost all a ∈ R

dA.

From Theorem 2.3, we conclude that αω ≥ α̃ω − ε for P -almost all ω ∈ F . Taking
a sequence εi tending to zero, completes the proof of (3.6).

It remains to prove (3.7). Since M̃α̃ω−ε/2(Σω) = ∞, we derive, similarly as in [26,
Proposition 2.8] (the proof of [26, Proposition 2.8] is written for homogeneous code
trees but it works for inhomogeneous code trees as well), that there exist a finite
Borel measure µω on Σω and a constant c′(ω) such that

(3.8) µω[iNk(ω)] ≤ c′(ω)Φα̃ω−ε/2(T ω
iNk(ω)

)

for all cylinders [iNk(ω)] with k ≥ 1. We aim to verify that µω satisfies (3.7). For all
n ∈ N , there is a unique k ∈ N such that Nk(ω) ≤ n < Nk+1(ω). By (3.8) and the
submultiplicativity of Φs, we get

µω[in] =
∑

in+1,...,iNk+1(ω)

µω[inin+1 · · · iNk+1(ω)]

(3.9)

≤ c′(ω)Φα̃ω−ε/2(T ω
in
)

∑

in+1,...,iNk+1(ω)

Φα̃ω−ε/2(T ω
in+1

· · ·T ω
iNk+1(ω)

)

= c′(ω)Φα̃ω−ε(T ω
in
)
Φα̃ω−ε/2(T ω

in
)

Φα̃ω−ε(T ω
in
)

∑

in+1,...,iNk+1(ω)

Φα̃ω−ε/2(T ω
in+1

· · ·T ω
iNk+1(ω)

).

The assumptions (2.2) and (2.3) imply that

a :=
∑

in+1,...,iNk+1(ω)

Φα̃ω−ε/2(T ω
in+1

· · ·T ω
iNk+1(ω)

) ≤ MNk+1(ω)−n ≤ MNk+1(ω)−Nk(ω)

and

b :=
Φα̃ω−ε/2(T ω

in
)

Φα̃ω−ε(T ω
in
)

≤ σεn/2 ≤ σεNk(ω)/2.

As ω ∈ F , for every δ > 0, we have Nk+1(ω) − Nk(ω) ≤ δNk(ω) when k is large
enough. Since σ < 1 and M < ∞, taking δ sufficiently small, gives ab ≤ 1 for all
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sufficiently large k ∈ N. Substituting the product of a and b with 1 in (3.9), we
obtain that

µω[in] ≤ c′(ω)Φα̃ω−ε(T ω
in
)

for large enough n ∈ N. Thus we can find a constant c(ω) such that

µω[in] ≤ c(ω)Φα̃ω−ε(T ω
in
)

for all cylinders [in] with n ≥ 1. �

When calculating M̃s(Σω) for s > α̃ω, by compactness of Σω, one may find a
finite covering {[iNk

]}iNk
∈J of Σω such that

∑
iNk

∈J Φ
s(T ω

iNk

) < 1. In particular, the

lengths of iNk
are bounded but the bound may depend on ω ∈ Ω. Next we prove a

lemma which states that, apart from a small exceptional set, one can find a uniform
bound. In what follows we need the following notation. For all n ∈ N and ω ∈ Ω,
set

Jn(ω) =

n⋃

k=1

{iNk(ω) | iNk(ω) ∈ Σω
∗ } and J(ω) =

∞⋃

k=1

Jk(ω).

Lemma 3.3. Let P be an ergodic Ξ-invariant probability measure on Ω satisfying∫
Ω
N1(ω) dP (ω) < ∞, and let s > α, where α is as in Proposition 3.1. For every

ε > 0, there exist a Borel set B(ε) ⊂ Ω with P (B(ε)) ≥ 1 − ε and R ∈ N such that
for every ω ∈ B(ε), there is CR(ω) ⊂ JR(ω) with

Σω ⊂
⋃

iNk(ω)∈CR(ω)

[iNk(ω)] and
∑

iNk(ω)∈CR(ω)

Φs(T ω
iNk(ω)

) < 1.

Proof. We introduce a family of functions {fn}n∈N defined on Ω by

fn(ω) = min
{ ∑

iNk(ω)∈I

Φs(T ω
iNk(ω)

) | Σω ⊂
⋃

iNk(ω)∈I

[iNk(ω)] and I ⊂ Jn(ω)
}
.

For all n ∈ N, the function fn(ω) is Borel measurable. Indeed, this follows from
the fact that ω 7→

∑
iNk(ω)∈I

Φs(T ω
iNk(ω)

) is a Borel function as a finite sum of Borel

functions.
Recalling that α̃ω = α for P -almost all ω ∈ Ω (see Propositions 3.1 and 3.2), gives

M̃s(Σω) = 0 for P -almost all ω ∈ Ω. In particular, for P -almost all ω ∈ Ω and for
every δ > 0, there exists a finite set I ⊂ J(ω) such that

∑

iNk(ω)∈I

Φs(T ω
iNk(ω)

) < δ and Σω ⊂
⋃

iNk(ω)∈I

[iNk(ω)].

Recall that we may use finite coverings in the definition of M̃s(Σω) because Σω is
compact and every cylinder in Σω

∗ is an open set. This implies that for P -almost all
ω ∈ Ω, we have

lim
n→∞

fn(ω) = 0.
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By Egorov’s theorem, for every ε > 0, there exists a Borel set B(ε) ⊂ Ω with
P (B(ε)) ≥ 1 − ε such that fn(ω) converges uniformly to 0 on B(ε). In particular,
there exists R ∈ N such that fR(ω) < 1 for all ω ∈ B(ε). �

Our plan is to show that for any s > α, we have s ≥ s0, that is, p
ω(s) ≤ 0. To

achieve this goal, we will employ Lemma 3.3 and, for all large enough L ∈ N, we
decompose the finite code tree

Σω(L) = {iNL(ω) | iNL(ω) ∈ Σω
∗ }

into subtrees CR(ω
′) given by Lemma 3.3 for some suitable ω′ ∈ Ω. Since the

complement of the set B(ε) in Lemma 3.3 may have positive measure, the above
decomposition cannot cover the whole tree Σω(L). However, the ergodicity of P
guarantees that the contribution of the remaining part is not too large.
Now we formalise the above idea. Consider s > α and ε > 0. Let B(ε) ⊂ Ω and

R ∈ N be as in Lemma 3.3. Set

C(ε) = {CR(ω) | ω ∈ B(ε)},

and for all L ∈ N with L ≥ R, define

H(ε, L) =
{
{iNk(ω) · · · iNk′

(ω)|iNk(ω) · · · iNk′(ω)
∈ ΣΞk(ω)

∗ } | k < L,Ξk(ω) /∈ B(ε) and

k′ = min
{
L,min{j > k | Ξj(ω) ∈ B(ε)}

}}
.

Note that each element in C(ε) is a collection of words with possibly varying length
at most R while every element of H(ε, L) is a collection of words with same length,
which is at most NL(ω). Each element in C(ε) and H(ε, L) is called a subtree. For
every ω ∈ Ω and L ≥ R, we decompose Σω(L) into subtrees belonging to C(ε) and
H(ε, L). The decomposition will be done inductively as follows.
Decomposition step 1. If ω ∈ B(ε), then the first generation decomposition subtree

D1(ω) is CR(ω) given by Lemma 3.3. Otherwise, let

m(ω) = min
{
L,min{k ≥ 1 | Ξk(ω) ∈ B(ε)}

}

and define D1(ω) as {iNm(ω)(ω) | iNm(ω)(ω) ∈ Σω
∗ } ∈ H(ε, L). In both cases, the words

iNk(ω) ∈ D1(ω) satisfy k ≤ L and, moreover, the cylinders [iNk(ω)] are disjoint and
cover the whole space Σω.
Decomposition step 2. We apply the decomposition step 1 to the descendants of

each iNk(ω) ∈ D1(ω) with k ≤ L− R. More precisely, for every iNk(ω) ∈ D1(ω) with
k ≤ L−R, we set ω′ = Ξk(ω) and apply decomposition step 1 with ω replaced by ω′

and with the modification that in the definition of m(ω′) L is replaced by L− k. In
this way, every iNk(ω) ∈ D1(ω) with k ≤ L − R defines a second generation decom-
position subtree D2(ω, iNk(ω)). We continue this decomposition process inductively
until all the nodes in Σω(L) which are not covered lie between levels NL−R(ω) and
NL(ω). In this manner, we obtain a tree, denoted by A(L), consisting of subtrees
belonging to C(ε) or H(ε, L).



RANDOM AFFINE CODE TREE FRACTALS 11

Now we are ready to prove the main technical lemma of this paper. We denote
the characteristic function of a set A by 1A and the complement of A by Ac.

Lemma 3.4. Consider s > α, ε > 0 and ω ∈ Ω. Let B(ε) and R ∈ N be as in
Lemma 3.3. For every L ≥ R, we have

(3.10)
∑

iNL(ω)∈Σω
∗

Φs(T ω
iNL(ω)

) ≤ MQL(ε)+NL(ω)−NL−R(ω)

where QL(ε) =
∑L−1

k=0 (Nk+1(ω)−Nk(ω))1B(ε)c(Ξ
k(ω)).

Proof. Recalling that in the tree A(L) every word has length between NL−R(ω) and
NL(ω) and utilising the submultiplicativity of Φs and the inequality σ < 1, it follows
easily that

∑

iNL(ω)∈Σω
∗

Φs(T ω
iNL(ω)

) ≤
( ∑

i∈A(L)

Φs(T ω
i
)
)
MNL(ω)−NL−R(ω).

Hence, we only need to show that

(3.11)
∑

i∈A(L)

Φs(T ω
i
) ≤ MQL(ε).

Let Γ be any subtree of A(L) consisting of the subtrees obtained in the decom-
position process. The first and the last neck levels of Γ are denoted by F (Γ) and
L(Γ), respectively. See Figure 1 for an illustration of F (Γ) and L(Γ) of a subtree Γ.
We are going to prove that

level Nk: k = F (Γ)
(The first neck level of Γ.)

level Nk′: k
′ = L(Γ)

(The last neck level of Γ.)

. . . . . .

. . . . . .

. . . . . .

T
h
e
su
b
tr
ee

Γ

Figure 1. A subtree Γ with its first and last neck levels.
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(3.12)
∑

i∈Γ

Φs(T ω
i
) ≤ M

∑L(Γ)−1
k=F (Γ)

(Nk+1(ω)−Nk(ω))1B(ε)c (Ξ
k(ω)).

Applying (3.12) to the subtree Γ = A(L), gives (3.11). We prove (3.12) by induction
on the number of the subtrees in Γ given by the decomposition process.
Initial step: Assume that the subtree Γ consists of one single subtree belonging

to C(ε) or H(ε, L). If Γ ∈ C(ε), the definition of C(ε) results in
∑

i∈Γ

Φs(T ω
i
) ≤ 1 ≤ M

∑L(Γ)−1
k=F (Γ)

(Nk+1(ω)−Nk(ω))1B(ε)c (Ξ
k(ω)).

On the other hand, if Γ ∈ H(ε, L), then Γ = {iNk(ω) · · · iNk′
(ω) | iNk(ω) · · · iNk′

(ω) ∈

Σ
Ξk(ω)
∗ } with Ξj(ω) /∈ B(ε) for j = k, . . . , k′ − 1, and Ξk′(ω) ∈ B(ε) or k′ = L.

Hence,
∑

i∈Γ

Φs(T ω
i
) ≤

∑

i∈Γ

1 ≤ MNL(Γ)(ω)−NF (Γ)(ω) = M
∑L(Γ)−1

k=F (Γ)
(Nk+1(ω)−Nk(ω))1B(ε)c (Ξ

k(ω))
.

We deduce that (3.12) holds when Γ contains only one subtree.
Inductive step n: Suppose that (3.12) is true for every subtree containing at most

n − 1 decomposition subtrees. Letting Γ be a subtree containing n decomposition
subtrees, we show that (3.12) holds for Γ. For this purpose, we denote by Γ(1) the
subtree of the smallest generation in Γ. Recall that Γ(1) belongs to C(ε) or H(ε, L).
Suppose that Γ(1) = {i1, i2, . . . , iγ}. For ℓ = 1, . . . , γ, let Γℓ be the subtree of Γ
rooted at iℓ. See Figure 2 for an illustration of Γ(1) and Γℓ.

ir i4 i3

i2 i1Γ(1)

Γ1

.
.
.

. . .. . .

.
.
.

.
.
.

.
.
.

.
.
.

.
.
.

.
.
.

.
.
.

.
.
.

Figure 2. The first generation Γ(1) of Γ (in black) and the subtree
Γ1 rooted at i1 (in red).
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Let

F (Γℓ0) = min
1≤ℓ≤γ

{F (Γℓ)} and L(Γℓ1) = max
1≤ℓ≤γ

{L(Γℓ)}.

Using the fact that, for all ℓ = 1, . . . , γ, the subtree Γℓ contains less than n decompo-
sition subtrees, and applying the induction hypothesis for Γℓ in the first inequality
below, gives

∑

i∈Γℓ

Φs(T ω
i
) ≤ M

∑L(Γℓ)−1

k=F (Γℓ)
(Nk+1(ω)−Nk(ω))1B(ε)c (Ξ

k(ω))

≤ M
∑L(Γℓ1

)−1

k=F (Γℓ0
)
(Nk+1(ω)−Nk(ω))1B(ε)c (Ξ

k(ω))
.

(3.13)

Now there are two cases to consider: Γ(1) ∈ C(ε) or Γ(1) ∈ H(ε, L). To begin
with, suppose that Γ(1) ∈ C(ε). Then

∑
i∈Γ(1) Φ

s(T ω
i
) ≤ 1 and, therefore, by the

submultiplicativity of Φs and by (3.13), we obtain

∑

i∈Γ

Φs(T ω
i
) ≤

γ∑

ℓ=1

(
Φs(T ω

iℓ
)
∑

i∈Γℓ

Φs(T ω
i
)
)
≤ max

1≤ℓ≤γ

∑

i∈Γℓ

Φs(T ω
i
)

≤ M
∑L(Γℓ1

)−1

k=F (Γℓ0
)
(Nk+1(ω)−Nk(ω))1B(ε)c (Ξ

k(ω))
≤ M

∑L(Γ)−1
k=F (Γ)

(Nk+1(ω)−Nk(ω))1B(ε)c (Ξ
k(ω))

.

Hence, (3.12) holds for Γ.
Finally, assume that Γ(1) ∈ H(ε, L). Again, by the submultiplicativity of Φs and

(3.13), we have

∑

i∈Γ

Φs(T ω
i
) ≤

γ∑

ℓ=1

(
Φs(T ω

iℓ
)
∑

i∈Γℓ

Φs(T ω
i
)
)

≤
( γ∑

ℓ=1

Φs(T ω
iℓ
)
)
M

∑L(Γℓ1
)−1

k=F (Γℓ0
)
(Nk+1(ω)−Nk(ω))1B(ε)c (Ξ

k(ω))
.

(3.14)

Since Γ(1) ∈ H(ε, L), all the words in Γ(1) have the same length and, therefore,
F (Γℓ0) = L(Γ(1)). Furthermore, Ξj(ω) /∈ B(ω) for j = 0, . . . , L(Γ(1))− 1. Hence,

γ∑

ℓ=1

Φs(T ω
iℓ
) ≤ M

∑L(Γ(1))−1
k=F (Γ(1))

(Nk+1(ω)−Nk(ω))1B(ε)c (Ξ
k(ω))

= M
∑F (Γℓ0

)−1

k=F (Γ)
(Nk+1(ω)−Nk(ω))1B(ε)c (Ξ

k(ω))
.

(3.15)

Employing (3.15) in (3.14) and observing that L(Γℓ1) ≤ L(Γ), yields
∑

i∈Γ

Φs(T ω
i
) ≤ M

∑L(Γ)−1
k=F (Γ)

(Nk+1(ω)−Nk(ω))1B(ε)c (Ξ
k(ω))

.

We conclude that (3.12) is true for Γ. �
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Now we are ready to state and prove our main theorem. We denote the packing
and box counting dimensions by dimP and dimB, respectively.

Theorem 3.5. Assume that σ < 1/2 and P is an ergodic Ξ-invariant probability
measure on Ω with

∫
Ω
N1(ω) dP (ω) < ∞. Then for P -almost all ω ∈ Ω,

dimH Aω
a
= dimP A

ω
a
= dimB Aω

a
= min{s0, d} for LdA-almost all a ∈ R

dA

where s0 is the unique zero of the pressure (see Theorem 2.1).

Proof. Noting that the proof of the upper bound dimB Aω
a
≤ min{s0, d} given in [21,

Theorem 5.1] is valid under the assumptions of Theorem 3.5, we may restrict our
consideration to the Hausdorff dimension. By Theorem 2.3 and Proposition 3.1, it
is sufficient to verify that s0 = α.
Let s > s0. By Theorem 2.1, the pressure is strictly decreasing and, therefore,

pω(s) < 0 for P -almost all ω ∈ Ω. Considering such ω ∈ Ω and using the definition
of the pressure (2.4), we conclude that

∑
iNk(ω)∈Σω

∗

Φs(T ω
iNk(ω)

) ≤ 1 for all sufficiently

large k ∈ N. Recalling Proposition 3.2, the definition of the neck affinity dimension
(3.2) implies that α = α̃ω ≤ s for P -almost all ω ∈ Ω. This completes the proof of
the fact that α ≤ s0.
For the purpose of proving the opposite inequality, consider s > α and ε > 0.

Let B(ε) ⊂ Ω be as in Lemma 3.3. Applying the Birkhoff’s ergodic theorem and
recalling (3.5), implies that for P -almost all ω ∈ Ω,
(3.16)

lim
n→∞

1

Nn(ω)

n−1∑

k=0

(Nk+1(ω)−Nk(ω))1B(ε)(Ξ
k(ω)) =

∫
B(ε)

N1(ω) dP (ω)
∫
Ω
N1(ω) dP (ω)

=: Q(ε).

The fact that N1(ω) is P -integrable, gives limε→0Q(ε) = 1. Let QL(ε) be as in
Lemma 3.4. Since for P -almost all ω ∈ Ω,

lim
L→∞

QL(ε)

NL(ω)
= 1−Q(ε)

and, moreover,

lim
L→∞

NL(ω)−NL−R(ω)

NL(ω)
= 0

by (3.4), Lemma 3.4 implies that for P -almost all ω ∈ Ω,

pω(s) = lim
L→∞

1

NL(ω)
log

∑

iNL(ω)∈Σω
∗

Φs(T ω
iNL(ω)

) ≤ (1−Q(ε)) logM −−→
ε→0

0.

From this, we conclude that s ≥ s0. �

Remark 3.6. As pointed out in [21], the upper bound 1/2 for σ is optimal in Theo-
rem 3.5. Moreover, it is quite natural to assume that the first neck level is integrable.
Without the integrability condition it is difficult to utilise the shift invariance and
ergodicity of P . If P is not ergodic, one may use the ergodic decomposition of P
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and apply Theorem 3.5 to ergodic components of P . However, in this case, the
dimension may depend on ω ∈ Ω. Therefore, the assumptions of Theorem 3.5 may
be regarded as optimal ones.
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[25] F. Przytycki and M. Urbański, On the Hausdorff dimension of some fractal sets, Studia Math.
93 (1989), 155–186.

[26] T. Rajala and M. Vilppolainen, Weakly controlled Moran constructions and iterated function

systems in metric spaces, Illinois J. Math. 55 (2011), no. 3, 1015–1051.
[27] E. Rossi, Local dimensions of measures on infinitely generated self-affine sets, J. Math. Anal.

Appl. 413 (2014), no. 2, 1030–1039.
[28] K. Simon, The dimension theory of almost self-affine sets and measures, in Fractals, wavelets,

and their applications, 103–127, Springer Proc. Math. Stat., 92, Springer, Cham, 2014.
[29] B. Solomyak, Measure and dimensions for some fractal families, Math. Proc. Cambridge

Philos. Soc. 124 (1998), 531–546.

Department of Mathematical Sciences, P.O. Box 3000, 90014 University of Oulu,

Finland

E-mail address : esa.jarvenpaa@oulu.fi

Department of Mathematical Sciences, P.O. Box 3000, 90014 University of Oulu,

Finland

E-mail address : maarit.jarvenpaa@oulu.fi

Department of Mathematical Sciences, P.O. Box 3000, 90014 University of Oulu,

Finland

E-mail address : meng.wu@oulu.fi

Department of Mathematical Sciences, P.O. Box 3000, 90014 University of Oulu,

Finland

School of Mathematics and Statistics, Hubei University, Wuhan 430062, P.R.

China

E-mail address : wen.wu@oulu.fi; hust.wuwen@gmail.com


	1. Introduction
	2. Notation and preliminaries
	3. Results
	References

