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We study the existence of stable axially and spherically symmetric plasma structures on the basis
of the new nonlinear Schrödinger equation (NLSE) accounting for nonlocal electron nonlinearities.
The numerical solutions of NLSE having the form of spatial solitions are obtained and their stability
is analyzed. We discuss the possible application of the obtained results to the theoretical description
of natural plasmoids in the atmosphere.
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I. INTRODUCTION

The studies of stable spatial solitons is an important
problem of contemporary physics [1]. There are numer-
ous manifestations of stable solitonic solutions of non-
linear equations in two and three spatial dimensions in
nonlinear optics [2], solid state [3] and plasma physics [4].
In plasma physics it was established [5] that the nonlin-

ear electron-ion interaction leads to the modulation insta-
bility and results in the collapse of a Langmiur wave [5, 6].
In contrast to the electron-ion interaction, the nonlin-
ear electron-electron interactions, studied in Refs. [7, 8],
were shown to stabilize the evolution of a Langmuir wave
packet, making possible the existence of stable spatial
plasma structures.
It is convenient to describe the evolution of nonlin-

ear Langmuir wave packets on the basis of a nonlinear
Schrödinger equation (NLSE) [9]. The nonlinear terms
studied in Refs. [7, 8] are local since their contributions
to NLSE contain only a certain power of the electric
field amplitude. The nonlocal terms in NLSE, derived
in Refs. [10, 11], are also important when, e.g., a wave
packet is very steep. Under certain conditions these non-
local electron nonlinearities can arrest the Lamgmuir col-
lapse. It is suggested in Ref. [11] that a nonlocal NLSE is
a theoretical model for stable spatial plasma structures
obtained in a laboratory [12].
Besides the nonlocal electron nonlinearities taken into

account in Ref. [11] there are analogous contributions to
NLSE originating from the electron pressure term. These
terms have the same order of magnitude as those con-
sidered in Ref. [11] and are important for plasma with
nonzero electron temperature. Note that nonlinear waves
in warm plasma were also studied in Ref. [13]. In the
present work we carefully study these additional nonlin-
earities and examine their contribution to NLSE.
This paper is organized as follows. In Sec. II, on the

basis of the system of nonlinear plasma equations, we ex-
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amine electrostatic plasma waves having axial and spher-
ical symmetry. Then, in Sec. II A, we briefly review the
previous studies of the influence of electron nonlinearities
on the dynamics of Langmuir waves in plasma. The new
NLSE, describing stable spatial plasma structures, tak-
ing into account the nonlocal nonlinear terms is derived
in Sec. II B. In Sec. III we analyze solutions of this NLSE
numerically. We consider the possible application of our
results to the theoretical explanation of the existence of
atmospheric and ionospheric plasmoids in Sec. IV. Fi-
nally we summarize our results in Sec. V.
The description of plasma waves in frames of Lagrange

variables is presented in Appendix A.

II. THE DYNAMICS OF SPATIAL LANGMUIR

SOLITONS

In this section we study axially and spherically sym-
metric waves in plasma accounting for local and nonlocal
electron nonlinearities. We derive a new NLSE which is
shown to have solitonic solutions.
To describe electrostatic waves in isotropic warm

plasma, in which the magnetic field is equal to zero,
B = 0, we start from the system of nonlinear hydro-
dynamic equations,

∂ne
∂t

+∇ · (neve) = 0,

∂vej
∂t

+ (ve · ∇)vej = − e

m
Ej −

1

mne
∇ipij

∂E

∂t
= 4πe(neve − nivi),

(∇ ·E) = −4πe(ne − ni), (2.1)

where ne,i are the densities of electrons and ions, ve,i are
their velocities, E is the amplitude of the electric field,
m is the electron mass, e > 0 is the proton charge, and

pij = m

∫

(v − ve)i(v − ve)jfed
3
v, (2.2)

is the pressure tensor which is calculated using the elec-
tron distribution function fe. Note that Eq. (2.1) follows
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from more general Vlasov kinetic equation for the func-
tion fe.

It is known that Eq. (2.1) allows small amplitude Lang-

muir oscillations on the frequency ωp =
√

4πn0e2/m,
where n0 is the unperturbed electron density. However,
since Eq. (2.1) is nonlinear, the higher harmonics gener-
ation is possible. Therefore we can look for the solution
of Eq. (2.1) in the following form:

ne =n0 + ns + n
(1)
f + n

(2)
f + · · · ,

E =Es +E
(1)
f +E

(2)
f + · · · ,

ve =vs + v
(1)
f + v

(2)
f + · · · , (2.3)

where we separate different time scales,

n
(1)
f =n1e

−iωpt + n∗

1e
iωpt,

v
(1)
f =v1e

−iωpt + v
∗

1e
iωpt,

E
(1)
f =E1e

−iωpt +E
∗

1e
iωpt,

n
(2)
f =n2e

−2iωpt + n∗

2e
2iωpt

v
(2)
f =v2e

−2iωpt + v
∗

2e
2iωpt,

E
(2)
f =E2e

−2iωpt +E
∗

2e
2iωpt. (2.4)

The functions ns, Es, and vs in Eq. (2.3) and the ampli-
tude functions n1,2, v1,2 and E1,2 in Eq. (2.4) are sup-
posed to vary slowly on the 1/ωp time scale. Moreover
we suggest that, e.g., n0 ≫ n1 ≫ ns,2 etc, i.e. slowly
varying functions, marked with index “s”, and the am-
plitudes of the second harmonic are much smaller than
the corresponding amplitudes of the main oscillation.

We neglect the velocity of ions in Eq. (2.1) and suggest
that ion density is represented as ni = n0 + n, where the
perturbation n is also a slowly varying function on the
1/ωp time scale. Note that n does not necessarily coincide
with ns.

We will study electrostatic plasma oscillations in two
or three dimensions. Thus we assume radially symmetric
quantities in Eq. (2.1),

(

ve

E

)

= er ×
(

ve(r, t)
E(r, t)

)

,

(

ne
ni

)

=

(

ne(r, t)
ni(r, t)

)

, (2.5)

where r is the radial coordinate and er is the basis vector
in spherical or cylindrical coordinate system.

A. Local electron nonlinearities

The contribution of electron nonlinearities to the evo-
lution of Langmiur waves in frames of the model (2.1)-
(2.5) was taken into account in Refs. [7, 8] and the fol-
lowing equation for the description of the main oscillation

amplitude E1 was obtained:

iĖ1+
3

2
ωpr

2
D∇(∇ · E1)−

ωp
2n0

nE1

− β(d)

12πmn0ωp

E1|E1|2
r2

= 0, (2.6)

where rD =
√

Te/4πe2n0 is the Debye length, Te is the
electron temperature, and β(d) = (d − 1)(4 − d)/2, d is
the dimension of space.
Eq. (2.6) should be supplied with the wave equation

for the ion motion [14],

(

∂2

∂t2
− c2s∆

)

n =
∆|E1|2
4πM

, (2.7)

where cs =
√

(Te + γiTi)/M is the sound velocity, Ti is
the ions temperature, γi is the heat capacity ratio for
ions, M is the ion mass, and ∆ is the Laplace operator.
At the absence of electron nonlinearities [the last term

in Eq. (2.6)] the system (2.6) and (2.7) corresponds to
the Zakharov equations [5]. It should be noted that the
contribution of local electron nonlinearities is washed out
from Eq. (2.6) in one dimensional case d = 1.
The Zakharov equations are known to reveal the col-

lapse of a Langmuir wave packet [6]: the size of a wave
packet is contracting and the amplitude of the electric
field is growing. It was shown in Refs. [7, 8] that Lang-
muir collapse can be arrested and stable spatial plasma
structures can appear in two and three dimensions, d =
2, 3, since the second nonlinear term in Eq. (2.6) is defo-
cusing.

B. Nonlocal electron nonlinearities

The influence of electron nonlinearities on the dynam-
ics of a Langmuir collapse was further studied in Ref. [11].
Using the relation between slowly varying electron den-
sity ns and the perturbation of ion density n,

ns = n+
∆|E1|2
4πe2

+ r2D∆ns, (2.8)

which was obtained in Ref. [8], we can approximately find
ns as

ns ≈ n+
∆|E1|2
4πe2

+ r2D∆n. (2.9)

Note that the last term in Eq. (2.9), ∼ r2D∆n, which is
important at rapidly varying ion density, was omitted in
Refs. [7, 8].
Using Eqs. (2.7), (2.9) and supposing that Ti ≪ Te,

one obtains the new nonlinear term in the left hand side
of Eq. (2.6) (see Ref. [11]),

E1∆|E1|2
32πn0mωp

. (2.10)
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This new contribution was shown in Ref. [11] to arrest
the Langmuir collapse. Moreover the nonlocal nonlinear-
ity (2.10) is more effective in preventing the collapse com-
pared to that found in Refs. [7, 8]. It should be also noted
that the new nonlinear term predicted in Ref. [11] does
not disappear in one dimensional case. The nonlinearity
analogous to that in Eq. (2.10), ∼ E1∆|E1|2, appears in
the Zakharov equations with quantum effects [15], while
taking into account the quantum Bohm potential.
The nonlocal electron nonlinearities, analogous to that

studied in Ref. [11], can follow not only from Eq. (2.9).
We can consider the contribution of the slowly varying
electron density to the electron pressure (2.2). Analo-
gously to Eqs. (2.3) and (2.4) one can discuss the de-
composition of the distribution function fe proposed in
Ref. [7],

fe =f0 + fs + f1e
−iωpt + f∗

1 e
iωpt

+ f2e
−2iωpt + f∗

2 e
2iωpt + · · · , (2.11)

where f0 is the equilibrium distribution function. For
classical plasma it can be, e.g., a Maxwell distribution
corresponding to Te. All the quantities in the expansion

series (2.11) depend on v − v
(1)
f .

Using the result of Ref. [7] we represent f1 as,

f1 =
i

ωp

[

∂f0
∂v

(v · ∇)v1 +
∂fs
∂v

(v · ∇)v1

− (v1 · ∇)fs +
e

m
Es
∂f1
∂v

]

+ · · · , (2.12)

where we drop terms containing f2, E2, and higher power
of the first harmonic amplitudes. The function fs in
Eq. (2.12) was also found in Ref. [7] for the case of
isotropic equilibrium distribution,

fs = −v2Tns
1

v

df0
dv

+ · · · , (2.13)

where vT =
√

Te/m is the thermal velocity of electrons.
The terms which do not contain the slowly varying den-
sity ns are omitted in Eq. (2.13).
Now we can express the nonlinear term ∇ipij/ne in

Eq. (2.1) as

1

ne
∇ipij =

1

n0

[(

1− ns
n0

)

∇i

∫

dvvivjf1

− n1

n0
∇i

∫

dvvivjfs

]

e−iωpt. (2.14)

Using the Maxwell equilibrium distribution function,

f0 = n0

(

m

2πTe

)3/2

exp

(

−mv
2

2Te

)

, (2.15)

normalized on the unperturbed electron density, we can
express the gradient of pressure in Eq. (2.14) in the fol-

lowing form:

∇ipij =3mv2T∇in1e
−iωpt

− ev2T
ω2
p

e−iωpt
[

∇j(ns∇iE1i) +∇i(ns∇iE1j)

+∇i(ns∇jE1i) +∇j(E1i∇ins)

− (∇jns)(∇iE1i)− 3ns∇j(∇iE1i)
]

, (2.16)

where we use the relations between the amplitudes of the
main harmonic,

v1 = − ie

mωp
E1 (∇ · E1) = −4πen1, (2.17)

established in Ref. [8]. The leading term in Eq. (2.16)
was derived in Refs. [7, 8]. The next-to-leading terms,
proportional to the derivatives of ns, are important when
one has rapidly varying in space wave packets.
Using Eqs. (2.9) and (2.16) we can obtain the gener-

alization of Eq. (2.6) which takes into account the non-
local electron nonlineariries due to the interaction of a
Langmuir wave with the low-frequency perturbation of
electron density,

iĖ+
3

2
ωpr

2
D∇(∇ ·E)− ωp

2n0
nE− β(d)

12πmn0ωp

E|E|2
r2

− v2T
2n0ωp

[

E∆n−∇[n(∇ ·E)]−∇i(n∇iE)

−∇i(n∇Ei)−∇[(E · ∇)n] + (∇ ·E)∇n
+ 3n∇(∇ ·E)

]

= 0, (2.18)

where for simplicity we omit the index “1”: E ≡ E1.
Eq. (2.18) should be supplied with Eq. (2.7) governing
the evolution of ion density perturbation n.
The nonlocal term ∼ E∆n in Eq. (2.18) was derived in

Ref. [11]. The remaining nonlocal nonlinearities, which
are of the same order of magnitude as the term ∼ E∆n,
were omitted in that work.
Let us study the evolution of the system (2.7)

and (2.18) in the subsonic regime, when one can neglect
the second time derivative of the ion density in Eq. (2.7).
Considering axially symmetric, d = 2, or spherically sym-
metric, d = 3, cases [see Eq. (2.5)] and using the dimen-
sionless variables,

x =

√

3

2

r

rD
, s =

9

4
ωpt, Φ =

E√
18πn0Te

, (2.19)

we can represent the dynamics of the system (2.7)
and (2.18) in the form of a single NLSE,

i
∂Φ

∂s
=− ∂

∂x

[

1

xd−1

∂

∂x
(xd−1Φ)

]

− Φ|Φ|2 + β(d)
Φ|Φ|2
x2

− 3

2

[

Φ
d− 1

x
− 3

∂Φ

∂x

]

∂

∂x
|Φ|2 = 0. (2.20)
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It should be noted that Eqs. (2.18) or (2.20) does not
conserve the number of plasmons,

Nφ =

∫

dV |E|2, Ṅφ 6= 0. (2.21)

This fact is because of the presence of the term ∼ ∂Φ/∂x
in Eq. (2.20).
To analyze the integrals of Eq. (2.20) let us separate

the variables in Eq. (2.20): Φ = e−iλsφ(x). Then mak-
ing the following nonlinear gauge transformation of the
“nonhermitian” Eq. (2.20):

ψ = exp

(

−9

4
|φ|2

)

φ, (2.22)

we can cast it in the equivalent form,

λψ =− ∂

∂x

[

1

xd−1

∂

∂x
(xd−1ψ)

]

− ψ|ψ|2 + β(d)
ψ|ψ|2
x2

− 3

2

[

3

2
∆x|ψ|2 +

d− 1

x

∂|ψ|2
∂x

]

ψ, (2.23)

where ∆x = ∂2/∂x2+(d− 1)/x×∂/∂x is the radial part
of the Laplace operator. To derive Eq. (2.23) we use
the decomposition of the transformed “wave function”
squared (2.22), |ψ|2 = (1 − 9

2 |φ|2 + · · · )|φ|2 ≈ |φ|2, and
keep only cubic terms in Eq. (2.23).
The modified NLSE (2.23) is “hermitian”, i.e. it con-

serves the number of plasmons,

Nψ = Ωd

∫

∞

0

dx xd−1|Ψ|2, (2.24)

where we restore the s dependence, Ψ = e−iλsψ(x), and
Ωd = 2π, for d = 2, or Ωd = 4π, for d = 3, is the solid
angle. It should be also noticed that the nonlocal non-
linearities does not disappear in one dimensional case as
the local ones studied in Ref. [7, 8]. The dynamics of
Langmuir waves in warm plasma in arbitrary dimensions
is analyzed in Appendix A, using Lagrange variables. It
is shown there that in case of nonzero electron temper-
ature the nonlinear terms does not disappear in higher
dimensions d > 1.
We can notice that Eq. (2.23) is analogous to NLSE

equation derived in Ref. [11]. It also contains ψ∆x|ψ|2
term, although the coefficient is different. The main
discrepancy is the presence of the term ∼ (d − 1)/x ×
ψ∂|ψ|2/∂x. In Sec. III we analyze the influence of this
new contribution numerically.

III. NUMERICAL SIMULATION

It is difficult to construct other conserved integrals of
Eq. (2.23), e.g., a Hamiltonian, independent of the num-
ber of plasmons (2.24). Therefore one has to analyze the
behaviour of solutions of this equation numerically.

Eq. (2.23) should be supplied with the boundary condi-
tions, ψ(0) = ψ(∞) = 0, and thus treated as a boundary
condition problem. We have found numerical solutions of
this problem using a boundary condition problem solver,
incorporated in the MATLAB 7.6 program. It requires
an initial “guess” function which was chosen as

ψg(x) =
√

N0Adx exp

(

− x2

2σ2

)

, (3.1)

where σ is the “width” of the function, Ad = 1/(
√
πσ2),

for d = 2, and Ad =
√

2/3/(π3/4σ5/2), for d = 3. The
function (3.1) is now normalized on the initial number of
plasmons N0, to be compares with the actual number of
plasmons Nψ obtained from a numerical solution.
The best convergence of the numerical procedure is

achieved when σ corresponds to the minimal value of λ
in Eq. (2.23) at the given N0. This analysis is analogous
to the trial function method [16] for minimizing of the
Hamiltonian of NLSE. In Fig. 1(a), for d = 2, and in
Fig. 2(a), for d = 3, we present the dependence of λ
versus σ for different values of N0. One can see that
the function λ(σ) has a minimum if N0 > Ncr. In two
dimensional case the critical number of plasmons can be
easily found: Ncr = 8π. Note that one can expect the
stability of a soliton with respect to the collapse if λ < 0
for d = 2, whereas in 3D case there is some range of
positive λ which corresponds to uncollapsing solutions.
The solutions which correspond to various values of λ,

σ, and Nψ are shown in Fig. 1(c,d), for d = 2, and in
Fig. 2(c,d), for d = 3. A “guess” function which does
not correspond to the minimum of the function λ(σ) also
gives some solitonic solution of Eq. (2.23), however the
convergence is much worse than in the minimal λ case.
Indeed, Nψ significantly differs from N0 for such a so-
lution. When the deviation from the minimal λ is big,
although λ remains to be negative, no regular solutions
can be found and the system capsizes into chaos. Thus
these “nonoptimal” solutions seem to be unstable.
To analyze the stability of the found solutions we

present the Nψ(λ) dependence in Fig. 1(b), for d = 2, and
in Fig. 2(b), for d = 3. Note these curves were built for
“guess” functions corresponding to a minimal λ. Apply-
ing the Vakhitov–Kolokolov criterion [17] to the results
shown on these plots one can conclude that the presented
solutions are stable in 2D case, whereas some unstable
solitons can exist in three dimensions. For d = 3, a sta-
ble solution can be generated starting from a threshold
plasmon number Ncr ≈ 1100 and at |λ| > 0.05 (see also
the discussion in Sec. IV). We show an example of a
unstable soliton in Fig. 3.
In Fig. 1(b), for d = 2, one can see that the new

term in Eq. (2.23), ∼ (d − 1)/x × ψ∂|ψ|2/∂x, does not
produce any significant effect (compare solid and dash-
dotted lines). In 3D case, Fig. 2(b), the difference is just
quantitative: the critical plasmon number and critical
frequency are shifted. Therefore our results are in agree-
ment with Ref. [11] where NLSE with a nonlocal term
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FIG. 1. The analysis of solutions of Eq. (2.23) in 2D case. (a) The function λ(σ) obtained on the basis of Eq. (2.23)
using a “guess” function ψ = ψg (3.1) for different values of N0. (b) The dependence Nψ(λ): solid line corresponds to a
numerical solution of Eq. (2.23), dashed line represents an “analytical” curve corresponding to minimal λa, and dash-dotted
line corresponds to a numerical solution of Eq. (2.23) at the absence of the term (d − 1)/x × ψ∂|ψ|2/∂x (see Ref. [11]).
(c) Examples of solutions of Eq. (2.23) obtained for N0 = 100; solid line: Nψ ≈ 113, λ ≈ −0.20, and σ ≈ 3.83 (optimal
parameters minimizing λ), dashed line: Nψ ≈ 70, λ ≈ −0.06, and σ ≈ 9.56, and dash-dotted line: Nψ ≈ 595, λ ≈ −0.06, and
σ ≈ 2.83. (d) The same as in panel (c) for N0 = 200; solid line: Nψ ≈ 210, λ ≈ −0.55, and σ ≈ 3.55 (optimal parameters),
dashed line: Nψ ≈ 113, λ ≈ −0.20, and σ ≈ 7.91, and dash-dotted: Nψ ≈ 113, λ ≈ −0.20, and σ ≈ 2.64. Note that in the
latter case dashed and dash-dotted lines practically coincide.

was analyzed. One should also notice that the numeri-
cal curve in Fig. 1(b) (solid line) is in a good agreement
with the “analytical” λ(Nψ) dependence (dashed line),
λa = −(Nψ− 8π)2/(88πNψ), found from Eq. (2.23) with
help of the “guess” function (3.1).

IV. APPLICATIONS

Stable spatial solitons, involving nonlocal nonlineari-
ties, similar to plasma structures described in the present
work, were reported to be obtained in various labora-

tory experiments in plasma physics, condescended mat-
ter, and nonlinear optics (see, e.g., reviews [2–4] and
references therein). Another opportunity for the phys-
ical realization of plasmoids described in Secs. II and III
consists in their implementation as a rare natural at-
mospheric electricity phenomenon called a ball lightning
(BL) [18].

According to the BL observations, most frequently it
has a form of a rather regular sphere with the diame-
ter of (20 − 50) cm [19]. However big BLs with the size
more than one meter were reported to exist [20]. Besides
spherical BL, snake-like objects were observed [20]. The
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FIG. 2. Panels (a) and (b) are the same as in Fig. 1(a,b) but correspond to 3D case. (c) Examples of stable solutions of
Eq. (2.23) [right-handed branch in panel (b)] obtained for N0 = 1100; solid line: Nψ ≈ 1150, λ ≈ −0.10, and σ ≈ 3.90 (optimal
parameters), dashed line: Nψ ≈ 1429, λ ≈ −0.01, and σ ≈ 8.22, and dash-dotted line: Nψ ≈ 1219, λ ≈ −0.01, and σ ≈ 3.10.
(d) The same as in panel (c) for N0 = 1200; solid line: Nψ ≈ 1197, λ ≈ −0.13, and σ ≈ 3.80 (optimal parameters), dashed line:
Nψ ≈ 1429, λ ≈ −0.01, and σ ≈ 8.82, and dash-dotted line: Nψ ≈ 4354, λ ≈ −0.01, and σ ≈ 3.04.

lifetime of BL can be up to several minutes [19]. The es-
timates of energy of BL were obtained only in cases when
it produced some destruction while disappearing. These
estimates give for the energy of BL the value in the range
(several kJ – several MJ) [21]. However, since in many
cases BL disappears just fading, one should assume that
a very low energy BL can exist.

Numerous BL models are reviewed in Ref. [22]. Despite
very exotic theoretical descriptions of BL were proposed,
it is most probable that this object is a plasma based
phenomenon. In Refs. [23, 24] we developed a BL model
based on radial oscillations of electron gas in plasma,
studying these oscillations in both classical and quantum
approaches. The present work is a development of our BL
model. As in our previous studies, here we also treat BL
on the basis of radial oscillations of electrons. However,

as we show in Secs. II and III, local and nonlocal elec-
tron nonlinearities as well as the interaction of electrons
with ions play an important role for the stability of an
axially or spherically symmetric plasmoid. For example,
the inhomogeneity of ion density was not accounted for
in Ref. [23]. It should be noted that the idea that spher-
ically symmetric oscillations of electrons underlie the BL
phenomenon was independently put forward in Ref. [25].
In Fig. 4 we present the characteristics of axially sym-

metric (snake-like BL [20]) and spherically symmetric
(spherical BL) plasmoids calculated on the basis of the
results of Sec. III. The total energy of electric field inside
a plasmoid (energy density in 2D case) and the effective
plasmoid radius are defined as

WE =
1

8π

∫

E2dV, R2
eff =

1

8πWE

∫

r2E2dV. (4.1)
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FIG. 3. An example of the unstable solution of Eq. (2.23)
[left-handed branch in Fig. 2(b)] obtained for N0 = 770. It
corresponds to Nψ ≈ 1174, λ ≈ −0.02, and σ ≈ 4.20.

The frequency of the total oscillation, including the main
harmonic oscillation which was separated in the deriva-
tion of Eq. (2.18), is f = fp − |∆f |, where fp = 2.8 ×√
n5 MHz is the Langmuir frequency. Here we take into

account that frequency shift ∆f for a stable plasmoid is
negative [see Figs. 1(a) and 2(a)].
One can see in Fig. 4 that in frames of our BL model

we predict the existence of low energy (WE & erg/cm in
2D case and WE & 102 erg in 3D case) plasma structures
with the typical size Reff . 1.5m. This kind of plasmoids
should appear in low density ne ∼ 105 cm−3 and hot
Te ∼ 106K plasma. Such a density of plasma can well
exist in the Earth ionosphere [26]. A linear lightning
can provide the plasma heating up to Te ∼ 106K since,
e.g., Ti ∼ 104K in the lightning channel [27]. Thus we
can assume that such high temperatures of plasma can
be present in some localized area of ionosphere during a
thunderstorm, making possible the existence of plasma
structures described in the present work. It is interesting
to notice that several meters objects were reported to
appear in the BL observations near airplanes [28].
To demonstrate the stability of the described plas-

moids with respect to decay, in Fig. 5 we present the ratio
WE/Wk versus WE, where Wk = (3/2)n0TeVeff is the to-
tal thermal energy of a plasmoid (energy density in 2D
case) and Veff is the effective volume of a plasmoid, which
is equal to πR2

eff for d = 2 and to (4/3)πR3
eff for d = 3.

Indeed, hot electrons with Te ∼ 106K could just escape
the plasmoid volume making it unstable. One can how-
ever see in Fig. 5 that for stable plasma structures the
ratio WE/Wk has a tendency to increase reaching the
unit value at a certain soliton energy (WE ≈ 1 erg/cm
for d = 2 and WE ≈ 215 erg for d = 3). It means
that hot electrons will not escape form the plasmoid vol-
ume as soon its energy has this critical value. It should
be noticed that an unstable plasmoid, corresponding to
the lower branch in Fig. 5(b), will lose electrons since

WE/Wk < 1 always.
Comparing the predicted plasmoid properties with the

characteristics of circumterrestrial (not ionospheric) BL
one can say that our model is not directly applicable for
the description of such an object since its energy & 10 kJ
and the size ∼ (20 − 50) cm are beyond our predictions.
We can however use our model at the initial stages of the
plasmoid formation when the amplitude of the electric
field is so high since in Eq. (2.18) we keep only cubic
nonlinearity. Higher nonlinear terms, which seem to be
important for denser plasma, can explain smaller size and
bigger energy content.
A natural plasmoid appearing in circumterrestrial at-

mosphere is surrounded by the neutral gas. It means that
plasma in the interior of a plasmoid should be maintained
in the state with proper ionization during its lifetime. It
is however known [29] that plasma of a low energy plas-
moid, without an internal energy source, will lose energy
and recombine back to a neutral gas in the millisecond
time scale at the atmospheric pressure. Thus the lifetime
of such an object will be extremely short. It was sug-
gested that under certain conditions plasma can reveal
superconducting properties [30]. This mechanism could
prevent the energy losses and thus the recombination,
providing the long lifetime of a low energy plasmoid.

V. CONCLUSION

In conclusion we mention that in the present work we
have studied axially and spherically symmetric Lang-
miur solitons in warm plasma. In Sec. II we started
with the discussion of radially symmetric oscillations of
electrons in plasma and then separated the motions on
different time scales. In Sec. II A we briefly reviewed
the previous works on the theory of stable plasma struc-
tures which involved local electron nonlinearities. Then,
in Sec. II B we have calculated the contribution of the
slowly varying electron density to the electron pressure
and derived, together with the results of Ref. [11], the
new NLSE (2.18) which accounts for nonlocal electron
nonlineariries. These additional nonlinear terms do not
disappear in one dimensional case. This fact was also
demonstrated in Appendix A using Lagrange variables.
The solutions of this new NLSE, rewritten in the equiv-

alent form (2.23) for the radially symmetric case, have
been analyzed numerically in Sec. III. We presented
the examples of some of the solutions of Eq. (2.23) [see
Fig. 1(c,d) and Fig. 2(c,d)] and analyzed their stability.
It has been found that solutions in 2D case are stable,
whereas in tree dimensions some unstable solitons can ex-
ist. We also compared out results with Ref. [11], where
analogous NLSE was considered.
In Sec. IV we suggested that the described axially and

spherically symmetric solitons can be realized in the form
of a natural plasmoid, a ball lightning. We have com-
puted the characteristics of such a plasma structure, like
energy and radius (see Fig. 4), predicted in frames of our
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FIG. 4. Physical characteristics of axial [panels (a) and (b)] and spherical [panels (c) and (d)] plasmoids expressed in terms
of T6 = Te/10

6 K and n5 = n0/10
5 cm−3. (a) The energy density of electric field vs. the frequency shift. (b) The effective

radius vs. the energy density. (c) The total energy of electric field vs. the frequency shift. Stable plasmoids correspond to the
right-handed branch. (d) The effective radius vs. the total energy. Stable plasmoids correspond to the lower branch.
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model. Comparing these characteristics with the proper-
ties of a natural plasmoid one concludes that our model
describes a low energy BL which can exist in hot iono-
spheric plasma. Note that in many cases BLs were ob-
served form airplanes [28] at high altitudes. We also ex-
amined the stability of plasmoids with respect to decay
because of the escape of hot electrons.
We have already considered a BL model based on

radial oscillations of electrons in our previous publica-
tions [23, 24]. In the present work we performed more de-
tailed analysis of electron nonlinearities and showed that
they play a crucial role for the stability of a plasmoid. Al-
though plasma structures described in the present work
does not reproduce all the properties of circumterrestrial
(not ionospheric) BL [19, 21], we can use our results for
the description of the BL formation, when the amplitude
of the electric field is not so big.
As we have found in Sec. III [see also Fig. 4(a,c)], the

total frequency of electron oscillations is less than Lang-
muir frequency, since the frequency shift ∆f is negative.
It is important fact for the future experimental studies of
BL. For example, the electron density in a linear lightning
discharge can be ∼ 1017 cm−3 [31], giving for the plasma
frequency a huge value of ∼ 103GHz. In a laboratory it
is extremely difficult to create a strong electromagnetic
field of such a frequency to generate BL. However, if the
frequency of electron oscillations has a tendency to de-
crease, it can facilitate the plasmoid generation.
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Appendix A: Lagrange variables

The propagation of waves in plasma was analyzed in
Sec. II A using Euler variables which are more convenient
for the practical purposes. There is, however, a Lagrange
approach for the treatment of plasma waves. Instead of
describing of plasma characteristics, like velocity, den-
sity etc, in a certain point of space, one can study the
dependence of these quantities on the initial coordinates
of plasma particles.
Let us change the variables (r, t) → (ρ, τ) in Eqs. (2.1)

and (2.5) as

r =ρ+ ξ(ρ, τ), t = τ,

∂

∂ρ
=
∂r

∂ρ

∂

∂r
,

∂

∂τ
=

∂

∂t
+ ve

∂

∂r
, (A1)

where ρ is the initial coordinate of an electron, ξ is de-
viation of an electron from the equilibrium, and τ is the

new temporal variable. An electron is supposed to be in
the equilibrium initially, ξ(ρ, 0) = 0. In Eq. (A1) we use
the definition of electron velocity, ∂r/∂τ = ∂ξ/∂τ = ve.
Unlike the Euler picture, the continuity equation in La-
grange variables can be integrated and it does not contain
the time derivative,

n0ρ
d−1 = ner

d−1 ∂r

∂ρ
(A2)

where n0 = ne(τ = 0) is the initial (unperturbed) elec-
tron density, which is supposed to be uniform.
Using Eqs. (A1) and (A2) we can obtain from Eq. (2.1)

a single nonlinear equation for electron velocity,

v̈e + ω2
p

ni
n0
ve + vev̇e

d− 1

r

+ 3v2T

[

2r′′v′e
r′3

− v′′e
r′2

+ (d− 1)

(

ve
r2

− v′e
ρr′2

− ver
′′

rr′2

)

+ (d− 1)2
ve
r

(

1

ρr′
− 1

r

)]

= 0, (A3)

where a “dot” and a “prime” mean the derivatives with
respect to τ and ρ. To derive Eq. (A3) we assume that
electrons obey the adiabatic equation p/nγee = const,
where p is electron pressure [pij = pδij , see Eq. (2.2)] and
γe = 3 since we study electrostatic oscillations [32]. Anal-
ogous assumptions were taken in Ref. [13] to study the
nonlinear one-dimensional plasma waves in warm plasma
within the Lagrange picture.
Note that Eq. (A3) is an exact one, which does not

suppose any expansion over a small parameter. We can,
however, discuss the small deviations from the equilib-
rium position,

v̈e + ω2
p

(

1 +
n

n0

)

ve − 3v2T
∂

∂ρ

[

1

ρd−1

∂

∂ρ

(

ρd−1ve
)

]

+ vev̇e
d− 1

ρ
+ 3v2T

[

2(ξ′′v′e + v′′e ξ
′)

+ (d− 1)(d− 3)
veξ

ρ3
+ (d− 1)

(

2
v′eξ

′

ρ
− veξ

′′

ρ

)

− (d− 1)2
veξ

′

ρ2

]

= 0, (A4)

keeping only quadratic nonlinearities. As in Sec. II A,
n = ni−n0, stays for the perturbation of the ion density
in Eq. (A4).
It can be noticed that Eq. (A4) has analogous structure

as Eq. (2.18) before the separation of the main harmonic
(for the details see, e.g., Ref. [33]). We can see, however,
that nonlinear terms do not disappear completely at d =
1 if we consider warm plasma with Te 6= 0. One can also
notice that these nonvanishing nonlinear terms arise from
the pressure term in the initial plasma hydrodynamics
equations (2.1). Analogous conclusion was obtained in
Sec. II B using Euler coordinates. Note that the nonlinear
plasma waves were also studied in Refs. [13, 34]. It was
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found in Ref. [13] that the nonlinear terms are important
even for one dimensional plasma oscillations for the case

of nonzero electron temperature, which is in agreement
with our results [see Eqs. (2.23) and (A4)].
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