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Two adaptive bandwidth selection methods for minimizing the mean squared error
of nonparametric estimators in locally stationary processes are proposed. We inves-
tigate a cross-validation approach and a method based on contrast minimization
and derive asymptotic properties of both methods. The results are applicable for
different statistics under a general setting of local stationarity including nonlinear
processes. At the same time, we deepen the general framework for local stationarity
based on stationary approximations. For example, a general Bernstein inequality is
derived for such processes. The properties of the bandwidth selection methods are
also investigated in several simulation studies.

1. INTRODUCTION

In this paper, we develop data adaptive bandwidth selection rules for nonstationary
processes under a novel paradigm of local stationarity recently introduced in
Dahlhaus, Richter, and Wu (2019). Time series sampled at high frequency or long
time series exhibit often nonstationarity instead of stationarity, and correspond-
ingly the use of models with time-varying parameters or of locally stationary
processes in general has increased a lot. A prominent example from financial
econometrics is the use of GARCH models for modeling conditional heteroskedas-
ticity. While in the beginning ordinary GARCH models have been regarded as
sufficient to model conditional heteroskedasticity of the volatility, insight has
grown that, for example, modeling of the daily pattern can be improved by a
time-varying GARCH model (cf. Dahlhaus and Subba Rao, 2006; Amado and
Teräsvirta, 2013; Amado and Teräsvirta, 2017). Analogously, time-varying models
for the trading intensity have been used such as locally stationary Hawkes models
(Roueff, von Sachs, and Sansonnet, 2016). Motivated by the study of financial
returns, Koo and Linton (2012) have investigated locally stationary diffusion
processes with a time-varying drift and a volatility coefficient varying over time.
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1124 RAINER DAHLHAUS AND STEFAN RICHTER

The main focus of this paper is on deriving methods for adaptive bandwidth
selection of general nonparametric estimators. These include estimators of the
time-varying covariance function, the autocorrelation function, the time-varying
characteristic function, and, more general, estimators that are functionals of
moment estimators. Different to nonparametric regression, there exist only very
few theoretical results on adaptivity for locally stationary processes. Mallat,
Papanicolaou, and Zhang (1998) discussed adaptive covariance estimation for a
general class of locally stationary processes. More recently, Niedzwiecki, Ciolek,
and Kajikawa (2017) used a cross-validation approach to estimate covariances
and the spectrum for locally stationary linear processes. In Beran (2009), explicit
expansions of the mean squared error of parameter estimators of locally stationary
long-memory linear processes were derived. Other results are constructed for
specific models (in particular, the tvAR model) and are partly dependent on
further tuning parameters: in Dahlhaus and Giraitis (1998), explicit expansions
of the mean squared error of parameter estimators in tvAR models were provided.
Giraud, Roueff, and Sanchez-Perez (2015) discussed online-adaptive forecasting
of tvAR processes, and Arkoun (2011) and Arkoun and Pergamenchtchikov (2016)
proposed methods for sequential and minimax-optimal bandwidth selection for
tvAR processes of order 1. In Zhou and Wu (2009), rules of thumb for bandwidth
selection were proposed for local linear quantile estimators of general locally
stationary time series models.

In Richter and Dahlhaus (2019), adaptive estimation was developed for time-
varying parameter curves by means of local M-estimators, i.e., in a locally
parametric setting. In this paper, the task is adaptive estimation in a setting which
also locally is a nonparametric one. Technically, the difference is that we no longer
assume that the observed time series comes from a specific model like tvGARCH
or tvAR (and use this knowledge to build the estimator). Instead, we are interested
in general functionals of the time series such as covariances, correlations, or
characteristic functions.

Beyond that, there is another benefit this paper: in the course of the derivations,
we also deepen the general framework for local stationarity of Dahlhaus et al.
(2019) based on stationary approximations—the Bernstein inequality at the end of
Section 4 being an example. General frameworks for locally stationary processes
had been introduced by Dahlhaus (1997) for time-varying linear processes, and
by Wu (2005) and Wu and Zhou (2011) for time-varying Bernoulli shifts in
combination with the functional dependence measure, and furthermore by Priest-
ley (1965, 1988), the nonasymptotic approach for processes with evolutionary
spectra. Former approaches which use the original idea behind local stationarity,
namely that at each point in time the observed nonstationary process can be
approximated by a stationary process, were considered in the context of time-
varying ARCH processes in Dahlhaus and Subba Rao (2006), and investigated
further in the context of random coefficient models in Subba Rao (2006). The use
of such approximations as a general model was recommended by Vogt (2012),
who investigated nonparametric regression for locally stationary time series, and
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by Koo and Linton (2012), who investigated semiparametric estimation for locally
stationary models.

In Section 2, we introduce the framework of local stationarity based on sta-
tionary approximations. We mention some results from Dahlhaus et al. (2019)
and extend these results in which we prove an invariance property of the results
also for nonlinear transformations based on infinitely many lags. In Section 3,
we introduce a global bandwidth selection method based on cross validation and
prove asymptotic optimality of this method with respect to a squared-error-type
distance measure. We also discuss its behavior in practice via simulations. In
Section 4, we introduce a local bandwidth selection procedure by using a contrast
minimization approach in the spirit of Lepski, Mammen, and Spokoiny (1997).
We prove that the resulting nonparametric estimator attains the optimal rate for
the mean squared error up to a log factor. We compare the obtained method
with a global optimal selection routine and show the superiority of the method
in examples. The section also contains a Bernstein inequality which is of interest
beyond the present paper. Section 5 contains some concluding remarks.

Throughout this paper, we use the following notation. For vectors x,y ∈ R
d

and positive semidefinite matrices A ∈ R
d×d, |x|2 := (

∑d
j=1 |xj|2)1/2 denotes the

euclidean norm, x′ the transpose, x′y the euclidean scalar product, and |x|A :=
(x′Ax)1/2 the weighted euclidean norm.

The Supplementary Material for this article contains several technical results
including the proofs of the main theorems and a more general result for the setting
in Section 4.

2. MOMENT ESTIMATORS AND OPTIMAL BANDWIDTH SELECTORS

2.1. The Model

We assume that we observe n realizations of a process Xt,n at time points
t = 1, . . . ,n. The process is considered to be locally stationary in the following
sense (cf. Dahlhaus et al., 2019).

Assumption 2.1. Let q ≥ 1. There exists some D > 0, and, for each u ∈ [0,1],
there exists a strictly stationary process (X̃t(u))t∈Z such that, for all t = 1, . . . ,n and
u,u′ ∈ [0,1], ‖X̃0(u)‖q ≤ D, ‖Xt,n‖q ≤ D, and

‖Xt,n − X̃t(t/n)‖q ≤ Dn−1, ‖X̃0(u)− X̃0(u
′)‖q ≤ D|u−u′|.

Here, we use ‖Z‖q := E[|Z|q]1/q for random variables Z.

The conditions mean that Xt,n can be approximated locally, for |u− t
n | � 1, by

a stationary process X̃t(u). The continuity condition stated on u �→ X̃t(u) implies
that the stationary approximations vary smoothly over time. This motivates the
interpretation of locally stationary processes as processes which change their
(approximate) stationary properties smoothly over time. The main properties of
Xt,n are therefore encoded in the stationary approximations, and it is therefore of
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interest to analyze terms of the form Eg(X̃t(u),X̃t−1(u), . . .) with some function g
which are a natural approximation of Eg(Xt,n,Xt−1,n, . . .).

More detailed, define Yt,n := (Xt,n,Xt−1,n, . . . ,X1,n,0,0, . . .) and Ỹt(u) := (X̃s(u) :
s ≤ t). Our goal is to estimate functionals of the form

u �→ G(u) := Eg(Ỹt(u)),

where g : RN → R
d is some measurable function (see Definition 2.3) and, in a

second step, also compositions

F(G(u)),

where F :Rd →R
d̃ is some known continuous function. Important examples are:

• time-varying covariances, c(u,k) := EX̃0(u)X̃k(u) with g(x0,x1, . . . ,xk) := x0xk;
• time-varying characteristic functions, φ(t,u) := EeitX̃0(u), with gt(x) = eitx;

and, for compositions:

• time-varying autocorrelation functions γ (u,k) := c(u,k)
c(u,0)

= EX̃0(u)X̃k(u)

E[X̃0(u)2]
;

• moment estimators of time-varying parameters depending on several moments
such as time-varying Yule–Walker estimators, but also time-varying moment
estimators for nonlinear models such as tvGARCH models (cf. Section 3.5 for
two examples).

2.2. Estimators

A standard estimator for G(u) is given by a localized moment estimator,

Ĝh(u) := 1

n

n∑
t=1

Kh(t/n−u) ·g(Yt,n), (1)

where h ∈ (0,∞) is some bandwidth, and Kh(·) := 1
h K

( ·
h

)
where K is a kernel

function belonging to the class K defined below.

Definition 2.2. A function K is in the set K if K is symmetric, nonnegative,
Lipschitz continuous, has support [− 1

2,
1
2 ] and

∫
K(x) dx = 1. We set |K|∞ :=

supx∈[− 1
2 , 1

2 ] |K(x)|, μK := ∫
K(x)x2 dx, and σ 2

K = ∫
K(x)2 dx.

With respect to F(G(u)), we will analyze the plug-in estimator

F(Ĝh(u)).

In the following, we present a general theory about how to obtain asymptotic
results for such estimators with a focus on adaptation, i.e., on choosing the
bandwidth h. Let w : [0,1] → [0,∞) be some weight function with compact
support ⊂ (0,1). This function is introduced to avoid the discussion of boundary
issues. Our aim in this paper is to define:
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• a “global” selector ĥ such that the integrated squared error

dISE(h) :=
∫ 1

0
|F(Ĝh(u))−F(G(u))|22 w(u) du (2)

is minimized;
• and a “local” selector ĥ(u) such that the squared error

dSE(h,u) := |F(Ĝh(u))−F(G(u))|22 (3)

is asymptotically minimized for fixed u ∈ [0,1].

We first verify that F(Ĝh(u)) is a consistent estimator of F(G(u)). In order to
derive this result, we assume that g belongs to the following class H(M,χ,C).
For some sequence of nonnegative real-valued numbers χ = (χi)i∈N and some
sequence of complex-valued numbers x = (xi)i∈N, we set |x|χ := ∑

i∈Nχi|xi|.

Definition 2.3. We say that g :RN →R belongs to the classH(M,χ,C) if there
exists some M ≥ 1, some constant C > 0,ε > 0, and some sequence of nonnegative
real numbers χ = (χ)i∈N with χi = O(i−2−ε) such that

sup
x �=y

|g(x)−g(y)|
|x− y|χ · (1+|x|M−1

χ +|y|M−1
χ )

≤ C.

A function g : RN → R
d (d ∈ N) is in H(M,χ,C) if each component belongs to

H(M,χ,C).

The condition on g is a Lipschitz-type condition with polynomially growing
constants (i.e., the Lipschitz condition is relaxed for larger x and y).

By Hölder’s inequality, it is easy to see that the following “invariance principle”
of local stationarity holds.

Proposition 2.4. If (Xt,n)t=1,...,n is locally stationary in the sense of
Assumption 2.1 with some q > 0, and g ∈ H(M,χ,C), then the same holds for
g(Xt,n) with q′ := q

M .

Based on this result, we can use Theorem 2.7 in Dahlhaus et al. (2019) to obtain
the following theorem.

Theorem 2.5 (Consistency). Suppose Xt,n satisfies Assumption 2.1 with q ≥ M.
Let g ∈ H(M,χ,C), let F be continuous, and let nh → ∞, h → 0. Then we have

F(Ĝh(u))
p→ F(G(u)).

2.3. The mean squared error and the optimal bandwidth

We now derive the theoretically optimal bandwidth (depending on the unknown G)
based on a second-order Taylor expansion of the bias. For the understanding of
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our approach, some principle remarks are essential at this point: we treat in this
paper the ISE and the SE as defined above and not the mean squared errors
MISE and MSE. Despite this, we use, both in our theoretical results and the
simulations, the “optimal” bandwidths hopt and hopt(u) obtained by minimizing
some approximation of the MISE/MSE (see (7) for Ĝh(u)). This will be justified
in particular by Corollary 3.3.

However, for compositions F(Ĝh(u)), the situation is more tricky since the
MISE/MSE may not exist, especially if F has singularities (for example, for cor-
relation functions, the denominator may cause nonexistence of the MISE/MSE).
Here, we circumvent the problem by a linearization of F: by using a first-order
Taylor expansion of F, we have

|F(Ĝh(u))−F(G(u))|22 = |Ĝh(u)−G(u)|2AF(G(u)) +O(|Ĝh(u)−G(u)|32), (4)

where

AF(G(u)) := ∂xF(x) · ∂xF(x)′|x=G(u) (5)

is a positive semidefinite matrix. We then minimize the MISE/MSE of the first
term which always exists. With this approach, we avoid stronger assumptions on
F. Again, the result of Corollary 3.3 is a justification of this procedure.

For a second-order Taylor expansion of the bias, we introduce the following
assumption.

Assumption 2.6. u �→ G(u) is twice continuously differentiable.

To guarantee the existence of the variance of Ĝh(u), we have to impose condi-
tions on the dependence of Xt,n. In the setting of Assumption 2.1, it is sufficient
to state these assumptions pointwise on the stationary approximations X̃t(u). An
elegant way to formulate mixing assumptions is via the functional dependence
measure by Wu (2005). Suppose that ζt, t ∈ Z is a sequence of i.i.d. random
variables. We put Ft := (ζt,ζt−1, . . .), t ≥ 0. Let ζ ∗

t , t ∈ Z be an independent copy
of ζt, t ∈ Z, and put F∗

t := (ζt,ζt−1, . . . ,ζ1,ζ
∗
0 ,ζ−1,ζ−2, . . .), t ≥ 0.

Assumption 2.7. Let q > 0. Assume that, for each u ∈ [0,1], X̃t(u) = J(Ft,u)

with some measurable function J. Suppose that

δX̃(u)
q (k) := ‖X̃k(u)− X̃∗

k (u)‖q, k ≥ 0, (6)

fulfills
∑∞

k=0 supu∈[0,1] δ
X̃(u)
q (k) < ∞.

With these assumptions, we can now derive the expansions of the squared error.

Theorem 2.8. Let g ∈ H(M,χ,C) with some M ≥ 1. Suppose that
Assumption 2.1 is fulfilled for some q ≥ 2M. Let Assumption 2.6 hold, and let
Assumption 2.7 hold with the same q. Let K ∈ K. Define the so-called long-run
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variance of g
(
Ỹt(u)

)
as


g(u) =
∑
k∈Z

Cov
(
g(Ỹ0(u)),g(Ỹk(u))

)
.

Then it holds uniformly in u ∈ [ h
2,1− h

2 ] that

E|Ĝh(u)−G(u)|2A = σ 2
K

nh
· tr

(
A
g(u)

)+ h4

4
μ2

K · |∂2
u G(u)|2A +o

(
(nh)−1 +h4

)
. (7)

Let F be continuously differentiable. Then, it holds for all u ∈ (0,1) that, for h → 0,
nh → ∞,
∣∣F(

Ĝh(u)
)−F

(
G(u)

)∣∣2
2 = ∣∣Ĝh(u)−G(u)

∣∣2
AF(G(u))

+op
(
h4 + (nh)−1

)
. (8)

Here, the second result (8) links the squared error |F(Ĝh(u))− F(G(u))|22 to a
weighted squared error of Ĝh(u) as announced above. As a consequence of this
result, we define

dapproxMSE(h,u) := σ 2
K

nh
tr
(
AF(G(u))
g(u)

)+ h4

4
μ2

K |∂2
u G(u)|2AF(G(u))

and

dapproxMISE(h) :=
∫ 1

0
dapproxMSE(h,u)w(u)du,

leading (if |∂2
u G(u)|2AF(G(u)) > 0) easily to the optimal bandwidths

hopt(u) := argminh∈Hn
dapproxMSE(h,u) =

(4σ 2
K tr(AF(G(u))
g(u))

μ2
K |∂2

u G(u)|2AF(G(u))

)1/5
n−1/5 (9)

and

hopt := argminh∈Hn
dapproxMISE(h) =

(4σ 2
K

∫ 1
0 tr(AF(G(u))
g(u))w(u)du

μ2
K

∫ 1
0 |∂2

u G(u)|2AF(G(u))w(u)du

)1/5
n−1/5.

(10)

The quantities hopt(u) and hopt are not directly available in practice due to the
unknown G(u) and 
g(u). The use of hopt is justified by Corollary 3.3.

3. GLOBAL ADAPTIVE BANDWIDTH SELECTION:
CROSS VALIDATION

We first discuss cross validation for G(u), and afterward for the more technical
case F(G(u)).
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3.1. Cross validation for G

The reasoning for our cross-validation approach is at the beginning very
similar to the reasoning for classical cross validation (cf. Härdle and Marron,
1985): we attempt to estimate the goodness-of-fit criterion dISE(h) = ∫ 1

0 |G(u)−
Ĝh(u)|22 w(u)du from (2) by

d(n)
prelimISE,G(h) := 1

n

n∑
t=1

∣∣g(Yt,n)− Ĝh(t/n)
∣∣2
2 w(t/n).

If g(Yt,n) and Ĝh(t/n) were independent (they are not!), we would obtain
Ed(n)

prelimISE,G(h) ≈ EdISE(h) + 1
n

∑n
t=1E|g(Yt,n) − G(t/n)|22, with the latter term

being constant in h. As a consequence, we could minimize d(n)
prelimISE,G(h) with

respect to h for adaptive bandwidth selection.
To overcome the missing independence between g(Yt,n) and Ĝh(t/n), one uses

in i.i.d. situations a “leave-one-out estimator” instead of Ĝh(t/n) by omitting Yt,n.
In the present situation of a dependent sequence

(
g(Yt,n)

)
t, this is not sufficient.

We have to leave out a larger portion of data to achieve at least an approximate
independence between g(Yt,n) and the new Ĝh(t/n). These thoughts lead to the
following final definitions for our cross-validation procedure: let

d(n)
ISE,G(h) := 1

n

n∑
t=1

∣∣g(Yt,n)− Ĝ−
h (t/n)

∣∣2
2 w(t/n)

with

Ĝ−
h (u) :=

(1

n

n∑
t=1

K(n)
h (t/n−u)

)−1 · 1

n

n∑
t=1

K(n)
h (t/n−u) ·g(Yt,n), (11)

where, for α ∈ (0,1) and ε > 0,

K(n)(x) := K(n),α(x) :=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

K(x), |x| ≥ n−α,

0, |x| ≤ (1− ε)n−α,
nαK(n−α)

ε
(x− (1− ε)n−α), (1− ε)n−α < x < n−α,

−nαK(−n−α)
ε

(x+ (1− ε)n−α), −n−α < x < −(1− ε)n−α .

(12)

In this kernel, we use in the case (1 − ε)n−α < x < n−α a linear interpolation
between the endpoints x = (1 − ε)n−α and x = n−α such that K(n) is continuous
(similarly for the last case). We can interpret K(n) as a Lipschitz continuous
approximation of K(x)1{|x|≥n−α} with Lipschitz constant being of order O(n). Note
that K(n) depends on α which is suppressed in the notation for simplicity.

Ĝ−
h (u) is still a weighted mean of the observations g(Yt,n), but observations with

| t
n − u| � 1 are excluded. Note that Ĝ−

h (t/n) and g(Yt,n) are now approximately
independent if the sequence g(Yt,n), t = 1, . . . ,n, fulfills appropriate mixing
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conditions. ĥG is now defined via

ĥG := argminh∈Hn
d(n)

ISE,G(h), (13)

where Hn ⊂ (0,1) is a suitable set of bandwidths. The final estimator of G(u) is
then given by ĜĥG

(u).

3.2. Cross validation for composited functionals F◦G

To obtain a bandwidth selection procedure for the estimator F(Ĝh(u)), we use the
Taylor expansion in (4). We replace d(n)

ISE,G(h) by

d(n)
ISE,F(h) := 1

n

n∑
t=1

∣∣g(Yt,n)− Ĝ−
h (t/n)

∣∣2
AF(ĜĥG

(t/n))
w(t/n), (14)

where ĥG is the cross-validation bandwidth from (15), and set

ĥ := ĥF := argminh∈Hn
d(n)

ISE,F(h). (15)

The final estimator of F
(
G(u)

)
then is given by F

(
ĜĥF

(u)
)
.

It is important to state that cross validation for G from above is obtained as a
special case: we have for F = id the relation AF(x) = Id̃×d̃, and therefore

| · |2
AF(ĜĥG

(t/n))
= | · |22, d(n)

ISE,F(h) = d(n)
ISE,G(h), ĥ = ĥF = ĥG. (16)

To justify the above approach, we mention that a “naive” cross validation
for F(Ĝh(u)), say, by minimizing 1

n

∑n
t=1 |F(g(Yt,n)) − F(Ĝ−

h (t/n))|22 w(t/n)

with respect to h, does not work due to possible singularities of F(·), both
theoretically and in simulations. The solution to this issue is the above use of
the Taylor expansion (4). d(n)

ISE,F(h) as defined above contains twice an estimator of

G—besides Ĝ−
h also ĜĥG

in the norm | · |2AF(G(t/n)). Simulations show that d(n)
ISE,F(h)

is not very sensitive toward the choice of h̃ in | · |2
AF(Ĝh̃(t/n))

(mathematically, any

consistent estimator Ĝh̃ of G would be sufficient for our results).

3.3. Properties of the bandwidth selection

We now derive the properties of the adaptive bandwidth selection procedure. The
results are formulated for functionals F◦G, but due to (16), cross validation for G is
included for F = id. In particular, we then have | · |2AF(G(u)) = |· |22 and ĥ = ĥF = ĥG.

Theorem 3.1. Let g ∈H(M,χ,C), where χi = O(i−κ) with some κ > 3. Suppose
that Assumptions 2.1 and 2.7 hold for all q > 0 with supu∈[0,1] δ

X̃(u)
q (k) = O(k−κ).

Let K ∈ K and K(n) as in (12). Assume that the support of w is ⊂ [γ,1 − γ ] with
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some γ > 0. For arbitrary small η > 0, let

Hn = [n−1+α+η,nmin{2α−1,0}−η] (17)

with α as in (12). Suppose that F is twice continuously differentiable, and
∫ 1

0
tr
(
AF(G(u)

)

g(u))w(u)du > 0,

∫ 1

0
tr
(

g(u)

)
w(u)du > 0,

inf
n∈N

∫ 1
0 |EĜh(u)−G(u)|22 w(u)du∫ 1

0 |EĜh(u)−G(u)|2AF(G(u)) w(u)du
> 0. (18)

Then, almost surely,

lim
n→∞

dISE(ĥ)

infh∈Hn dISE(h)
= 1.

Theorem 3.1 states that ĥ, chosen by the cross-validation procedure (13)
or (15), is asymptotically optimal in the sense that ĥ (or the estimator F(Ĝĥ(u)),
respectively) attains the minimal distance to F(G(u)) measured with dISE over all
possible bandwidths h ∈ Hn. Note that we do not impose Assumption 2.6, that is,
the result is true even if no explicit bias expansion of order O(h2) exists. We now
give a discussion on the assumptions.

Remark 3.2. • The parameter α which appears in (17) is the same α which is
used in the construction of Ĝ−

h through the kernel K(n) in (12). We comment on
this connection in Section 3.4.

• The conditions stated in (18) guarantee that the bandwidth selection problem is
well posed in the sense we now describe. The first condition in (18) is the leading
variance contribution of the MSE of F(Ĝh(u)) (cf. Theorem 2.8). We request that
this variance does not vanish. The second condition means that the variance of
Ĝh(u) does not vanish. The third condition in (18) means that F(Ĝh(u)) does
not have a bias with faster convergence rate than Ĝh(u). Basically, the last two
conditions ensure that the estimation of F(G(u)) with F(Ĝh(u)) is not easier
than the estimation of G(u) with Ĝh(u). These last two technical conditions are
needed in our proofs but may be omitted in a much more detailed analysis.

• The decay condition on χ and the functional dependence measure δX̃(u)
q (k),

namely χk,δ
X̃(u)
q = O(k−κ) with κ > 3, as well as the moment condition

(E[|X̃0(u)|q] < ∞ for all q > 0) are used to treat the remainder terms in the proof
and to apply a chaining device. Prominent recursively defined time series models
like tvARMA or tvGARCH processes fulfill E[|X̃0(u)|q] < ∞, for all q > 0,
if the corresponding i.i.d. innovation process ζt satisfies E[|ζ0|q] < ∞, for all
q > 0, and additional restrictions on the parameter space hold (cf. Dahlhaus et al.
(2019) for general recursively defined locally stationary processes or Dahlhaus
and Subba Rao (2006) and Francq and Zakoïan (2004) for ARCH and GARCH
processes).
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• We comment in detail on the parameters ε (from (12)), η, α, and the choice of
Hn in Section 3.5.

We now prove that ĥ behaves asymptotically as hopt from (10).

Corollary 3.3. Let the assumptions of Theorem 3.1 hold. Additionally,
suppose that Assumption 2.6 holds and hopt ∈ Hn for n large enough. Then, almost
surely,

dISE(ĥ)

dISE(hopt)
→ 1 and

ĥ

hopt
→ 1.

Remark 3.4 (Extension to functional estimation). Suppose that instead of G(u),
we are interested in estimating a function θ �→ Gθ (u) with Gθ (u) := Egθ (Ỹt(u)),
where gθ : RN → R

d and θ ∈ � ⊂ R
d̃. A prominent example is the characteristic

function of X̃0(u) (cf. Jentsch et al., 2020) where

Gθ (u) = Eeiθ X̃0(u).

We can still use the estimator Ĝθ,h(u) with Ĝθ,h(u) := 1
n

∑n
t=1 Kh(t/n−u) ·gθ (Yt,n)

and Ĝ−
θ,h as in (11). However, we are now interested in minimizing the integrated

squared error

d func
ISE (h) :=

∫
�

∫ 1

0
|Ĝθ,h(u)−Gθ (u)|22 w(u) du dθ,

with an additional integration over θ . Of course, one has to assume
∫
�

1 dθ > 0.
The cross-validation procedure from (15) can be modified to cover such cases by
using an integrated form:

dfunc,(n)

ISE (h) :=
∫

�

1

n

n∑
t=1

∣∣gθ (Yt,n)− Ĝ−
θ,h(t/n)

∣∣2
2 dθ, ĥ func := argminh∈Hn

dfunc,(n)

ISE .

If the conditions of Theorem 3.1 hold uniformly in θ , one may then derive the
result

lim
n→∞

d func
ISE (ĥ func)

infh∈Hn d func
ISE (h)

= 1 almost surely

by a straightforward generalization of the proof.

3.4. Discussion on the parameters and an algorithm

Contrary to our announcement at the beginning of the paper, the cross-validation
procedure seems to depend on some regularity parameters. We now discuss the
influence of these parameters. We will demonstrate that, essentially, only one
parameter, namely α with the restriction h ≥ n−α for h ∈ Hn in (17) and the size
of the zero set of K(n) being 2n−α in (12), remains from a practical view. We will
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point out why such a condition cannot be avoided and how α can be selected via
“eye inspection.”

In detail, the estimator Ĝ−
h (u) from (11), which is incorporated in d(n)

ISE,F(h),
depends on the kernel K(n). The kernel depends on the two parameters α,ε > 0,
where α controls the zero set of K(n) via

|x| ≤ (1− ε)n−α ⇔ K(n)(x) = 0, (19)

and ε controls the Lipschitz constant of K(n). Furthermore, the optimization which
leads to ĥ has to take place over the set

Hn = [n−1+α+η,nmin{2α−1,0}−η]

with some η > 0. We now comment on the three parameters ε,α,η > 0.

• Choice of ε: In our theoretical proofs of Theorem 3.1, we need that K(n) is
Lipschitz-continuous and thus ε > 0. However, using much more involved
empirical process results would yield the same theoretical results also for
noncontinuous K(n). Thus, it is also theoretically founded to choose ε = 0. In
practical simulations, we did not notice any drawback when choosing ε = 0.

• Choice of η: The proof of Theorem 3.1 requires that there exists some η > 0
such that (nh)−1 = O(n−η) as well as h = O(n−η) for any h ∈ Hn. We have seen
in several simulations that the upper bound in Hn is typically not necessary since
d(n)

ISE,F(h) does not behave erratically for large h ∈ Hn. However, the lower bound
in Hn is important. From Theorem 3.1, we know that the lower bound of Hn has
to have the form n−1+α+η. Thus, the choice of α + η can be replaced by the
choice of a single parameter α > 0 (being the former α +η). It follows that η is
not a tuning parameter and can be ignored in the procedure.

We therefore only have to discuss the parameter α which simultaneously controls
the lower bound n−α of Hn and the zero set of K(n) (cf. (19)). Unfortunately, the
theoretical conditions of Theorem 3.1 only ask for α > 0 arbitrarily small and
do not give any hint how to choose it. However, the theoretical result states that
for n large enough, h �→ d(n)

ISE,F(h) has a distinct local minimum. In Figure 1, we

have depicted the quantity d(n)
ISE,F(h) based on the variance g(z) = z2 for different

h ∈ [0.01,1] and α = 0.23, 0.33, 0,48, leading to n−α = 0.24, 0.13, 0.05, respec-
tively, of two realizations of the tvAR(1) process

Xt,n = a(t/n)Xt−1,n + εt, a(u) := 0.9sin(2πu), εt ∼ N(0,1), n = 500.

We first explain the (irrelevant) global minimum at h ≈ 0 in Figure 1: as h → 0,
also the number of points left out (caused by the zero set in K(n)

h ) tends to zero, and
(in case of g(z) = z2 where neighboring values of g(Yt,n) are positively correlated)
Ĝ−

h (t/n) ≈ g(Yt,n) and d(n)
ISE(h) ≈ 0. Thus, we have to look for a (local) minimum

above (say) h ≈ 0.1.
It can be seen that for smaller α (larger n−α), distinct local minima exist.

However, for α chosen too small, too many observations are omitted by K(n) and
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Figure 1. Cross-validation functions d(n)
ISE,F(h) for different α for two realizations. Top: first

realization. Bottom: second realization. Left: logarithmic plot of h �→ d(n)
ISE,F(h) for three selected α.

Right: contour plot of (n−α,h) �→ d(n)
ISE,F(h).

therefore local minima of h �→ d(n)
ISE,F(h) may be poor approximations of local

minima of dISE(h). For large α, h �→ d(n)
ISE,F(h) the local minimum disappears

and we only have a global minimum at h ≈ 0. This happens because the limit
behavior of Theorem 3.1 is not yet achieved. Therefore, it is counterproductive
to choose α ∈ (0,1) as large as possible. A heuristic description of the selection
procedure therefore reads as follows: choose α ∈ (0,1) as large as possible such
that h �→ d(n)

ISE,F(h) still has a pronounced local minimum which is separated from
h ≈ 0.

We now comment on the realization whose d(n)
ISE,F is depicted in the top row

of Figure 1. In a practical situation, n−α can be chosen with this information by
“eye inspection” of Figure 1, say, from the left plot by looking for a clear local
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minimum separated from h ≈ 0, leading to (say) n−α = 0.13 with minimum 0.241;
or from the right plot, leading to (say) n−α = 0.20 with minimum 0.230. Both
choices are adequate in our opinion. For the second realization, which is depicted
in the bottom row of Figure 1, n−α = 0.24 leads to two local minima at h ≈ 0.11
and h ≈ 0.36. The right plot in the bottom row suggests that decreasing n−α to
n−α = 0.10 (i.e., increasing α) makes the local minimum at h ≈ 0.36 to disappear
which is confirmed in the left plot for n−α = 0.10 (dashed line). This leads to the
choice n−α = 0.10 with minimum h ≈ 0.105.

However, in larger simulations (say, with N = 1,000 replications as below),
α must either be fixed beforehand or be chosen automatically separately in each
simulation step. The problem then arises how to convert the “eye inspection” into a
stable objective algorithm. Heuristically, one could term the problem as the search
for the smallest local(!) minimum (smallest in terms of location on the h-axis).
However, the curve for n−α = 0.24 in the top-left plot of Figure 1 shows the
difficulty with this definition: below the minimum of interest, it has two small
local minima, whose locations in terms of h are smaller.

Based on practical experience with the simulations, we suggest the following
algorithm, which makes use of the existence of distinct local minima of h �→
d(n)

ISE,F(h) for small α, well separated from h ≈ 0. We mark the dependence on α of

the above functional for the moment by d(n)
ISE,F,α(h). The algorithm then searches

in step l for hl = argmind(n)
ISE,F,αl

(h) with h ∈ [hl−1 −�,hl−1 +�], where αl is
increasing, and h0 = 0.5. For large α, hl will gradually drift to zero—but the idea
is that the majority of hl will be either close to the right minimum or close to zero,
thus creating two clusters of minima.

Remark 3.5 (Heuristic CV selection algorithm). Choose Hn ⊂ (0,1), ε = 0, and
η = 0. Let {α1, . . . ,αL} ⊂ [− log(0.5)

log(n)
,1] be a grid of L equidistant numbers between

− log(0.5)

log(n)
and 1. Let h0 = 1

2 and � := n−1/5

L . Repeat for l = 1, . . . ,L:

• Find hl = argminh∈[hl−1−�,hl−1+�]∩Hn
d(n)

ISE,F,αl
(h).

Cluster the elements of (hl)l=1,...,L into two clusters with a 2-means algorithm, and
choose the larger center of the two clusters as ĥ.

Since K has support [−0.5,0.5], α has to be larger than − log(0.5)

log(n)
so that K(n) is

not constant 0.

3.5. Simulations

Since our estimators are model-free, we expect good behavior of the selection
procedure for a wide range of locally stationary processes. Here, we inspect tvAR,
tvMA, and tvARCH processes:

X(1)
t,n = a(t/n) ·X(1)

t−1,n +σ(t/n)ζt,

a(u) = 0.9sin(2πu), σ (u) = 0.9+0.5cos(2πu),
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X(2)
t,n = ζt +b1(t/n)ζt−1 +b2(t/n)ζt−2,

b1(u) = 0.9sin(2πu), b2(u) = 0.7cos(2πu),

X(3)
t,n = (

a1(t/n)+a2(t/n)(X(3)
t−1,n)

2)1/2
ζt,

a1(u) = 0.5+0.4sin(2πu), a2(u) = 0.3+0.25sin(2πu),

where ζt are i.i.d. N(0,1). We will estimate the following quantities:

(a) For X(1)
t,n :

• c(u,1) = EX̃2(u)X̃1(u)
[
= a(u)

1−a(u)2

]
,

• (c(u,1),c(u,0)) := (EX̃2(u)X̃1(u),EX̃1(u)2)
[
= ( a(u)

1−a(u)2 ,
1

1−a(u)2

)]
,

• c(u,1)

c(u,0)
= EX̃2(u)X̃1(u)

EX̃1(u)2

[= a(u)
]
.

(b) For X(2)
t,n :

• c(u,2) = EX̃3(u)X̃1(u)
[= b2(u)

]
,

• c(u,2)

1+c(u,1)
:= EX̃3(u)X̃1(u)

1+EX̃2(u)X̃1(u)

[= b1(u)
]
.

(c) For X(3)
t,n :

• c(u,0) = EX̃1(u)2
[
= a1(u)

1−a2(u)

]
,

• Cov(X̃2(u)2,X̃1(u)2)

Cov(X̃1(u)2,X̃1(u)2)

[= a2(u)
]
.

(note that the expressions in the [ ]-brackets are not used in the simulations). In all
simulations, we use w(·) = 1[0.05,0.95](·), Hn = [0.01,0.6], and the Epanechnikov
kernel K(x) = 3

2 (1 − (2x)2)1[− 1
2 , 1

2 ](x). We use a time series length of n = 500

and the algorithm from Remark 3.5 to select α and therefore also ĥ. We judge the
behavior of this selector by reporting the empirical quantiles of dISE(ĥ) over the
N = 1,000 replications.

For comparison, we also report the quantiles of the two optimal selectors
dISE(hopt) with hopt from (10) and minh∈Hn dISE(h) which serve as a benchmark
(cf. Tables 1–3). We usually have

dISE(ĥ) ≥ dISE(hopt) ≥ min
h∈Hn

dISE(h),

where the first inequality comes from the fact that hopt is deterministic and is not
subject to an additional estimation procedure as it is the case for ĥ.

Thus, the goal of the simulation study is to find out how close the cross-
validation values ĥ and dISE(ĥ) are to the optimal (but unknown) selectors.

An inspection of the simulation results in Tables 1–3 shows that the median of
dISE(ĥ) over all N = 1,000 replications has the same order of magnitude as the
median of dISE(hopt) and minh∈Hn dISE(h) with a slightly larger variation. When
comparing the median of dISE(ĥ) and minh∈Hn dISE(h), the selection procedure
works best for the estimation of c(u,2) and c(u,2)

1+c(u,1)
in the tvMA example X(2)

t,n

(cf. Table 1). In Figure 2, we have considered estimation of c(u,2) and depicted
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Table 1. Empirical quantiles of the distances dISE(ĥ) of the CV selector,
dISE(hopt) of the MSE-optimal deterministic bandwidth, and minh∈Hn dISE(h) for

the tvMA model X(2)
t,n with n = 500 based on N = 1,000 replications.

Quantity Selector Empirical quantiles

0.05 0.10 0.25 0.5 0.75 0.9 0.95

c(u,2) dISE(ĥ) 0.020 0.027 0.04 0.06 0.088 0.117 0.144

dISE(hopt) 0.016 0.023 0.035 0.053 0.079 0.103 0.124

minh∈Hn dISE(h) 0.012 0.019 0.03 0.048 0.07 0.096 0.113
c(u,2)

1+c(u,1)
dISE(ĥ) 0.059 0.067 0.083 0.104 0.128 0.157 0.181

dISE(hopt) 0.057 0.064 0.079 0.100 0.120 0.144 0.159

minh∈Hn dISE(h) 0.054 0.062 0.076 0.095 0.115 0.135 0.147

Table 2. Empirical quantiles of the distances dISE(ĥ) of the CV selector,
dISE(hopt) of the MSE-optimal deterministic bandwidth, and minh∈Hn dISE(h) for

the tvAR model X(1)
t,n with n = 500 based on N = 1,000 replications.

Quantity Selector Empirical quantiles

0.05 0.10 0.25 0.5 0.75 0.9 0.95

c(u,1) dISE(ĥ) 0.376 0.475 0.717 0.999 1.409 1.911 2.982

dISE(hopt) 0.365 0.448 0.621 0.898 1.263 1.716 2.372

minh∈Hn dISE(h) 0.283 0.368 0.550 0.842 1.204 1.630 2.098

(c(u,1),c(u,0)) dISE(ĥ) 0.876 1.032 1.482 2.134 2.970 3.946 5.269

dISE(hopt) 0.719 0.873 1.264 1.796 2.525 3.493 4.651

minh∈Hn dISE(h) 0.563 0.745 1.128 1.686 2.411 3.295 4.119
c(u,1)
c(u,0)

dISE(ĥ) 0.006 0.007 0.010 0.014 0.019 0.025 0.030

dISE(hopt) 0.005 0.006 0.008 0.011 0.015 0.019 0.022

minh∈Hn dISE(h) 0.005 0.006 0.008 0.010 0.014 0.018 0.021

an histogram of ĥ and argminh∈Hn
dISE(h) over the N = 1,000 replications. One

can see that the values of ĥ fluctuate nicely around hopt (red line). The reason is
that the tvMA process is m-dependent with m = 3; therefore, it is only necessary
to guarantee n−α ≥ 6 to eliminate all dependencies which occur in the cross-
validation functional for the estimation of c(u,2) or c(u,1). We therefore expect
h �→ d(n)

ISE,F(h) to have a distinct local minimum for nearly all α ∈ (0,1).

For the tvAR(1) process X(1)
t,n and estimation of c(u,1) and (c(u,1),c(u,0)),

we observe rather large values for all three quantities dISE(ĥ), dISE(hopt), and
minh∈Hn dISE(h). The reason is twofold: first, even the theoretical quantities attain
values of around 10 for some u ∈ [0,1], and thus a larger error is comprehensible.
Second, both quantities c(u,1) and (c(u,1),c(u,0)) are relatively hard to estimate
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Table 3. Empirical quantiles of the distances dISE(ĥ) of the CV selector,
dISE(hopt) of the MSE-optimal deterministic bandwidth, and minh∈Hn dISE(h) for

the tvARCH model X(3)
t,n with n = 500 based on N = 1,000 replications.

Quantity Selector Empirical quantiles

0.05 0.10 0.25 0.5 0.75 0.9 0.95

c(u,0) dISE(ĥ) 0.025 0.034 0.059 0.092 0.136 0.205 0.344

dISE(hopt) 0.027 0.034 0.053 0.083 0.123 0.187 0.307

minh∈Hn dISE(h) 0.014 0.021 0.038 0.07 0.113 0.177 0.273
Cov(X̃2(u)2,X̃1(u)2)

Cov(X̃1(u)2,X̃1(u)2)
dISE(ĥ) 0.012 0.015 0.022 0.034 0.048 0.064 0.075

dISE(hopt) 0.011 0.014 0.021 0.031 0.046 0.060 0.070

minh∈Hn dISE(h) 0.010 0.012 0.018 0.027 0.041 0.052 0.062

Bandwidths selected by cross validation Bandwidths selected by minimizing dISE(h)
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Figure 2. tvMA model X(2)
t,n , estimation of c(u,2). Left: histogram of the cross-validation-selected

bandwidths over N = 1,000 replications. Right: histogram of argminh∈Hn
dISE(h) over N = 1,000

replications. The red vertical line marks hopt in both histograms.

in the sense that Ĝh(u) is a poor estimator for G(u) for all bandwidths h ∈ Hn.
A large variation of Ĝh(u) clearly leads to a larger variation of ĥ which explains
the slightly larger medians of dISE(ĥ). In Figure 3, we have depicted histograms
of ĥ and argminh∈Hn

dISE(h) for the N = 1,000 replications. In comparison to
c(u,1) and (c(u,1),c(u,0)), estimation of c(u,1)

c(u,0)
works quite well. The reason is

that the composited moment estimator F(Ĝh(u)) of c(u,1)

c(u,0)
= a(u) can be written as

a maximum likelihood estimator; thus, the difference F(Ĝh(u))−F(G(u)) enjoys
a martingale difference property. In this case, the cross-validation functional d(n)

ISE
works nearly as well as in the i.i.d. case (cf. Richter and Dahlhaus, 2019).
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Figure 3. tvAR model X(1)
t,n and estimation of (c(u,0),c(u,1)). Left: histogram of the cross-validation-

selected bandwidths over N = 1,000 replications. Right: histogram of argminh∈Hn
dISE(h) over

N = 1,000 replications. The red vertical line marks hopt in both histograms.
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Figure 4. tvARCH model X(3)
t,n and estimation of Cov(X̃2(u)2,X̃1(u)2)

Cov(X̃1(u)2,X̃1(u)2)
. Left: histogram of the cross-

validation-selected bandwidths over N = 1,000 replications. Right: histogram of argminh∈Hn
dISE(h)

over N = 1,000 replications. The red vertical line marks hopt in both histograms.

In Table 3, we see that the selection procedure ĥ also works quite well for the
tvARCH process X(3)

t,n . Estimation in tvARCH processes (in particular parameter
estimation) is typically hard due to the more complicated dependence structure.

In Figure 4, we have considered estimation of Cov(X̃2(u)2,X̃1(u)2)

Cov(X̃1(u)2,X̃1(u)2)
and depicted

histograms of ĥ and argminh∈Hn
dISE(h) for the N = 1,000 replications. Here, we
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see that for several realizations, argminh∈Hn
dISE(h) is chosen as the largest possible

bandwidth, which indicates that Ĝh(u) is a poor estimator of G(u) (at least for this
relatively small sample size n = 500). However, ĥ tries to mimic this behavior
of choosing larger bandwidths, which leads to comparable values of dISE(ĥ) and
minh∈Hn dISE(h).

Overall, we see that ĥ behaves quite satisfactorily in all examples. If G(u) or
F(G(u)) is hard to estimate, that is, Ĝh(u)−G(u) or F(Ĝh(u))−F(G(u)) are large
for all h ∈ Hn, then ĥ suffers from a larger deviation.

In practice, when only a single time series has to be analyzed, we recommend
choosing α by eye inspection of one of the plots in Figure 1, and then ĥ by the local
minimum of the corresponding curve d(n)

ISE,α(h). One just has to choose α large, but

small enough such that the local minimum of the d(n)
ISE,α(h) is well shaped and

clearly distinct from h ≈ 0. Note that the selected ĥ then is quite insensitive to the
choice of α. The heuristic algorithm from Remark 3.5 may support this choice.

4. LOCAL MODEL SELECTION: A CONTRAST
MINIMIZATION APPROACH

The approach presented in the following allows to choose h locally for each
u ∈ (0,1) in the estimator Ĝh(u). This enables the procedure to take into account
local smoothness changes of the function G(u). The algorithm is based on a
contrast minimization approach which was introduced by Lepski et al. (1997) for
a different model. In the following, we use a slightly modified estimator for G(u),
namely

Ĝh(u) :=
∑n

t=1 Kh(t/n−u)g(Yt,n)∑n
t=1 Kh(t/n−u)

,

which corrects for the deviation of the kernel sum from its integral
∫

K(x)
dx = 1. The kernel K is now assumed to be from the classK′ given by the following
definition. Here, ∂1K denotes the almost surely existing derivative of the Lipschitz
continuous function K.

Definition 4.1. A function K is in the set K′ if K is symmetric, nonnegative,
Lipschitz continuous, satisfies {x ∈ R : K(x) > 0} = (− 1

2,
1
2 ), and fulfills

∫
K(x)

dx = 1, σ 2
K := ∫

K(x)2dx > 0, μK = ∫
K(x)x2dx > 0,

∫ {y ·∂1K(y)+K(y)}2dy > 0.

In this section, we restrict ourselves to estimation of G(u) instead of F(G(u)).
The approach presented in the following can be interpreted as an iterative

algorithm. It compares Ĝh(u)−Ĝh′(u), h′ ≤ h with the variance of Ĝh(u) for several
bandwidths h from a grid. It then selects the bandwidth h where the former terms
are roughly of the same size. The algorithm therefore needs an estimator of the
variance of Ĝh(u). From Theorem 2.8, we know that

Var
(
Ĝh(u)

) = σ 2
K

nh
tr
(

g(u)

)+o
( 1

nh

)
where 
g(u) =

∑
k∈Z

Cov(g(Ỹ0(u)),g(Ỹk(u))
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is the long-run variance of g(Ỹ0(u)). Let 
̂n(u) be an estimator of 
g(u). We
discuss a suitable choice of 
̂n(u) below. The local bandwidth selection procedure
is defined as follows. Let λ(h) := max{1,√log(1/h)} and

v̂2(h,u) := σ 2
K

nh
tr(
̂n(u)).

Let Hn ⊂ (0,1] be a geometrically decaying grid of bandwidths given by

Hn = {ak : k ∈ N0}∩ [h,h], (20)

where a ∈ (0,1) and h,h > 0 are specified below. For some C# > 0, define

ĥ(u) :∈ sup{h ∈ Hn : |Ĝ◦
h(u)− Ĝ◦

h′(u)|2 ≤ C# · v̂(h′,u)λ(h′) for all h′ < h,h′ ∈ Hn}.
(21)

Remark 4.2. v̂2(h′,u) is a proxy for the variance of Ĝ◦
h(u) − Ĝ◦

h′(u). It is
multiplied by a log factor λ(h′) in (21) to account for local random deviations.
As described in Lepski et al. (1997), the bandwidth (21) can be seen as the largest
bandwidth where Ĝ◦

h(u) does not deviate significantly from G(u).

We now present the assumptions on the process
(
X̃t(u)

)
t∈Z under which the

theoretical statements for the local bandwidth selection procedure ĥ(u) holds.

Assumption 4.3 (Moment and dependence assumptions). Let α ≥ 0. Let
Assumption 2.1 hold for all q ≥ 1. Define Nα(q) := �(αq + 2), where �(x) =∫ ∞

0 e−ttx−1dt denotes the Gamma function. Assume that, for all u ∈ [0,1]:

(i) supu∈[0,1] ‖X̃0(u)‖q ≤ D ·Nα(q),

(ii) supu∈[0,1] δ
X̃(u)
q (k) ≤ D ·Nα(q) ·ρk.

Remark 4.4. Assumption 4.3(i) asks for a quantification of the growth
of the moments ‖X̃0(u)‖q

q in q. It can be easily seen that the condition
supu∈[0,1] ‖X̃0(u)‖q ≤ D · Nα(q) follows if X̃0(u) has a Lebesgue density which
is bounded from above by K exp(−x1/α). Assumption 4.3(ii) asks the process to
have a geometrically decaying dependence measure δX̃(u)

q (k). This is, for instance,
fulfilled for tvARMA and tvGARCH processes (cf. Wu, 2011).

We now formulate assumptions on the pre-estimator 
̂n(u) of 
g(u).

Assumption 4.5 (Assumptions on 
̂n(u)). There exists some constant c
 > 0
such that, for each u ∈ [0,1]:

• 
̂n(u) is consistent in the following sense: for every ε > 0, P(|
̂n(u) −

g(u)|∞ > ε) = O(n−2).

• ‖|
̂n(u)|∞ ‖2 ≤ c
 .

We now have the following near-optimality result for ĥ(u).
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Theorem 4.6. Let g ∈ H(M,χ,C) be such that, for all j ≥ 0, |χj| ≤ κρ j with
some ρ ∈ (0,1), κ > 0. Suppose that K ∈ K′.

Fix u ∈ (0,1). Suppose that Assumptions 2.6, 4.3 (with the same ρ as above),
and 4.5 are fulfilled. Suppose that |∂2

u G(u)|2 > 0 and 
g(v) is positive definite for
all v ∈ [0,1].

Then there exist constants cH,CH,c′ > 0 independent of n and some universal
constant c > 0 such that ĥ(u) defined in (21) has the following property: if
[h,h] = [cH log(n)5+2αMn−1,CH] and C# ≥ 64, then

E|Ĝĥ(u)(u)−G(u)|22
≤ c′ log(n)2n−1 + c

1−a
· min

h∈Hn

{h4

4
μ2

K |∂2
u G(u)|22 +σ 2

K tr(
(u))
log(n)

nh

}
. (22)

Remark 4.7. • The theorem states that the mean squared error E|Ĝĥ(u)(u) −
G(u)|22 with the selector ĥ(u) is bounded by two terms: the first term is of
the smaller rate log(n)2n−1 and negligible compared to the second term. The
second term is a universal constant times the minimal mean squared error of
E|Ĝh(u)−G(u)|22 (cf. (7) in Theorem 2.8) up to an additional log-factor log(n)

in the variance part.
• The set Hn = {ak : k ∈ N} ∩ [h,h] contains all theoretically interesting band-

widths. Especially, hopt(u) from (9), which has rate n−1/5, is included for n large
enough in the sense that there exists h ∈ Hn such that ah ≤ hopt(u) ≤ h.

• The positivity assumptions on |∂2
u G(u)|2 and 
g(u) are needed to ensure that

both leading terms of the mean squared error decomposition exist.
• The proof can be adopted in such a way that C# ≥ 64 can be replaced by C# ≥

1+ ε with ε > 0 arbitrarily small.
• The geometric decay in Assumption 4.3 on the functional dependence measure

is used to derive a Bernstein inequality (see Theorem 4.8) which is connected
to the log(n) term in the variance in (22). The existence of all moments in the
prescribed way is necessary to guarantee the result with h = cH log(n)5+2αMn−1.
In principle, both assumptions may be relaxed. This then leads to larger h (for
instance, additional polynomial factors in n) and a larger additional factor in
the variance in (22). As pointed out in Remark 3.2, these assumptions are
fulfilled for several recursively defined time series models like tvARMA and
tvGARCH under appropriate conditions on the underlying parameter space and
the distribution of the innovations.

• Assumption 4.5 basically asks that 
̂n(u) is consistent for 
g(u). The main
message here is that 
̂n(u) has not to be “optimal” in any sense, but it is sufficient
if 
̂n(u) is of the same order as 
g(u). We present reasonable candidates in
Section 3.5.

Assumption 4.3 is used to prove a Bernstein-type inequality which is a key
ingredient to obtain optimality results for contrast minimization methods. The
geometric decay of the functional dependence measure is needed to apply a
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Bernstein-type result from Doukhan and Neumann (2007), while the moment
conditions are necessary to allow for a large set of bandwidths Hn by establishing
a simple exponential inequality. The Bernstein inequality is formulated in terms of
the process

G̃h(u) :=
∑n

t=1 Kh(t/n−u) ·g(Ỹt(t/n))∑n
t=1 Kh(t/n−u)

,

which is a theoretical approximation of Ĝh(u).

Theorem 4.8 (Bernstein inequality for G̃h(u)). Fix u ∈ [0,1]. Assume that
g ∈ H(M,χ,C) and Assumption 4.3 holds. Then there exist some constants
c1,c2,cH,CH > 0 independent of n such that, for all h ∈ [cHn−1,CH] and all
j ∈ {1, . . . ,d},

P

(
(nh)

∣∣G̃h(u)j −EG̃h(u)j

∣∣ > γ
)

≤ 2exp
(

− γ 2

32(nh)2v2
j (h,u)+ c1 log(n)αM/3γ 5/3

)
+ c2

n−2

γ 2
,

where v2
j (h,u) := σ 2

K
nh 
(u)jj.

Remark 4.9. The above Bernstein inequality states that the deviation
G̃h(u)j − EG̃h(u)j can be bounded by the deviation of a Gaussian distribution

with variance v2
j (h,u) = 64

σ 2
K

nh 
(u)jj for a certain regime of the threshold γ where

32(nh)2v2
j (h,u) ≥ c1 log(n)αM/3γ 5/3.

“Optimal” Bernstein inequalities for independent variables are formulated with γ

instead of γ 5/3. Here, we obtain γ 5/3 due to dependence by using a result from
Doukhan and Neumann (2007). It turns out that this result is just adequate for
the above model selection result. c1,c2 are complicated functions of the constants
given in the assumptions. In the proof, one has to approximate g(Ỹt(t/n)) by
g(Ỹt(u)) in the variance term leading to the condition h ∈ [cHn−1,CH]. This
condition basically asks G̃h(u) to contain at least a certain finite number of
summands and is further needed to neglect bias-type terms which arise in the
variance decomposition. The additional summand c2

n−2

γ 2 should be regarded as a

remainder term which arises by excluding rare events {g(Ỹt(t/n)) > log(n)}.

4.1. Discussion on the tuning parameters

Theorem 4.6 states a nonasymptotic result which provides near optimality of ĥ(u)

under conditions on Hn, 
̂n, and C#. However, the constants c′ > 0, c > 0 arising
in (22) may be relatively large, which undermines the nice theoretical statement
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for moderate sample sizes n. For practical purposes, a more detailed discussion on
the influence of the parameters on the procedure is necessary.

The selector ĥ(u) depends on several parameters and pre-estimators, namely:

• the choice of 
̂n,
• the choice of C#,
• the set Hn, especially a ∈ (0,1) and h,h.

4.1.1. Choice of 
̂n(u). As mentioned above, the requirements on the quality
of 
̂n(u) from Assumption 4.5 are not too strong; however, we need that 
̂n(u) has
the same order of magnitude as 
g(u). A possible choice for 
̂n(u) is given by


̂n(u) :=
rn∑

k=−rn

ĉg
η(u,k), (23)

where

ĉg
η(u,k) :=

1
n

∑n
t=1 Kη(t/n−u) · {g(Yt,n)− Ĝη(u)}{g(Yt−k,n)− Ĝη(u)}′

1
n

∑n
t=1 Kη(t/n−u)

with some rn ∈ N, η > 0. The following result holds.

Lemma 4.10. Let the assumptions of Theorem 4.6 hold. Let s > 0. Then
there exist constants cr,Cr,cη,Cη > 0 independent of n such that for any
rn ∈ [cr log(n),Cr log(n)] and η ∈ [cηn−1+s,Cηn−s], 
̂n satisfies Assumption 4.5.

Note that, here, we allow for a large area of η ∈ [cηn−1+s,Cηn−s], that is, no
optimal choice of η is needed. In practice, one may use a rather ad hoc choice via

rn ≈ log(n), η ≈ n−1/5 (24)

(n−1/5 is motivated by the MSE-optimal bandwidth for twice continuously
differentiable objectives) to obtain stable results.

4.1.2. Choice of Hn. Hn depends on h, h, and a. As seen in Theorem 4.6, there
are restrictions on h, h of the form

h ≥ cH log(n)5+2αM, h ≤ CH

with some (potentially large) constant cH > 0 and some (potentially small) constant
CH > 0. Since ĥ(u) is a supremum and therefore formulated as a bottom-up
procedure and therefore already for smaller h ∈ Hn the condition in ĥ(u) is violated,
in practice an upper bound on Hn via h is not necessary.

Clearly, a choice a ≈ 1 is preferable in practice to obtain a fine grid Hn of
possible bandwidths, especially for small samples sizes n. In Theorem 4.6 and
(22), it is seen that the choice of a has a direct influence of the quality of ĥ(u) due
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to the factor 1
1−a on the right-hand side. Generally speaking, a ∈ (0,1) should be

chosen roughly in such a way that

1

1−a
≤ 4, that is, a ≥ 3

4
,

which restricts the impact of this factor in (22).
Lastly, the choice of h in practice is strongly connected to the choice of C#,

which is discussed in the next section.

4.2. Choice of h from Hn and choice of C#

The selector ĥ(u) is quite sensitive to the choice of C#. In this way, the whole
method should be interpreted as a procedure which is able to reduce the choice
of several tuning parameters (bandwidth choices for all u ∈ (0,1)) to one tuning
parameter C#. Theorem 4.6 states that C# ≥ 64 should provide good results at
least for large n, while in principle this condition can be reduced to C# ≥ 1 (cf. the
remark after the theorem). We now investigate the choice of C# connected to the
choice of h for estimation of G(u) = c(u,1) =EX̃0(u)X̃1(u) in the tvAR(1) process

Xt,n = a(
t

n
)Xt−1,n + εt, a(u) = 0.8sin(2πu), εt ∼ N(0,1), n = 1,000.

(25)

In Figure 5, we depict the behavior of ĥ(u) and the corresponding estimator
Ĝĥ(u)(u) based on the estimator 
̂n defined in (23) with η = 0.3, rn = 5, and

a = 3
4 . We have chosen C# ∈ {0.5,1,2} and Hn = {ak : k ∈ {0, . . . ,10}} and Hn =

{ak : k ∈ {0, . . . ,20}}. We see that for C# = 1 and Hn = {ak : k ∈ {0, . . . ,10}},
the estimator works quite nicely and detects changes of the smoothness behavior
of the underlying curve G(u) by using smaller or larger bandwidths. If the set
Hn = {ak : k ∈ {0, . . . ,20}} includes much smaller bandwidths, one can observe
several “overshoots,” that is, the smallest possible bandwidth is selected at certain
u ∈ (0,1), whereas for values v ≈ u near u, ĥ(v) is much larger. This is due to the
fact that for too small bandwidths (and thus, too few observations inside the sum
Ĝh(u)), the perturbation theory based on the Bernstein inequality does no longer
hold. If C# = 2, one can see that the estimator acts quite conservatively and chooses
only large bandwidths. If C# = 0.5, the estimator already tends to select too small
bandwidths.

Similar observations can be made for other processes (see Section 3.5). In
general, it is a good start to choose C# = 1. A direct connection between an optimal
choice of C# and the sample size n as well as the properties of the underlying
process is not obvious to us. One may choose slightly smaller values C# < 1 after
a first inspection of the estimator, for instance, C# ∈ [0.5,1]. Here, one also has to
adapt the lower bound h of Hn to stabilize ĥ(u). More precisely, one has to select
h large enough such that no overshoots arise. We summarize this procedure in the
following heuristic algorithm.
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2ĥ(u)

Estimation of G(u) with h(u)
^

Estimation of G(u) with h(u)
^

0.0 0.2 0.4 0.6 0.8 1.0

–3
–2

–1
0

1
2

3
4 true G(u)
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2ĥ(u)

rescaled time u

rescaled time u

0.0 0.2 0.4 0.6 0.8 1.0

–3
–2

–1
0

1
2

3
4 true G(u)
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Figure 5. Behavior of ĥ(u) for estimation of G(u) = EX̃0(u)X̃1(u) for one observation of the process
given in (25). Top left: C# = 1 and Hn = {( 3

4 )k : k ∈ {0, . . . ,10}}; top right: C# = 1, Hn = {( 3
4 )k : k ∈

{0, . . . ,20}}; bottom left: C# = 2, Hn = {( 3
4 )k : k ∈ {0, . . . ,10}}; bottom right: C# = 0.5, Hn = {( 3

4 )k :
k ∈ {0, . . . ,10}}.

Remark 4.11 (Heuristic algorithm for local bandwidth selection). We summa-
rize our finding in the following heuristic algorithm, which applies to a large range
of time series.

Let rn = �log(n)�, η = n−1/5, and a = 3
4 . Put C# = 1, Hn,Z = {ak : k ∈ {0, . . . ,N}}

for Z ∈ N with Z0 = �− log(n)

log(a)
�. Iterate for Z = Z0,Z0 −1, . . .:

• For u ∈ (0,1), calculate ĥ(u) from (21) with Hn,Z .
• Check if Ĝĥ(u)(u) or ĥ(u), respectively, have “overshoots.” If not, stop the

procedure.

The selector ĥ(u) based on Hn,Z is the final selector.
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4.3. Simulations

Since our estimators are model-free, we expect good behavior of the selection
procedure for a wide range of locally stationary processes. Here, we inspect tvAR,
tvMA, and tvARCH processes:

X(1)
t,n = a(t/n) ·X(1)

t−1,n + ζt, a(u) = 0.8−1.6 ·1[0,0.5](u),

X(2)
t,n = ζt +b1(t/n)ζt−1 +b2(t/n)ζt−2,

b1(u) = 0.9sin(2πu), b2(u) = 3sin(2πu),

X(3)
t,n = (

a1(t/n)+0.5(X(3)
t−1,n)

2
)1/2

ζt, a1(u) = 0.5+0.4cos(2πu),

where ζt are i.i.d. N(0,1). We will estimate the following quantities:

(a) for X(1)
t,n : c(u,1) = EX̃2(u)X̃1(u)

[
= a(u)

1−a(u)2

]
,

(b) for X(2)
t,n : c(u,2) = EX̃3(u)X̃1(u)

[= b2(u)
]
,

(c) for X(3)
t,n : c(u,0) = EX̃1(u)2

[
= a1(u)

1−a2(u)

]
.

In all simulations, we use the parameters from the algorithm in Remark 4.11 and
the Epanechnikov kernel K(x) = 3

2 (1 − (2x)2)1[− 1
2 , 1

2 ](x). We use a time series of
length n = 1,000 and restrict ourselves to

Hn,Z = {ak : k ∈ {0, . . . ,Z}}, Z = 10. (26)

We do N = 1,000 replications and investigate the behavior of certain local
bandwidth selectors u �→ h(u) via dSE(h,u) from (3) (with F = id). For a bandwidth
curve h(·), we therefore obtain with w(u) = 1[0.05,0.95](u) the integrated squared
error

d̃ISE(h(·)) =
∫ 1

0
dSE(h(u),u)w(u)du =

∫ 1

0
E|Ĝh(u)(u)−G(u)|22w(u)du,

which differs from dISE(h) given in (2) through the possibility to insert different
bandwidths h(u) for every u ∈ [0,1]. We compare d̃ISE(ĥ(·)) with

min
h∈Hn

d̃ISE(h) = min
h∈Hn

dISE(h), (27)

which reflects the minimal value of d̃ISE(h(·)) a global bandwidth selector could
achieve (that is, only one bandwidth h(·) = h ∈ Hn is chosen for all u ∈ [0,1]) and

min
h:[0,1]→Hn

d̃ISE(h(·)), (28)

which reflects the minimal value of d̃ISE(h(·)) a local bandwidth selector could
achieve (that is, for every u ∈ [0,1] a bandwidth h(u) ∈ Hn is chosen). The
comparison with minh∈Hn d̃ISE(h) and minh:[0,1]→Hn d̃ISE(h) allows to judge how far
ĥ(u) is away from a global and a local optimal selection procedure. Furthermore,
we can analyze if at least to some extent, ĥ(u) outperforms a global optimal
selection procedure. Note that both distances (27) and (28) are achieved with
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Figure 6. Behavior of ĥ(u) for estimation of G(u) = EX̃0(u)X̃1(u) based on the tvAR process X(1)
t,n .

Left: empirical pointwise quantile curves of Ĝĥ(u)
(u) (red) and Ĝh∗ (u) (blue) together with the median

of ĥ(u) (green) over N = 1,000 replications. Right: boxplots of the achieved distances d̃ISE(h) for ĥ(u),
a global and a local optimal selector.

knowing the true function G and therefore do not correspond to bandwidth
selectors which are available in practice. In general, we expect

d̃ISE(ĥ(·)), min
h∈Hn

d̃ISE(h) ≥ min
h:[0,1]→Hn

d̃ISE(h(·)),

but nothing can be said about the relation between

d̃ISE(ĥ(·)) and min
h∈Hn

d̃ISE(h).

If the left distance is smaller than the right distance, this clearly shows that
ĥ(·) outperforms any global bandwidth selection procedure. However, even if
the distances are of comparable size, this is a remarkable result since the local
estimation method ĥ(u) has no access to G(u) and suffers from the additional
estimation error in the selection procedure. To analyze this in more detail, let

h∗ ∈ argminh∈Hn
dISE(h) = argminh∈Hn

d̃ISE(h)

be the bandwidth of a global optimal selector.
In Figure 6, we have depicted empirical quantile curves of Ĝĥ(u)(u) and Ĝh∗(u)

as well as the median of ĥ(u) (scaled with the factor 2) when applied to model (a).
It can be seen that, on average, ĥ(u) adapts quite nicely to the smoothness of G(u).
While for values u ∈ (0,1) near the boundaries 0,1, ĥ(u) is chosen large to use the
constancy of G(u) to reduce the variance, it is getting smaller toward the step at
u = 0.5. The “anomaly” of a large bandwidth choice for u = 0.5 comes from the
fact that G(0.5) = 0 = ∫

G(u)du can be estimated best when averaging over all

https://doi.org/10.1017/S0266466622000500 Published online by Cambridge University Press

https://doi.org/10.1017/S0266466622000500


1150 RAINER DAHLHAUS AND STEFAN RICHTER

–2
0

2
4

true G(u)

pointwise median of Ĝĥ(u)(u)
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Figure 7. Behavior of ĥ(u) for estimation of G(u) = EX̃0(u)X̃2(u) based on the tvMA process X(2)
t,n .

Left: empirical pointwise quantile curves of Ĝĥ(u)
(u) (red) and Ĝh∗ (u) (blue) together with the median

of ĥ(u) (green) over N = 1,000 replications. Right: boxplots of the achieved distances d̃ISE(h) for ĥ(u),
a global and a local optimal selector.

observations. Compared with the global optimal selector Ĝh∗(u), we observe that
Ĝĥ(u)(u) has a smaller variance for boundary points u ∈ (0,1) near 0,1. From the

boxplot, we see that d̃ISE(ĥ(·)) and minh∈Hn d̃ISE(h) have comparable size, but are
clearly larger than minh:[0,1]→Hn d̃ISE(h(·)).

In Figure 7, the simulations results for model (b) are depicted. Here, the
objective G(u) is much smoother than in model (a). It can be seen that ĥ(u) adapts
to the smoothness of G(u), but in general is too conservative, leading to too large
bandwidths. Here, a smaller C# may have led to better results. Since G(u) is smooth
over the whole interval u ∈ [0,1], the estimator based on the global optimal selector
Ĝh∗(u) outperforms Ĝĥ(u)(u). However, from the boxplot, we see that d̃ISE(ĥ(·)) and

minh∈Hn d̃ISE(h) still have comparable size.
In Figure 8, the simulations results for model (c) are depicted. Here, the objective

G(u) is smooth. Again, it can be seen that ĥ(u) adapts to the smoothness of G(u)

and is too conservative. However, it has a better performance than the estimator
based on the global optimal selector Ĝh∗(u) for u ≈ 0.5 where a smaller bandwidth
is necessary to capture the hill of G(u). From the boxplot, we see that d̃ISE(ĥ(·))
and minh∈Hn d̃ISE(h) still have comparable size, whereas minh:[0,1]→Hn d̃ISE(h(·)) is
much smaller.

Let us summarize the following points. First of all, comparison with
minh:[0,1]→Hn d̃ISE(h(·)) is “unfair” since for any u ∈ (0,1) there may exist a good
h(u) ∈ Hn to minimize |Ĝh(u)(u) − G(u)| even if Ĝh(u) − G(u) does not behave
like the nonasymptotic theory derived. Therefore, it should not be overestimated
that minh:[0,1]→Hn d̃ISE(h(·)) is much smaller in all examples. Second, the choice
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Figure 8. Behavior of ĥ(u) for estimation of G(u) = EX̃0(u)2 based on the tvARCH process X(3)
t,n .

Left: empirical pointwise quantile curves of Ĝĥ(u)
(u) (red) and Ĝh∗ (u) (blue) together with the median

of ĥ(u) (green) over N = 1,000 replications. Right: boxplots of the achieved distances d̃ISE(h) for ĥ(u),
a global and a local optimal selector.

C# = 1 and a large lower bound h on Hn as given in (26) produce stable estimators
ĥ(u) in general. However, ĥ(u) may select too large bandwidths to compete with
a global bandwidth selector. Therefore, one typically has to consider also smaller
choices of C#. Even if Gĥ(u)(u) itself may not be useful, ĥ(u) clearly captures
some information on the smoothness behavior of G(u) and therefore can serve as
a pre-estimator for other selection procedures.

5. CONCLUSION

In this paper, we have developed two methods for adaptive bandwidth selection
for nonparametric moment estimators of locally stationary processes of some curve
G(u). We have derived theoretical results for their optimality with respect to mean-
squared-error-type distance measures and found with simulations that they work
well for different time series models.

The first method is based on a cross-validation approach and allows for global
bandwidth selection. A critical issue is to deal with the dependency of the observed
time series whose influence is controlled by some parameter α. This parameter can
be selected by eye inspection from a plot of the empirical integrated squared error
d(n)

ISE,α(h) as a function of h for different α. The selected bandwidth ĥ then is quite
insensitive to the choice of α. The selection of α may be supported by the heuristic
algorithm from Remark 3.5.

The second method is for local bandwidth selection, i.e., for each time point a
different bandwidth is chosen. This allows for taking into account local smoothness
properties of the unknown curve. The method needs an estimator 
̂n(u) of the
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asymptotic long-run variance and is also dependent on a tuning parameter C#.
We have theoretically justified that the quality of 
̂n(u) does not influence the
bandwidth selection procedure very much, while the choice of C# and the lower
bound of the set of bandwidths Hn is important for meaningful results. With
theoretical justifications, we have derived a heuristic algorithm to obtain a stable
procedure.

From an abstract view, we have presented two new methods for global and local
bandwidth selection, but at the expense of introducing with α and C# two new
regularity parameters. The important point is, however, that in the case of cross
validation, the new tuning parameter α is much less influential on the quality of
the final estimate than the bandwidth, and, in the case of the local bandwidth,
the selection of several bandwidths (h(u) for all u ∈ (0,1)) is replaced by the
selection of the single tuning parameter C#. Additionally, some heuristic methods
are presented which allow for choosing both parameters reasonably.

One may try to improve the theory for the presented methods by allowing for
more general structures of G(u) and its estimators or investigating G(u) with
moments of two-sided functions. These problems are left to further research.

SUPPLEMENTARY MATERIAL

Dahlhaus, R. and Richter, S. (2022). Supplement to “Adaptation for nonparametric
estimators of locally stationary processes,” Econometric Theory Supplementary
Material. To view, please visit: https://doi.org/10.1017/S0266466622000500.
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