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Abstract

Magnetic monopoles are known to emerge as leading non-perturbative fluc-
tuations in the lattice version of non-Abelian gauge theories in some gauges.
In terms of the Dirac quantization condition, these monopoles have magnetic
charge |QM | = 2. Also, magnetic monopoles with |QM | = 1 can be introduced
on the lattice via the ’t Hooft loop operator. We consider the |QM | = 1, 2
monopoles in the continuum limit of the lattice gauge theories. To substitute
for the Dirac strings which cost no action on the lattice, we allow for singular
gauge potentials which are absent in the standard continuum version. Once
the Dirac strings are allowed, it turns possible to find a solution with zero
action for a monopole–antimonopole pair. This implies equivalence of the
standard and modified continuum versions in perturbation theory. To imitate
the nonperturbative vacuum, we introduce then a nonsingular background.
The modified continuum version of the gluodynamics allows in this case for
monopoles with finite non-vanishing action. Using similar techniques, we con-
struct the ’t Hooft loop operator in the continuum and predict its behavior
at small and large distances both at zero and high temperatures.
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Introduction

While perturbative Yang-Mills theories appear to be understood beyond any doubt,
non-perturbative physics is much more challenging at the moment. Moreover, the
main source of knowledge in the non-perturbative domain is the lattice gauge theo-
ries. In particular, there exist rich data supporting the idea of the quark confinement
through the magnetic monopole condensation (for review, see, e.g. [1]).

Any analytical treatment of magnetic monopoles in the continuum limit repre-
sents apparent difficulties because of singularities in the gauge potential Aµ. Indeed,
such singularities are displayed already by the original Dirac monopole:

Aµdxµ =
1

2
(1 + cos θ) dϕ, (1)

or in the component form in the spherical coordinates:

Aθ = Ar = 0, Aϕ =
1

2

(1 + cos θ)

r sin θ
. (2)

The singularity along the line θ = 0 represents the Dirac string, while the singularity
at r → 0 corresponds to a singular magnetic filed, H ∼ r/r3. In non-Abelian
theories with Higgs mechanism the singularities are resolved and there exists the
famous ’t Hooft-Polyakov solution [2] with finite energy. In a particular gauge, the
corresponding potential is given by

Aa
i = f(r)

εaikrk
r2

(3)

where a is the color index, a = 1, 2, 3 and f(r) → 0 as r → 0 while f(r) → 1 as
r → ∞.

In pure gauge theories, there are no monopole solutions with finite energy. To
reconcile this with observation of monopoles on the lattice, one considers dual gauge
theories which serve as infrared limit of QCD [3]. In its simplest version, the theory
is build on an octet of dual gluons and three octets of scalar (Higgs) fields. In
this paper, we would stick to consideration of monopoles within the fundamental
QCD. The reason is that the monopoles on the lattice are defined beginning from
elementary cubes, i.e. at smallest distances available. Our guiding principle is
to reexamine the continuum limit by confronting the treatment of the monopole-
associated singularities on the lattice and in the continuum.

In the lattice formulation, the singularities due to the Dirac string and at r → 0
are treated differently. As was emphasized first by Polyakov [4], the Dirac strings
are allowed, i.e. cost no action in the lattice compact U(1) theory. As for the
r → 0 singularity, it introduces in this case a physical divergence in the action. The
suppression due to this divergence is overcome, however, by the entropy factor when
the coupling constant g, included into the definition of Aµ above, is of order of unity.

In the non-Abelian gauge models the relation of monopoles to the action is much
more obscure, as far as analytical results are concerned. Moreover, one of the most
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important steps in introducing monopoles is a pure topological definition which
makes no reference to the associated non-Abelian action [5]. In this formulation,
monopoles are related to topology of gauge fixing. Namely, if the gauge is fixed (up
to U(1) rotations) by directing a color vector ha in, say, the third direction, then the
fixation fails at the points where all the components ha vanish. Moreover, one can
prove that such points belong to monopole trajectories. The function of ha can be
played by any vector, for example, by a particular Lorenz component of the gluonic
field-strength tensor, say, F a

12. Vanishing of ha has no direct effect on the action.
Other Abelian projections revealing monopoles are also known, the most famous
one seems to be the Maximal Abelian gauge (for review and references see [1]).

Monopoles which condense in the confining phase have magnetic charges |QM | =
2, the same as the ’t Hooft-Polyakov monopole (3). In the corresponding U(1)
projection the associated Dirac string does not introduce infinities because of the
compactness of the U(1) subgroups of SU(2), see the discussion above. On the
other hand the Dirac strings associated with |QM | = 1 monopoles are not allowed in
the QCD vacuum since in the continuum limit they have infinite energy. However,
one can introduce |QM | = 1 monopoles as external objects via the ’t Hooft loop
operator [6].

In this paper, we consider magnetic monopoles in the continuum provided that
the continuum is understood as the limiting case of lattice theories. First, we general-
ize the treatment of Dirac strings within the lattice compact QED to the non-Abelian
case. As expected, the lattice formulation of the non-Abelian theories corresponds
to non-observability of the Dirac strings, defined in a particular way. To substitute
for their effect in the continuum, one allows for certain singular potentials. Thus,
we argue that the standard continuum formulation is to be modified in a certain
way to allow for the Dirac strings.

It is amusing that once the Dirac strings are admitted into the continuum limit
the |QM | = 2 monopoles cost no action either. Namely, we construct an explicit
solution with zero action for a Dirac strings with open ends. In this respect the
non-Abelian theories differ radically from their Abelian counterpart where the end
points of the Dirac strings represent monopoles (1) with divergent action. It might
worth emphasizing that the Abelian part of the fields in the no-action solution does
correspond to the standard Abelian monopoles and it is the commutator term in
the field-strength tensor which allows to nullify the non-Abelian action. This is in
the correspondence with the instability of a single |QM | = 2 monopole with nonzero
action in the non-Abelian pure gauge theory which is known since long [7].

The explicit monopole-pair solution with no action mentioned above is obtained
in empty, or perturbative vacuum. We check that quantum fluctuations around
this zero-action solution do not distinguish it from the perturbative vacuum either.
Therefore the modified continuum version corresponding to the limit of the lattice
theories brings no change in the perturbative domain as compared with the standard
Lagrangian theory.

We then imitate non-perturbative vacuum of QCD by introducing nonsingular
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background fields, F soft
µν ∼ Λ2

QCD. Then there still exist Dirac strings with zero
action whose color orientation is aligned with that of the background field. On
the other hand, introduction of monopoles a la ’t Hooft (see above) is related to
some singular gauge transformations with their own color orientation. As a result,
monopoles in the physical vacuum are associated, generally speaking, with an action
of order L · ΛQCD where L is the length of the monopole world trajectory.

Finally, the same techniques as used to construct invisible Dirac strings in the
continuum limit produce a continuum analog for the ’t Hooft loop operator. It
shares the basic properties of the ’t Hooft loop operator and allows to formulate
new predictions for the intermonopole potential. At short distances the ’t Hooft
loop describes the Coulomb-like interaction of the monopoles with |QM | = 1, Ref.
[8]. We fix the coefficient at front of this Coulombic term. At larger distances the
|QM | = 1 monopoles, introduced via the ’t Hooft loop interact with the |QM | = 2
monopoles of the medium. We describe this interaction within the effective Abelian
Higgs model (for review and references see [1]), which uniquely fixes the Yukawa-
like behavior of the intermonopole potential. We include also consideration of the
’t Hooft loop at high temperatures where the Debye screening becomes essential.

The outline of the paper is as follows. In Section 1 we show that symmetries of the
lattice and standard continuum actions of gluodynamics are different. We propose
the modified continuum action which allows for the Dirac strings. In Sections 2, 3
monopole configurations within the new approach are considered. In Section 4 we
introduce the ’t Hooft loop operator in the continuum. In Section 5 the predictions
for the ’t Hooft loop are formulated. Our conclusions are summarized in the last
section.

1 Dirac Strings in SU(2) Gauge Theory.

As is mentioned in the Introduction, the lattice formulation of the compact pho-
todynamics gives a version of the U(1) gauge theory [4] with unobservable Dirac
strings. In this section we develop a generalization of this construction to the case
of SU(2) gauge model.

The general one–plaquette action of SU(2) lattice gauge theory (LGT) can be
represented as:

Slat(U) =
4

g2
∑

p

SP (1−
1

2
TrU [∂p]) , (4)

where g is the bare coupling, ∂p is the boundary of an elementary plaquette p, the
sum is taken over all p, U [∂p] is the ordered product of link variables Ul along ∂p. To
have the correct naive continuum limit the function SP should obey the condition
limx→0 SP (x) = x+ · · · . In particular, if SP (x) = x then (4) is the standard Wilson
action. The exponent of the lattice field strength tensor Fp defines U [∂p]:

U [∂p] = eiF̂p = cos[
1

2
|Fp|] + iτana

p sin[
1

2
|Fp|] , (5)
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where F̂ = F a ·τa/2, |F | =
√
F aF a and we define na

p = F a
p /|Fp| for |Fp| 6= 0, na is an

arbitrary unit vector for |Fp| = 0. Sometimes we also use the vector-like notations ~F
instead of F a. The lattice action (4) depends only on cos[1

2
|Fp|]. Therefore the action

of the SU(2) LGT possesses not only the usual gauge symmetry, but allows also for
the gauge transformations which shift the field strength by 4πk, |Fp| → |Fp|+ 4πk,
k ∈ Z:

eiF̂p = exp{ i|Fp| n̂p } =
= exp{ i(|Fp|+ 4π) n̂p } = exp{ i(F a

p + 4πna
p) τ

a/2 } , (6)

Thus the symmetry inherent to the lattice formulation can be represented as:

F a
p → F a

p + 4πna
p ,

~Fp × ~np = 0 , ~n2
p = 1 . (7)

The symmetry (7) is absent in the conventional continuum action,
∫

(F a
µν)

2 d4x and
therefore the continuum limit of SU(2) LGT is different from the commonly accepted
SU(2) gluodynamics at least in this respect. Below we explore the consequences of
Eq. (7) for the continuum theory.

In the continuum limit na
p becomes a singular two-dimensional structure ∗Σa

µν =
1
2
εµνλρΣ

a
λρ which is a generalization of the Dirac strings in the compact electro-

dynamics and which transforms in the adjoint representation of the gauge group.
Consider first a special class of the gauge potentials which may be gauge trans-
formed to pure Abelian fields, Aa

µ = δa,3Aµ. For such fields the action of the SU(2)
gluodynamics coincides with the action of the compact U(1) gauge model, up to the
ghost terms. Therefore in this gauge Σa

µν = δa,3Σµν , where Σµν is nothing else but
the Dirac string:

Σµν =
∫

d2σ
√
g tµν(σ) δ

(4)(x− x̃(σ)) , (8)

with the world-sheet coordinates x̃(σ) parameterized by σα, α = 1, 2:

tµν(σ) =
1√
g
εαβ ∂αx̃µ ∂βx̃ν , t2µν = 2 , g(σ) = Det[ ∂αx̃µ ∂β x̃µ ] . (9)

Thus for general gauge potentials

Σa
µν =

∫

d2σ
√
g taµν(σ) δ

(4)(x− x̃(σ)) . (10)

The second equality in (7) requires that

~tµν(σ)× ∗ ~Fµν(x̃) = 0 , (11)

where the continuum field strength tensor F̂µν = ∂µÂν − ∂νÂµ − i[Âµ, Âν ]. Eq. (11)
determines the color structure of taµν :

taµν(σ) = tµν(σ) n
a(σ) , na(σ) = (t · ∗F a)

[

(t · ∗F b)2
]−1/2

, (12)
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where (t · F a) ≡ tµν(σ) F
a
µν(x̃) and na is normalized as ~n2 = 1. On the set of points

where (t · ∗F a) = 0 the direction of na(σ) is arbitrary. Therefore, in the general case
Σa

µν is given by

Σa
µν =

∫

d2σ
√
g tµν(σ) n

a(σ) δ(4)(x− x̃(σ)) ,

(13)

~n 2(σ) = 1 , ~n(σ)× (tµν(σ)
∗ ~Fµν(x̃)) = 0 .

and the continuum analog of the lattice symmetry Eq. (6,7) is:

F a
µν → F a

µν + 4π ∗Σa
µν , (14)

Note that we do not claim that the only string-like singularities which may exist
in the continuum limit of SU(2) LGT are of the type (13,14). Indeed, there are
known examples of various Abelian gauges (see [1] and references therein) in which
Abelian monopoles and Dirac strings naturally arise. String singularities in these
gauges are of the type (13), but their color orientation is different. Therefore the
strings (13) are not the most general. Nevertheless, we claim that only the strings
(13) produce no additional action. In other words the action of the SU(2) LGT in
the continuum limit calculated with F a

µν and F a
µν + 4π∗Σa

µν is the same only if Σa
µν

is given by (13). We shall come back to discuss this issue in Section 3.
The action of SU(2) gluodynamics which possesses the additional symmetry (14)

can be formally represented as:

Z =
∫

DA exp
{

−S(F )
}

, (15)

S(F ) = − log
∫

DΣexp
{

− 1

4g2

∫

d4x
[

F a
µν + 4π ∗Σa

µν

]2}

, (16)

where the integration is over all possible surfaces (13). The expressions (15,16) are
only formal since, as we show in Section 2 it is impossible to separate rigorously the
measure DΣ from the gauge degrees of freedom in DA. Nevertheless, the Eq. (15,16)
is a good starting point for the analysis of the next section. Note that the action (16)
is invariant under smooth SU(2) gauge transformations since vector na transforms
in the same way as F a

µν does. By construction, this action is also invariant under
transformations (13,14) which correspond to the lattice symmetry relations (6,7).

Note also that for self-intersecting surface Σµν , Eq. (13), the world-sheet vector
field na(σ) is generally multi-valued as function of x̃. Furthermore, for the non-
orientable surfaces the field na(σ) cannot be defined smoothly everywhere on Σ.
To avoid these complications we consider only the orientable surfaces without self-
intersections. This reservation is specific for Dirac strings in the non-Abelian case.
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2 Monopoles.

We proceed now to consider Dirac strings with open ends. The end points can be
associated, as usual, with monopoles. If one follows only the Abelian-like part of
the field strength tensors, these are standard Dirac monopoles. However, the full
non-Abelian action is no longer bounded in terms of the Abelian magnetic field and
we will present a zero-action solution for open Dirac strings. Therefore contrary to
the Abelian models the open Dirac strings in SU(2) gluodynamics are the gauge
copies of the vacuum A = 0. Moreover, we show that this result is also valid at
the one loop level and hence the Dirac strings (13) do not change the perturbation
theory.

2.1 String Independence.

Consider the partition function (15,16) in case of a single surface Σa
µν :

Z[Σ] =
∫

DA exp
{

− 1

4g2

∫

d4x
[

F a
µν + 4πq ∗Σa

µν

]2}

, (17)

where the constant q is equal to unity in (15,16). Varying the gauge fields A we get
the classical equations of motion:

Dν

(

F̂µν(A) + 4πq ∗Σ̂µν

)

= 0 , (18)

which should be supplemented by Bianchi identities:

Dν
∗F̂µν = 0 . (19)

Note that Eq. (18) is consistent with the covariant conservation of electric currents:

DµDν F̂µν = −4πq DµDν
∗Σ̂µν ∼

∫

d2σµν
∗[Dµ, Dν ] n̂(σ) δ

(4)(x− x̃(σ)) = 0 .

where the last equality is due to (13).
To appreciate the meaning of eq.(18) let us confine ourselves for the moment

to the fields Aa
µ = Qa · Aµ with a constant color direction Qa. Then na ∼ Qa and

Eq. (18) becomes:

∂ν
(

∂[µAν]

)

= −4πq ∂ν
∗Σµν . (20)

The solution of this equation in the Landau gauge,

Aa
µ = −Qa · 4πq 1

∆
∂ν

∗Σµν , (21)

corresponds to the gauge potential of an Abelian monopole current ∂Σ embedded
into the SU(2) group. Thus Σµν is the Dirac string worldsheet.

Let us show that the shape of Σ is irrelevant, that is the surface Σ can be shifted
by a gauge transformation provided that the boundary ∂Σ is fixed. Assuming that
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the orientable surface (13) has no self-intersections, we may write Σa
µν = naΣµν .

Consider then a closed non self-intersecting surface S on which the vector field
na(σ) is a single valued function of x̃. We can define the field na(x), ~n 2 = 1, in the
whole space-time in such a way that

na(x) = na(x̃) for x ∈ S . (22)

Note that the definition of the vector na(x) is not unique, but this is irrelevant for
our analysis.

Consider the following gauge transformation matrix:

Ω(VS) = exp{ i α(VS , x) ~n(x)~τ } , (23)

α(VS , x) = 2πq

x
∫

∞

Vµdxµ , Vµ =
∫

VS

(

∗d3ζ
)

µ
δ(4)(x− ζ) , (24)

where Vµ is a characteristic function of the volume VS bounded by the surface S. The
first integral in (24) is taken along any path Cx connecting infinity with the point x.
Under the general gauge transformation Ω the field strength tensor transforms as:

F̂µν(A
Ω) = Ω+F̂µν(A)Ω + iΩ+ [∂µ, ∂ν ] Ω = Ω+F̂µν(A)Ω + F̂µν(iΩ

+∂Ω) . (25)

Straightforward calculations show that for Ω defined by Eq. (23)

F a
µν(iΩ

+∂Ω) = −2na [∂µ, ∂ν ]α (26)

−
(

sin[2α] δac + (1− cos[2α])εabcnb
)

[∂µ, ∂ν ]n
c .

Note that the function α(x) takes only two values, 0 and 2πq. Therefore for integer
or the half-integer valued charge q we have:

F a
µν(iΩ

+∂Ω) = −2 na [∂µ, ∂ν ]α = −4πq na ∂[µVν] = −4πq na ∗Sµν . (27)

Thus the gauge transformation considered adds a closed surface ∗Sµν to the field

strength tensor, F̂ (AΩ) = Ω+F̂ (A)Ω − 4πq ∗Ŝ, Ŝ = n̂S. It is easy to see that the
color structure of the surface Σa

µν was inessential in our analysis. Indeed, one may
perform exactly the same transformations with arbitrary na(σ), ~n 2 = 1, instead
of (13). Therefore the orientable non self-intersecting surface Σ in Eq. (17) with
arbitrary color orientation can be deformed by the singular gauge transformation
provided that q = 0,±1

2
,±1, ....

We see that the situation looks similar to the Abelian case where the shape of the
Dirac strings is inessential and can be changed by a gauge transformation so that
only the end points of the strings have a physical meaning: they are identified with
monopoles. However despite of this similarity the Yang–Mills theory is different in
some respects. In particular, for the examples considered below the boundaries of
the strings (13) have zero action thus being a pure gauge artifacts1.

1 Note that in the standard Yang–Mills theory these configurations have infinite action and
therefore are not important.
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2.2 Open Strings With Zero Action.

Consider the following gauge transformation matrix:

Ω1 =







cos θ
2
eiϕ sin θ

2

− sin θ
2

cos θ
2
e−iϕ





 , Ω+
1 τ

3Ω1 = x̂aτa , (28)

defined in the time-slice t = 0; θ, ϕ are polar and azimuthal angles. Performing the
gauge transformation on the pure vacuum configuration A = 0 one gets:

∗F a
µν(A

Ω1) = 4π δ0,[µ δν],3 δ
a,3 ·Θ(z)δ(x)δ(y) . (29)

Therefore the singular gauge transformation (28) produces singular F a
µν as well,

but the singularity in (29) is of allowed type (14) with time independent surface Σ
directed along τ 3 in the color space. On the other hand, in the gauge transformed
potentials one finds an Abelian monopole which is double charged in terms of the
minimal Dirac quantization condition (cf. Eq. (1)):

A3 = A3
µdxµ = −(1 + cos θ) dϕ ,

A+ = (A1
µ + iA2

µ)dxµ = −eiϕ (dθ − i sin θ dϕ) . (30)

The interpretation of (29,30) is as follows. In the U(1) case due to the magnetic flux
conservation the Dirac string terminates at an Abelian monopole with the magnetic
field |H| ∼ 1/r2. In the SU(2) gauge model the Abelian string with net flux 4π
may disappear into the vacuum. Although we still have the conservation of Abelian
flux, this does not imply any bound on the action. In fact, because of the nontrivial
components A± the full SU(2) action is zero. The zero action of the configuration
(30) is due to the cancellation between the Abelian-like and commutator pieces in
F a
µν . Note that already in Ref. [7] it was shown that the double charged Abelian

monopoles being immersed into SU(2) gauge group are unstable against fluctuations
of non-Abelian components of gauge fields.

Proceed now to generalizing (28) to the case of finite Dirac string. Consider
the potential Aµ which in U(1) theory represents the monopole–antimonopole pair
located at x, y = 0, z = ±R/2:

Aµdxµ =
1

2

(

z+
r+

− z−
r−

)

dϕ = AD(z, ρ)dϕ , 0 ≤ AD(z, ρ) ≤ 1 (31)

z± = z ± R/2 , ρ2 = x2 + y2 , r2± = z2± + ρ2 , (32)

and the following gauge transformation matrix

Ω2 =







eiϕ
√
AD

√
1− AD

−
√
1− AD e−iϕ

√
AD





 . (33)
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It is easy to check that (33) when applied to the vacuum A = 0 produces a string
of the type (13,14) which begins and terminates at the points ρ = 0, z = z±,
respectively:

∗F a
µν = 4π δ0,[µ δν],3 δ

a,3 ·Θ(R/2− |z|) δ(x) δ(y) . (34)

The corresponding gauge potential A = iΩ+
2 ∂Ω2 contains Abelian monopole and

antimonopole located at the ends of the string, A3
µdxµ = −2AD(z, ρ)dφ.

The described above monopole configurations might be related to the monopoles
common to the the lattice Abelian projections [1]. In a way, it is a consequence
of the asymptotic freedom alone. Indeed, by the monopole one understands field
configurations which in their Abelian part look like the standard Dirac monopole
(1). The action associated with the Abelian monopole is linearly divergent in the
ultraviolet,

SAbelian ∼ (ag2(a))−1 ,

where a is an ultraviolet cut off, say, the lattice spacing. At first sight, on the
background of this linear divergence the logarithmic behavior of the coupling is not
important at all. However, it was shown in Ref. [4] that the a−1 factor in the action
can be overcome by the entropy since it is proportional to an exponential of the
length of monopole trajectories measured in the same units of a. As a result, the
value of the coupling is becoming crucial and the Abelian-like monopoles can be
abundant in the vacuum only if the coupling is of order unit, g2 ∼ 1. Which is
inconsistent with the asymptotic freedom of the gluodynamics. The only way out
is to have the non-Abelian field strength vanishing at short distances, F a

µν → 0 at
r → 0. In other words, the cancellation of the Abelian-like and commutator terms in
the field strength tensor should be exact at short distances. The latter condition is
satisfied by (30) which appears to be the unique monopole solution at short distances

The monopole structure at short distances can be studied directly on the lattice.
At the distances available so far, the monopoles in SU(2) LGT are associated with
a sizeable excess in the action, although the excess is substantially smaller than it
would be in the pure Abelian case [9, 10]. Further measurements at smaller distances
would be very interesting.

2.3 Quantum Corrections.

The examples presented above show that an arbitrary (non self-intersecting) string
(13) may be considered as a result of combined gauge transformations of the type
(23), (28), (33). Moreover, in the case of trivial background F̂ (A) = 0 such a singular
gauge transformations are allowed and produce no action. A crucial question is
whether the strings (13) are equivalent to gauge transformations when quantum
fluctuations are included. Of course, if it were not so that the gauge transformations
considered are singular, there would be no doubt that the quantum corrections do not
destroy equivalence of the two field configurations related by a gauge transformation.
But because of the presence of singularities we performed an explicit analysis of the
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quantum corrections. The result is that the quantum corrections do not distinguish
between the standard perturbative vacuum and the zero-action field configuration
presented in the preceding section.

For the sake of definiteness we consider a straight Dirac string in the partition
function (17)

Z[Σ] =
∫

DA exp
{

− 1

4g2

∫

d4x
[

F a
µν + 4π ∗Σa

µν

]2}

, (35)

Σa
µν = −4π δ0,[µ δν],3 δ

a,3 ·Θ(z)δ(x)δ(y) . (36)

The ”classical” solution of the field equations is the pure gauge configuration (30)
Acl = iΩ+∂Ω where Ω is given by (28) and the ”classical” action is Scl = 0. Ex-
panding the action up to the second order in small perturbations A = Acl + a one
finds that in the background gauge Dµ(A

cl)aµ = 0 Eq. (35) becomes:

Z[Σ] = Det−1[D2(Acl)] (37)

since in the present case the Pauli paramagnetic term is zero. With conventional nor-
malization to the perturbative vacuum to vacuum amplitude the question whether
the string Σa

µν is relevant on quantum level, is equivalent to exploring the spectrum
of the operator D2(Acl):

D2(Acl) = M1 + M2 + M3 (38)

Mab
1 = δab~∂2 Mab

2 = 2εakb ~Ak~∂ Mab
3 = εakb~∂ ~Ak + ~Aa ~Ab − δab ~Ak ~Ak (39)

where superscripts denote the color indices and vector notations are used for spatial
components of Acl. Using the explicit form (28) one finds that the non-zero elements
of the antisymmetric matrix M2 are

M12
2 = 2

r2
1+cos θ
sin2 θ

∂ϕ

M13
2 = − 2

r2

(

cosϕ ∂θ − sinϕ
sin θ

∂ϕ
)

M23
2 = − 2

r2

(

sinϕ ∂θ +
cosϕ
sin θ

∂ϕ
)

(40)

where θ and ϕ are the polar and azimuthal angles, respectively. In the same coor-
dinate system the matrix M3 is given by

M3 = − 2

r2
1 + cos θ

sin2 θ







1 0 0
0 1 0

− cosϕ sin θ − sinϕ sin θ 1− cos θ





 (41)

It is convenient to perform the transformation D2(Acl) → R D2(Acl) R−1 where the
matrix R transforms to the spherical basis:

R =







cosϕ sin θ sinϕ sin θ cos θ
cosϕ cos θ sinϕ cos θ − sin θ
− sinϕ cosϕ 0





 . (42)
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One finds that in the new basis:

D2(Acl) = ~∂ 2 +
1

r2
·











0 0 0

0 − 1
sin2 θ

2
sin2 θ

∂ϕ

0 − 2
sin2 θ

∂ϕ − 1
sin2 θ











. (43)

Next, introduce

a0 = ar a± = − i√
2
(aθ ∓ iaϕ) , (44)

then the operator D2(Acl) becomes diagonal:

D2(Acl) = ~∂ 2 +
1

r2
· diag

[

0 , − 1

sin2 θ
(1− 2i∂ϕ) , −

1

sin2 θ
(1 + 2i∂ϕ)

]

(45)

Once D2(Acl) is brought to the diagonal form, the direct calculation shows that the

spectrum of (45) is identical to that of free Laplacian ~∂ 2. Therefore, the quantum
fluctuations do not distinguish the string, Eq. (35,36), from the perturbative vacuum.
Thus the modified theory (15,16) is perturbatively equivalent to the conventional
gluodynamics.

3 Strings in General Background.

We have shown that in the perturbation theory both closed and open Dirac strings
with arbitrary color orientation carry no action and are thus pure gauge artifacts.
On one hand, this conclusion is welcome since it shows that the continuum limit
as understood in this paper perturbatively is the same as the standard continuum
limit. And, indeed, there are no doubts in the validity of the standard perturbation
theory. On the other hand, if it were so that the singular fields admitted now into
the continuum formulation are not associated with any action at all then the new
formulation would be equivalent to the standard one.

In this section we address this issue on a non-perturbative level and imitate the
non-perturbative fields by a smooth background. The crucial observation then is
that only the Dirac strings with the proper color alignment (13) cost no action in
the continuum limit, while the Dirac strings associated with the monopoles defined
a la ’t Hooft [5] do not satisfy this constraint.

Consider as an example the class of Abelian gauges of Ref. [5] which are defined
by the requirement that some adjoint operator ha is to be directed along τ 3 in the
color space. This operator may be arbitrary in principle, but for the given ha the
remaining gauge freedom consists of U(1) rotations around τ 3:

Ω+ĥΩ → h3τ 3 ,

Ω = Ω̃ H , Ω̃ ∈ G/U(1) , H ∈ U(1) .

(46)
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This gauge condition is not defined on the set of points where ha = 0 which in
four dimensions defines the monopole trajectory. Clearly enough, the Dirac strings
associated with the monopoles are oriented along the third direction in the color
space. Thus, there exist now two different directions in the color space determined
by the background field and through the gauge fixation inherent to the definition of
the monopoles.

Note that while the boundary of the string singularity is fixed by the equations
ha = 0, the actual position of the string may be changed with a suitable choice of
H . Indeed, the gauge transformation (46) gives rise to the Dirac string:

F̂ (AΩ) = H+Ω̃+F̂ (A)Ω̃H + iH+ [∂, ∂]H + iH+
(

Ω̃+ [∂, ∂] Ω̃
)

H. (47)

The both terms H+ [∂, ∂]H and Ω̃+ [∂, ∂] Ω̃ are proportional to τ 3. Let us stress that
the freedom to choose the U(1) matrix H allows to shift the position of the string in
the ordinary space. Simultaneously, the background field is also transformed and one
may not say that shifting the Dirac string brings no change in the action. However,
since there is no spontaneous breaking of the color symmetry, the dependence on
the position of the string drops off after integrating over all the background fields.

Note that similar considerations apply to the ’t Hooft loop operator which we
consider in the next section. Indeed, the definition of the ’t Hooft loop operator
as well as its value in a given background are string dependent. But the freedom
to shift the position of the string in the path integral approach guarantees that no
physical result depends on the string position.

It is amusing to note that the present considerations provides with a general
framework to understand the correlation between instantons and monopoles which
has been discussed in various contexts recently (see, e.g., [11]). Indeed, background
fields in the physical vacuum are described realistically by instantons (see [12] for a
review). On the other hand , monopoles, as is argued above, are meaningful only in
the presence of background fields.

4 The ’t Hooft Loop in the Continuum Limit.

In this Section we show that the construction presented above allows to define and
study the properties of the ’t Hooft loop operator in the path integral formalism.

The ’t Hooft loop in SU(2) LGT with the one-plaquette action (4) has the fol-
lowing form:

Hlat(Σj) = exp
{ 4

g2
∑

p∈∗Σj

[

SP

(

1− 1

2
TrU [∂p]

)

−SP

(

1 +
1

2
TrU [∂p]

)]}

, (48)

where ∗Σj is the set of the plaquettes dual to the surface Σj with the boundary
j. In the path integral formulation the ’t Hooft loop effectively changes the sign
of the plaquette variables U [∂p] belonging to ∗Σj : U [∂p] → −U [∂p]. To define the
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’t Hooft loop in the continuum we consider the path integral, Eq. (17), with an
open orientable non self-intersecting surface Σa

j = naΣj , ∂Σj = j, multiplied by the
Wilson loop WJ(C):

Z(C,Σj) =
∫

DA exp

{

− 1

4g2

∫

d4x
[

F a
µν + 4πq ∗Σa

j µν

]2
}

·WJ(C) , (49)

WJ(C) = TrPexp
{

i
∮

C

T a
JA

a
µdxµ

}

, (50)

where T a
J are the generators of SU(2) in the representation J . It is convenient to

use the following integral representation [13]:

WJ(C) =
∫

Dω exp
{

iJ
∮

C

[

Aω
µ

]3
dxµ

}

,
[

Aω
µ

]3
= Tr

[

τ 3 ω+(Aµ + i∂µ)ω
]

,

where the path integral is over all gauge transformations ω of the potential A on
the contour C. Therefore

Z(C,Σj) =
∫

DADω exp{−S(A,Σj) + iJ
∮

C

[

Aω
µ

]3
dxµ} . (51)

The action S(A,Σj) and the measure of integration DA are gauge invariant. The
gauge transformation A → Aω−1

defined on C allows to factorize the integral Dω:

Z(C,Σj) =
∫

Dω ·
∫

DA exp{−S(A,Σj) + iJ
∮

C

A3
µdxµ} . (52)

The expression (52) has the following meaning: if there is no gauge fixing in the
path integral (49) the Wilson loop may be calculated exactly by restricting the gauge
potential A to diagonal U(1) subgroup of SU(2) [13].

Now we deform the surface Σj spanned on the contour j to another orientable
non self-intersecting surface Σ′

j spanned on the same contour. We also consider the
field n′a(σ) defined on Σ′

j according to (13). Then the closed surface S = Σj − Σ′
j ,

which bounds the 3-volume VS = VΣj−Σ′

j
, has no self-intersection points and there

exists a vector field na(x), defined in the whole space–time,

na(x) = na(x̃) for x ∈ Σj ,
na(x) = n′a(x̃) for x ∈ Σ′

j .
(53)

In particular, na(x) is defined on the contour C and there exists an SU(2) matrix
h ∈ C, such that:

[

h σ3 h+
]a

= na(x) x ∈ C . (54)

After the gauge transformation A → Ah Eq. (52) becomes:

Z(C,Σj) =
∫

Dω ·
∫

DA exp{−S(A,Σj) + iJ
∮

C

(naAa + [ih+∂h]3) (55)
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Consider now the additional gauge transformation Ω(VS) (23,24) with VS = VΣj−Σ′

j
.

A straightforward calculation gives

na
[

AΩ
µ

]a
= naAa

µ − 4πq Vµ . (56)

As is shown in Section 2.1 for integer and half-integer charges q this gauge transfor-
mation shifts Σj to Σ′

j :

S(AΩ,Σj) = S(A,Σ′

j) . (57)

For self–consistency of the theory, the Wilson loop is to be invariant under the gauge
transformations. If we apply the transformation (56,57) to Z(C,Σj), see Eq. (49),
we get:

Ω(VS) : Z(C,Σj) → Z(C,Σj − S) · e−i 4πqJ L(C,S) , (58)

where L(C,S) is the 4D linking number between the closed contour C and the closed
surface S:

L(C,S) =
∮

S

(

∗d2σ
)

µν

∮

C

dxν∂µ∆
−1(x̃(σ)− x) . (59)

Since L ∈ ZZ and J takes integer and half–integer values the independence of the
Wilson loop on the gauge transformations Ω implies the quantization condition:

q ∈ ZZ . (60)

This equation is a direct analog of the Dirac quantization condition in electrodynam-
ics. Physically it means that the electrically charged particle introduced by Wilson
loop does not scatter on the Dirac string S.

Now we show that the ’t Hooft loop operator H(Σj) is given by:

H(Σj) = exp
{

S(F̂ )− S(F̂ + 2π∗Σ̂j)
}

, (61)

where the surface Σa
j is bounded by the contour j and is given by Eq. (13), the

action S is defined by Eq. (16). Indeed, the transformation (58), when applied to
the quantum average of the product of the fundamental, J = 1/2, Wilson loop and
operator (61), gives:

< H(j,Σj) W1/2(C) >=< H(j,Σ′

j) W1/2(C) · eiπL(C,Σj−Σ′

j
) > . (62)

This formula proves that the operator H is the ’t Hooft loop operator since it is in
accordance with relations given in Refs. [6, 14].

5 Predictions for the ’t Hooft loop.

In this Section we consider the rectangular T × R time-like contours j, Eq. (61),
with T ≫ R. Then the expectation value of the ’t Hooft loop operator is

< H(Σj) >=< H(T,R) > ∼ e−TVmm̄(R) , (63)
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where by analogy with the Wilson loop we refer to the quantity Vmm̄(R) as to the
intermonopole (monopole–antimonopole) potential. It is worth emphasizing that
the potential Vmm̄ corresponds to the |QM | = 1 monopoles while in Ref. [10] the
monopole–antimonopole potential with the charge |QM | = 2 has been studied. These
double charged monopoles are identified with the Abelian monopoles in Abelian
projections.

Below we formulate predictions for the ’t Hooft loop operator, Eq. (61), and its
expectation value, Eq. (63). In particular, we show that the ’t Hooft loop operator
inserts the pair of |QM | = 1 monopoles which are pure Abelian in the Maximal
Abelian gauge. This fact allows to fix the short distance asymptotic of the inter-
monopole potential. We argue then that this potential at larger distances at zero
and high temperatures is of Yukawa type. We also find the screening mass in both
cases and compare it with the masses measured on the lattice [15]. Our estimates
turn to be in agreement with the numerical data.

5.1 Intermonopole Potential at Small Distances.

Consider the potential Vmm̄(R) at small distances for the monopole–antimonopole
pair introduced by the operator H(T,R). The definition (61) shows that we have
enough gauge freedom to take Σa

j = δa,3Σj on the non self-intersecting surface Σj .
Then at the classical level the solution of the corresponding equations of motion is
[8]:

A3
µdxµ = 1

2

(

z+
r+

− z−
r−

)

dϕ , A1,2
µ = 0 ,

z± = z ± R/2 , ρ2 = x2 + y2 , r2± = z2± + ρ2 ,
(64)

and represents the Abelian monopole-antimonopole pair separated by the distance
R. Since the monopoles in (64) have minimal allowed magnetic charge q = 1/2 (see
Section 2.1), at the classical level the intermonopole potential is given by:

Vmm̄(R) = − π

g2 R
= − π2 β

1

4πR
, β =

4

g2
. (65)

Note that the statement on the Coulombic nature of the intermonopole potential at
short distances is well known [8, 15]. However, the fixation of the coefficient in front
of 1/R is new, to the best of our knowledge2.

Since the potential (65) was obtained for pure Abelian fields, we still have to
prove that the general solution with minimal energy in SU(2) gluodynamics is indeed
a gauge rotation of (64). A straightforward way to test the Eq. (65) is to investigate
the problem numerically. We have calculated the expectation value of the ’t Hooft
loop in the standard SU(2) lattice gauge theory in the limit β → ∞. Technically
this limit is realized with the help of the so–called cooling procedure which was

2 The same coefficient is derived in Ref. [30], which appeared on the day of submission of the
present paper.
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used to minimize the expectation value of the ’t Hooft loop with respect to the
classical lattice equations of motion. Our calculations have been performed on the
three-dimensional 243 lattice with periodic boundary conditions, which is adequate
to consider the static monopole–antimonopole pair. We minimized the ’t Hooft loop
operator, which creates static monopole and antimonopole separated by the distance
R. We have fitted our data for the monopole–antimonopole potential by:

V lat.
mm̄(R) = − π2 β∆−1

lat.(R) , (66)

where ∆−1
lat.(R) is the three-dimensional lattice Coulomb potential. Eq. (66) is the

lattice regularization of the continuum expression (65). Note that the lattice and
continuum potentials drastically differ from each other and this is of crucial impor-
tance in fitting the lattice data: the potential (66) is regular at R = 0 contrary to
(65).

Our numerical calculations confirmed the behavior (66) with accuracy 2%. We
also observed that after the cooling procedure the fields are Abelian up to a gauge
transformation. In more detail, we found that in the Maximal Abelian gauge the
gauge fields are diagonal and consist of the Abelian monopoles located at the bound-
ary of the string Σj , Eq. (61). Therefore the classical limit of the state created by
non-Abelian ’t Hooft loop is the Abelian monopole–antimonopole pair.

Moreover, once the result (65) is established classically, the effect of the quantum
corrections is also known on general grounds. Namely, the effect of the quantum
corrections should be reduced to the replacement of the bare coupling by the running
one, g2 → g2(R). Although the result is easy to guess, its derivation might look
rather mysterious. Indeed, we have now both non-Abelian magnetic monopoles
as external objects and ordinary gluons as virtual particles. At first sight we need
both the standard and dual formulations of the gluodynamics to describe interaction
both with magnetic and electric charges. While in case of U(1) gauge theories such
a formulation is well known [17], it is absent in case of non-Abelian theories. Thus,
we seem to know how the coupling runs although do not know, whose coupling is it!

We think that the resolution of the paradox is in the Abelian nature of the
|QM | = 1 monopoles established above. Indeed, the classical considerations allow
us to fix vertices, or the Lagrangian. The exact Abelian nature of the monopoles
implies that once we choose an Abelian gauge fixing only neutral bosons (diagonal
gluons) interact with the monopoles |QM | = 1. The charged vector bosons are still
manifested through the loops. Thus, the situation is similar to the U(1) case with
inclusion of the effect of virtual charged particles. As for the virtual monopoles,
their effect can be neglected since the monopoles |QM | = 1 are infinitely heavy in
the continuum limit. There is no much difficulty to deal with this problem and
one can check that indeed the effect of the loops is the running of the coupling g2.
The details of the U(1) case can be found in the review in Ref. [17], see also the
recent paper [16]. As for the perturbative calculations in non-Abelian theories in
the Abelian projections, they can be found in Ref. [18]
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5.2 Abelian Dominance and Intermonopole Potential.

Next we discuss the monopole–antimonopole potential at larger distances. The
basic idea is to apply the Abelian Dominance hypothesis [19]. Indeed, as has been
shown above the ’t Hooft loop operator inserts the |QM | = 1 monopole pair in
the vacuum of SU(2) gauge theory. Moreover, in the Maximal Abelian gauge these
monopoles become a pure Abelian objects. Therefore it is natural to expect that
in this particular gauge the dominant contribution to the potential (63) is due to
the interaction with Abelian fields. In the Maximal Abelian gauge the vacuum of
zero temperature SU(2) gluodynamics is a dual superconductor where, instead of
condensate of Cooper pairs, there exists a monopole condensate. The principle of
Abelian Dominance assumes that long distance properties of gluodynamics might
be explained in terms of the interaction with the monopole condensate (for reviews
see, e.g., [1]).

Following this logic, we expect that at the zero temperatures the monopole–
antimonopole potential is:

Vmm̄(R) = − π

g2
e−µR

R
(67)

V lat.
mm̄(R) = − β π2 (−∆+ µ2)−1

lat.(R) (68)

where µ is the dual photon mass mV and (−∆ + µ2)−1
lat. is the three-dimensional

lattice Yukawa potential. The recent numerical investigation of the ’t Hooft loop in
SU(2) lattice gauge theory [15] agrees with Eq. (67). The value of µ ≈ 3.24(42)

√
σ

obtained in Ref. [15] is quite close to the dual photon mass mV ≈ 1 GeV = 2.3
√
σ

found in Ref. [20]. Let us also note that we would not identify directly the mass µ
in Eq. (67) with a glueball mass. Indeed, the definition of the ’t Hooft loop is highly
nonlocal and includes a Dirac string with infinite action. Therefore, the validity
of the dispersive relations is questionable in this case. Note, however, that µ in
Eq. (67) coincides with the 0++ glueball mass in the strong coupling expansion [8].
If this result is valid also in the weak coupling limit, then the Abelian Dominance
is reduced to the prediction that the dual photon mass mV coincides with the 0++

glueball mass. Comparison of numerical results for the Yukawa mass µ with glueball
masses can be found in [15].

Note that the prediction (67) is highly non-trivial in fact. Indeed the |QM | = 1
monopoles are so to say fundamental monopoles which look as Abelian monopoles
at short distances and are associated for this reason with an infinite action. They
are introduced therefore as external objects via the ’t Hooft loop, similar to intro-
duction of infinitely heavy quarks via the Wilson loop. The |QM | = 2 monopoles, on
the other hand, have a finite action and their description as a fundamental objects
seems to be granted only at large distances. This could be manifested, in partic-
ular, through existence of an intermediate region between the distances where the
Coulombic and Yukawa pictures apply. In other words, the coefficient in front of the
Coulombic term could have not matched the coefficient in front of the Yukawa-like
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potential. However, existing data about the ’t Hooft loop [15] indicate that the
matching is exact, within the error bars. In other words, the dual Abelian Higgs
model of QCD vacuum works already at smallest distances available on the lattice.
Similar conclusions can be drawn in fact from the studies of the heavy quark po-
tential induced by monopoles [21] and from description of the structure of the flux
string [20, 22], for a review see [23].

5.3 Finite Temperatures.

The authors of Ref. [15] have also performed numerical calculations of the ’t Hooft
loop at finite temperatures, and determined the dependence of the Yukawa mass µ on
the temperature. To provide a theoretical framework for the behavior of the ’t Hooft
loop at high temperatures we can use again the idea of the Abelian Dominance.

In more detail, we estimate the screening mass µ using the fact that the Abelian
model which corresponds to the high temperature SU(2) gluodynamics is the 3D
compact U(1) theory. Therefore the intermonopole potential at high temperatures
is essentially given by (67,68), with µ now being the Debye mass [24]:

m2
D = 16π

ρ

e23
, (69)

where ρ is the density of Abelian monopoles and e3 is the corresponding three-
dimensional coupling constant. To estimate the temperature dependence of mD we
use the numerical results of Ref. [25], where the density of Abelian monopoles was
obtained3:

ρ = 2−7(1± 0.02) e63 , (70)

Therefore
mD = 1.11(2) e23 . (71)

Moreover, at high temperatures we can use the dimensional reduction formalism
and express the 3D coupling constant e3 in terms of the 4D Yang–Mills coupling g.
At the tree level one has

e23(T ) = g2(Λ, T ) T , (72)

where g(Λ, T ) is the running coupling calculated at the scale T ,

g−2(Λ, T ) =
11

12π2
log
(T

Λ

)

+
17

44π2
log
[

2 log
(T

Λ

)]

, (73)

and Λ is a dimensional constant which can be determined from lattice simulations.
At present the lattice measurements of the Λ parameter are not very precise.

We use the results of two particular calculations. Namely, in Ref. [26] the lattice

3 Note that the original result of Ref. [25] for the lattice monopole density is: ρlat. = 0.50(1)β3

G
,

where β3

G
is a three dimensional coupling constant which is expressed in terms of the 3D electric

charge e3 and lattice spacing a as β3

G
= 4/(a e2

3
). The physical density ρ of monopoles is given by

ρ = ρlat. a
−3 which can easily be transformed into Eq. (70).
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T/
√
σ µ/

√
σ mD/

√
σ

Λ = 0.197
√
σ Λ = 0.057

√
σ

0.460 3.24(42) 5.12 2.04

1.225 4.13(41) 6.16 3.82

1.838 5.43(59) 7.67 5.12

3.676 17.3(4.1) 11.97 8.69

Table 1: The screening mass µ (see (67,68)) at different temperatures, Ref. [15],
and our predictions for mD obtained with different Λ, Eqs. (74,75).

data for the gluon propagator have been used to determine the so–called ”magnetic
mass” in high temperature SU(2) gluodynamics. These measurements imply the
following value of Λ:

Λ = 0.262(18) Tc = 0.197(14)
√
σ , (74)

where Tc is the temperature of the deconfinement phase transition, Tc ≈ 0.75
√
σ.

In Ref. [27], on the other hand, the spatial string tension has been calculated and
the corresponding value of Λ turned to be three times smaller:

Λ = 0.076(13) Tc = 0.057(10)
√
σ . (75)

Collecting Eqs. (71)-(75) we get predictions for the Debye mass which are shown in
Table 1 along with the values of mass µ obtained numerically in Ref. [15]. One can
clearly see that the predictions and the numerical results are in agreement within
the theoretical uncertainties. There are at least three sources of these uncertainties.
First, the value of Λ is not determined precisely as we already noted. Second,
we have used the dimensional reduction which is supposed to work well only at
asymptotically high temperatures, while only one value T = 3.676

√
σ ≈ 5 Tc in the

Table 1 may be considered as high enough. Third, as we already noted the lattice
and continuum Yukawa interactions are substantially different. For example, we
may treat the ’t Hooft loop quantum average studied in Ref. [15] as a two–point
correlator in three spatial dimensions. Then we may use the results of Ref. [28]
and relate the value of µ obtained with the use of the continuum propagator to the
correct value, µcorrect ≈ 2

a
ArcSinh

(

µa
2

)

. If we apply this correction to the values of

µ in Table 1 then for aµ = 2.29(55) and T = 3.676
√
σ the correction is essential.

Indeed, we obtain: µcorrect ≈ 14.8(3.5), which is quite close to our prediction with
Λ = 0.197

√
σ.
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Conclusions

We have tried to formulate a theoretical framework which would allow for mo-
nopoles in the continuum version of non-Abelian gauge theories. Indeed, monopoles
nowadays are very common field configuration on the lattice. In the continuum, on
the other hand, monopoles appear to be associated with singular fields and divergent
action.

The key element to introduce monopoles in the continuum is to allow for Dirac
strings. While naively the action associated with the Dirac strings is infinite, they
cost no action at all in the compact U(1) gauge model [4]. Thus, within the contin-
uum formulation, one has to postulate that there are certain singular fields which
cost no action as well. An alternative representation for the singular fields are Dirac
sheets (see, e.g., Eq. (8) above). In the non-Abelian case, we argued that the con-
tinuum version should admit certain singular or stringy fields without any change
in the action. One can say that the Dirac strings which cost no action are aligned
in the color space with the background, or regular fields.

Once the Dirac strings are admitted into the continuum version of gluodynamics,
the end points of the strings, or monopoles, cost in the perturbative vacuum no
action either. This is true both classically and with account of quantum corrections.
And this is in distinction from the U(1) case where the end points are monopoles
with an ultraviolet divergent action. As a result, although the modified continuum
version appears very different from the standard one since it allows for singular
potentials inversely proportional to the coupling, perturbatively the two theories
are in fact equivalent. Thus, at this point the problem seems to be the other way
around. Namely, there is no difficulty any longer to introduce fields which look as
monopoles in terms of Abelian fields but cost no action and appear as gauge artifacts
once the full spectrum of the non-Abelian degrees of freedom is taken into account.

The difference between the two formulations becomes manifest once the gauge is
fixed a la ’t Hooft [5] and background non-perturbative fields are introduced. The
point is that in presence of the background field only those Dirac strings which are
parallel to the background in the color space are non observable. On the other hand,
the definition of the monopoles in terms of the topology of the gauge fixing introduces
Dirac strings which do not satisfy this condition. As a result, the action associated
with the monopoles is not vanishing any longer. And the monopoles do emerge as
possible fluctuations with finite action which are present in the continuum theory
modified to incorporate Dirac strings. It is worth emphasizing that upon integration
over the background fields the monopole action does not depend on the position of
the Dirac string but only on the monopole trajectory.

The machinery to prove the independence on the position of the Dirac string is
also all what is needed to introduce a continuum analog of the ’t Hooft loop operator
[6]. The continuum formulation of the ’t Hooft loop is one of the central points of
this paper. Furthermore, we were able to derive both rigorous and model-dependent
results for the behavior of the ’t Hooft loop at zero and high temperature SU(2)
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gluodynamics.
In terms of physical applications, the picture developed explains in generic terms

correlation between instantons and monopoles (for discussion see, e.g., [11]). Also,
it was demonstrated that while perturbatively the modified theory allowing for the
Dirac strings is equivalent to the standard one, non-perturbatively they are different.
This might explain a kind of mystery with the non-perturbative 1/Q2 corrections
from short distances which seem to exist phenomenologically but evade, so far,
theoretical understanding within the standard framework (for reviews and further
references see [29]).
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