Instantons, Higher-Derivative Terms, and Nonrenormalization Theorems in Supersymmetric Gauge Theories

N. Dorey ${ }^{1}$, V.V. Khoze ${ }^{2}$, M.P. Mattis ${ }^{3}$, M.J. Slater ${ }^{2}$, and W.A. Weir ${ }^{2}$
${ }^{1}$ Physics Department, University of Wales Swansea
Swansea SA2 8PP UK
${ }^{2}$ Centre for Particle Theory, University of Durham
Durham DH1 3LE UK
${ }^{3}$ Theoretical Division T-8, Los Alamos National Laboratory
Los Alamos, NM 87545 USA

We discuss the contribution of ADHM multi-instantons to the higher-derivative terms in the gradient expansion along the Coulomb branch of $N=2$ and $N=4$ supersymmetric $S U(2)$ gauge theories. In particular, using simple scaling arguments, we confirm the DineSeiberg nonperturbative nonrenormalization theorems for the 4-derivative/8-fermion term in the two finite theories $\left(N=4\right.$, and $N=2$ with $\left.N_{F}=4\right)$.

1. Introduction. Thanks largely to the work of Seiberg and Witten [1], [2], much is now understood about spontaneously broken 4-dimensional $S U(2)$ gauge theories with extended supersymmetry. One aspect that has received extensive study is the structure of the (suitably defined [3]) Wilsonian effective action along the Coulomb branch in which the models retain an unbroken $U(1)$ gauge symmetry. For energies well below the symmetry breaking scale, the dynamics of the massless $U(1)$ modes may be analyzed in a (supersymmetrized) gradient expansion for the scalar fields, the form of which is constrained by both gauge invariance and $N=2$ supersymmetry. In particular the leading 2 -derivative/4-fermion term is expressed in terms of a holomorphic object $\mathcal{F}(\Psi)$ known as the prepotential (4, [1]:

$$
\begin{equation*}
\mathcal{L}_{2 \text {-deriv }}=\frac{1}{4 \pi} \operatorname{Im} \int d^{4} \theta \mathcal{F}(\Psi) \tag{1}
\end{equation*}
$$

where Ψ denotes the massless $N=2$ abelian chiral superfield [5]. Equation (11) is an $N=2 F$-term as it involves integration over half the $N=2$ superspace. In contrast, the next-leading term, involving four derivatives and up to eight fermions, is an $N=2 D$-term [6, (7):

$$
\begin{equation*}
\mathcal{L}_{4 \text {-deriv }}=\int d^{4} \theta d^{4} \bar{\theta} \mathcal{H}(\Psi, \bar{\Psi}) \tag{2}
\end{equation*}
$$

where \mathcal{H} is a real function of its arguments. This supersymmetric gradient expansion has been systematized by Henningson [6].

By exploiting holomorphicity, together with electric-magnetic duality, Seiberg and Witten were able to produce the exact quantum solution for \mathcal{F} in a variety of $S U(2)$ models [2]. (There are however some interpretational caveats in the case of the two finite models, namely the $N=2$ model with $N_{F}=4$ flavors of quark hypermultiplets [8], and the $N=4$ model [9].) In contrast, comparatively little is known in general about the function \mathcal{H} [6-7, [10-12], since it is real rather than holomorphic (although it does respect duality [6]). But for the two finite models, it turns out that exact statements can nevertheless be made. In particular, Dine and Seiberg have recently argued that in both these cases $\mathcal{L}_{4 \text {-deriv }}$ is one-loop exact: the one-loop result receives corrections neither from higher orders in perturbation theory, nor from nonperturbative physics such as instantons [13].

In this note, we discuss the contribution of Atiyah-Drinfeld-Hitchin-Manin (ADHM) multi-instantons [14-17] to these higher terms in the gradient expansion. Our principal result (Eq. (25) below) is a formal expression for the leading semiclassical contribution of the pure n-instanton (or pure n-antiinstanton) sector to \mathcal{H}, expressed as a finite-dimensional integral over the bosonic and fermionic collective coordinates of the supersymmetrized ADHM multi-instanton. As a simple illustration, we calculate the 1-instanton contribution to \mathcal{H} in the case of pure $N=2$ SYM theory, and reproduce an earlier result of Yung's [12]. When $n>2$ the expression (25) is truly a formal one only, since the measure for
this integration is not currently known [16, 17]. Nevertheless, for the finite model with $N=2$ and $N_{F}=4$, we can verify, using a simple scaling argument, the vanishing of these multi-instanton contributions to \mathcal{H}, for all values of the topological charge n. A slightly modified scaling argument extends this null result to the $N=4$ model as well. Thus the Dine-Seiberg nonperturbative nonrenormalization theorems are built into the ADHM instanton calculus.
2. Instanton basics. The massless $U(1)$ modes of $N=2$ supersymmetric $S U(2)$ gauge theory along the Coulomb branch consist of a photon field v_{m}, two Weyl spinors λ and ψ, and a complex scalar A; these assemble into a single neutral massless $N=2$ chiral superfield Ψ. We start by reviewing the instanton representation of the prepotential \mathcal{F} [18]; a straightforward extension of these methods will then yield an analogous formula for \mathcal{H}. Let us expand $\mathcal{L}_{2 \text {-deriv }}$ in component fields, and focus (as in Sec. 5 of [17]) on the following three effective vertices:

$$
\begin{equation*}
\mathcal{L}_{2 \text {-deriv }} \supset \frac{1}{4 \pi} \sum_{k=1,2,3} \mathcal{V}^{k} \circ \mathcal{F}(\mathrm{v})+\text { H.c. } \tag{3}
\end{equation*}
$$

where v denotes the VEV of the Higgs field A, and

$$
\begin{align*}
\mathcal{V}^{1} & =\frac{i}{4}\left(v_{m n}^{\mathrm{SD}}\right)^{2} \frac{\partial^{2}}{\partial \mathrm{v}^{2}} \tag{4a}\\
\mathcal{V}^{2} & =\frac{i}{2 \sqrt{2}} \psi \sigma^{m n} \lambda v_{m n}^{\mathrm{SD}} \frac{\partial^{3}}{\partial \mathrm{v}^{3}} \tag{4b}\\
\mathcal{V}^{3} & =-\frac{i}{8} \psi^{2} \lambda^{2} \frac{\partial^{4}}{\partial \mathrm{v}^{4}} \tag{4c}
\end{align*}
$$

The superscript SD indicates the self-dual part of the gauge field strength $v_{m n}$. 10 We will call such vertices "holomorphic" as the fields ψ, λ and $v_{m n}^{\mathrm{SD}}$ live in the chiral superfield Ψ rather than in $\bar{\Psi}$. To extract the (multi-)instanton contribution to these three holomorphic vertices, one analyzes, respectively, the three antiholomorphic Green's functions $\left\langle\overline{\mathcal{O}}^{k}\left(x_{1}, \ldots, x_{k+1}\right)\right\rangle, k=1,2,3$, with

$$
\begin{align*}
\overline{\mathcal{O}}^{1}\left(x_{1}, x_{2}\right) & =v_{m n}^{\mathrm{ASD}}\left(x_{1}\right) v_{p q}^{\mathrm{ASD}}\left(x_{2}\right), \tag{5a}\\
\overline{\mathcal{O}}^{2}\left(x_{1}, x_{2}, x_{3}\right) & =\bar{\psi}_{\dot{\alpha}}\left(x_{1}\right) v_{m n}^{\mathrm{ASD}}\left(x_{2}\right) \bar{\lambda}_{\dot{\beta}}\left(x_{3}\right), \tag{5b}\\
\overline{\mathcal{O}}^{3}\left(x_{1}, x_{2}, x_{3}, x_{4}\right) & =\bar{\psi}_{\dot{\alpha}}\left(x_{1}\right) \bar{\psi}_{\dot{\beta}}\left(x_{2}\right) \bar{\lambda}_{\dot{\gamma}}\left(x_{3}\right) \bar{\lambda}_{\dot{\delta}}\left(x_{4}\right) . \tag{5c}
\end{align*}
$$

${ }^{1}$ In Minkowski space the self-dual and anti-self-dual components of $v_{m n}$ are projected out $\operatorname{using} v_{m n}^{\mathrm{SD}}=\frac{1}{4}\left(\eta_{m k} \eta_{n l}-\eta_{m l} \eta_{n k}+i \epsilon_{m n k l}\right) v^{k l}$ and $v_{m n}^{\mathrm{ASD}}=\left(v_{m n}^{\mathrm{SD}}\right)^{*}$, where $\epsilon_{0123}=-\epsilon^{0123}=-1$. Also, since $\sigma^{m n}=\frac{1}{4} \sigma^{[m} \bar{\sigma}^{n]}$ and $\bar{\sigma}^{m n}=\frac{1}{4} \bar{\sigma}^{[m} \sigma^{n]}$ are self-dual and anti-self-dual, respectively, it follows that $\sigma^{m n}{ }_{\alpha}^{\beta} v_{m n}=\sigma^{m n}{ }_{\alpha} v_{m n}^{\mathrm{SD}}$ and $\bar{\sigma}^{m n \dot{\alpha}}{ }_{\dot{\beta}} v_{m n}=\bar{\sigma}^{m n \dot{\alpha}}{ }_{\dot{\beta}} v_{m n}^{\mathrm{ASD}}$. Here σ_{m} and $\bar{\sigma}_{m}$ are spin matrices in Wess and Bagger conventions; see 17] for a complete set of our SUSY and ADHM conventions.

In the semiclassical approximation these field insertions are simply replaced by their values in the classical (multi-)instanton background, projected onto the unbroken $U(1)$ direction in color space, then integrated over all bosonic and fermionic instanton collective coordinates, which we now briefly review.

In the ADHM formulation, the general multi-instanton solution of topological charge n in $S U(2)$ gauge theory may be parametrized by an $(n+1) \times n$ quaternion-valued collective coordinate matrix $a_{\alpha \dot{\alpha}}$, while the adjoint fermionic zero modes for the gaugino λ^{γ} and Higgsino ψ^{γ} are expressed in terms of $(n+1) \times n$ Weyl-valued collective coordinate matrices \mathcal{M}^{γ} and \mathcal{N}^{γ}, respectively 14-17:

$$
a_{\alpha \dot{\alpha}}=\left(\begin{array}{ccc}
w_{1 \alpha \dot{\alpha}} & \cdots & w_{n \alpha \dot{\alpha}} \tag{6}\\
& a_{\alpha \dot{\alpha}}^{\prime} &
\end{array}\right), \mathcal{M}^{\gamma}=\left(\begin{array}{ccc}
\mu_{1}^{\gamma} & \cdots & \mu_{n}^{\gamma} \\
& \mathcal{M}^{\prime \gamma} & \\
& &
\end{array}\right), \mathcal{N}^{\gamma}=\left(\begin{array}{ccc}
\nu_{1}^{\gamma} & \cdots & \nu_{n}^{\gamma} \\
& \mathcal{N}^{\prime \gamma} &
\end{array}\right)
$$

with $a_{\alpha \dot{\alpha}}^{\prime}=a_{\alpha \dot{\alpha}}^{\prime T}, \mathcal{M}_{\gamma}^{\prime}=\mathcal{M}_{\gamma}^{\prime T}$, and $\mathcal{N}_{\gamma}^{\prime}=\mathcal{N}_{\gamma}^{\prime T}$. Furthermore the matrices a, \mathcal{M} and \mathcal{N} are subject to a set of algebraic constraints which may be used, for example, to eliminate the off-diagonal elements of the $n \times n$ submatrices $a^{\prime}, \mathcal{M}^{\prime}$ and \mathcal{N}^{\prime}. This leaves $4 \times 2 n$ independent scalar degrees of freedom in a (i.e., the w_{k} and the diagonal elements of a^{\prime}), and likewise $2 \times 2 n$ independent Grassmann degrees of freedom in each of \mathcal{M} and \mathcal{N}. Of these, the 'trace' components of $a^{\prime}, \mathcal{M}^{\prime}$, and \mathcal{N}^{\prime}, respectively, play a special role: that of the position $\left(x_{0 \alpha \dot{\alpha}}, \xi_{\alpha}^{1}, \xi_{\alpha}^{2}\right)$ of the multi-instanton in $N=2$ superspace (see Eq. (8.1) of Ref. [17).

The above describes the collective coordinate space for pure $N=2 S U(2)$ gauge theory. When N_{F} (massive) flavors of $N=2$ "quark hypermultiplets" in the fundamental representation of the gauge group are coupled in, one needs $2 n N_{F}$ additional Grassmann collective coordinates for the fundamental fermion zero modes [15]; following [18], we label these $\mathcal{K}_{k i}$ and $\tilde{\mathcal{K}}_{k i}$ with $k=1, \cdots, n$ and $i=1, \cdots, N_{F}$. Alternatively, if a single (massive) adjoint hypermultiplet is coupled in, there are new adjoint fermion zero modes requiring $8 n$ Grassmann degrees of freedom; following [9], these may be taken to live in the $(n+1) \times n$ Weyl-valued collective coordinate matrices

$$
\mathcal{R}^{\gamma}=\left(\begin{array}{ccc}
\rho_{1}^{\gamma} & \cdots & \rho_{n}^{\gamma} \tag{7}\\
& \mathcal{R}^{\prime \gamma} & \\
& &
\end{array}\right), \quad \tilde{\mathcal{R}}^{\gamma}=\left(\begin{array}{ccc}
\tilde{\rho}_{1}^{\gamma} & \cdots & \tilde{\rho}_{n}^{\gamma} \\
& \tilde{\mathcal{R}}^{\prime \gamma} & \\
& &
\end{array}\right)
$$

which are subject to the same algebraic constraints as \mathcal{M} and \mathcal{N}.
2 We use quaternionic notation, e.g., $x=x_{\alpha \dot{\alpha}}=x_{m} \sigma_{\alpha \dot{\alpha}}^{m}$ and $\bar{x}=\bar{x}^{\dot{\alpha} \alpha}=x^{m} \bar{\sigma}_{m}^{\dot{\alpha} \alpha}$.

In previous work we have derived explicit formulae for the instanton action $S_{\text {inst }}^{n}$ for arbitrary topological charge n, as functions of these collective coordinates, as well as of the VEVs v and $\overline{\mathrm{v}}$ and of the hypermultiplet masses m_{i} :

$$
\begin{equation*}
S_{\text {inst }}^{n}=S_{\text {inst }}^{n}\left(\{a\},\{\mathcal{M}, \mathcal{N}\} ;\{\mathcal{K}, \tilde{\mathcal{K}}\} \text { or }\{\mathcal{R}, \tilde{\mathcal{R}}\} ; \mathrm{v}, \overline{\mathrm{v}} ;\left\{m_{i}\right\}\right) \tag{8}
\end{equation*}
$$

Here we will not actually need these formulad ${ }^{3}$; it will suffice to note some general features of $S_{\text {inst }}^{n}$. To begin with (save for one special case discussed below, that of exact $N=4$ SYM theory), $S_{\text {inst }}^{n}$ explicitly depends on all the Grassmann collective coordinates in the problem except for the four exact $N=2$ SUSY modes ξ_{α}^{1} and $\xi_{\alpha}^{2}, \alpha=1,2$, described above. Recall the rules of Grassmann integration: $\int d^{2} \xi^{i}\left(\xi^{i}\right)^{2}=1$ while $\int d^{2} \xi^{i}=0$. Thus, in order to saturate the $d^{2} \xi^{1} d^{2} \xi^{2}$ integration, one requires the explicit insertion of ξ^{i}-dependent component fields, e.g., the $\overline{\mathcal{O}}^{k}$ of Eq. (5). The remaining Grassmann integrations are saturated by pulling down the appropriate power of S_{inst}^{n} from the exponent.

We illustrate these comments by focusing, first, on the n-instanton contribution to the 4-antifermion Green's function (58):

$$
\begin{align*}
& \left.\left\langle\bar{\psi}_{\dot{\alpha}}\left(x_{1}\right) \bar{\psi}_{\dot{\beta}}\left(x_{2}\right) \bar{\lambda}_{\dot{\gamma}}\left(x_{3}\right) \bar{\lambda}_{\dot{\delta}}\left(x_{4}\right)\right\rangle\right|_{n-\mathrm{inst}} \cong \\
& \int d^{4} x_{0} d^{2} \xi^{1} d^{2} \xi^{2} \int d \tilde{\mu} \bar{\psi}_{\dot{\alpha}}^{\mathrm{LD}}\left(x_{1}\right) \bar{\psi}_{\dot{\beta}}^{\mathrm{LD}}\left(x_{2}\right) \bar{\lambda}_{\dot{\gamma}}^{\mathrm{LD}}\left(x_{3}\right) \bar{\lambda}_{\dot{\delta}}^{\mathrm{LD}}\left(x_{4}\right) \exp \left(-S_{\mathrm{inst}}^{n}\right) \tag{9}
\end{align*}
$$

Here $d \tilde{\mu}$ stands for the properly normalized integration measure for all the collective coordinates in the problem (bosonic and fermionic, adjoint and fundamental) 16-18], excepting the $N=2$ superspace position variables $\left(x_{0 \alpha \dot{\alpha}}, \xi_{\alpha}^{1}, \xi_{\alpha}^{2}\right)$ which have been written out explicitly. As indicated, at leading order, $\bar{\psi}$ and $\bar{\lambda}$ are approximated by quantities $\bar{\psi}^{\mathrm{LD}}$ and $\bar{\lambda}^{\text {LD }}$ defined as follows [11, 17, [8]: first, one solves the Euler-Lagrange equations for $\bar{\psi}$ and $\bar{\lambda}$ in the classical background of the ADHM multi-instanton with all its fermionic zero modes turned on (and parametrized by the collective coordinates described above); next, one projects the resulting $S U(2)$-valued configurations onto the unbroken $U(1)$ direction in the color space (this is the direction parallel to the adjoint VEV); and finally, one assumes that the insertion points x_{i} are far away from the instanton position x_{0} and performs a long-distance (LD) expansion. For all the $N=2$ models, the result of this 3 -step procedure may be expressed compactly as follows [18]: 7

$$
\begin{align*}
& \bar{\psi}_{\dot{\alpha}}^{\mathrm{LD}}\left(x_{i}\right)=i \sqrt{2} \xi^{1 \alpha} S_{\alpha \dot{\alpha}}\left(x_{i}, x_{0}\right) \frac{\partial}{\partial \mathrm{v}}+\cdots \tag{10a}\\
& \bar{\lambda}_{\dot{\alpha}}^{\mathrm{LD}}\left(x_{i}\right)=-i \sqrt{2} \xi^{2 \alpha} S_{\alpha \dot{\alpha}}\left(x_{i}, x_{0}\right) \frac{\partial}{\partial \mathrm{v}}+\cdots \tag{10b}
\end{align*}
$$

${ }^{3}$ See Eq. (7.32) of [17] for the explicit expression in the case of pure $N=2$ SYM theory, Eq. (5.20) of 18] for the incorporation of N_{F} (massive) fundamental hypermultiplets, and Eq. (15) of [9] for the incorporation of a single (massive) adjoint hypermultiplet.

4 The three effective vertices (3) in \mathcal{L}_{2}-deriv are precisely those for which the tail of the instanton dominates the $d^{4} x_{0}$ integration; likewise for the nine effective vertices (18) in $\mathcal{L}_{4 \text {-deriv }}$.

Here $S_{\alpha \dot{\alpha}}$ is the Weyl spinor propagator,

$$
\begin{equation*}
S_{\alpha \dot{\alpha}}\left(x_{i}, x_{0}\right)=\sigma_{\alpha \dot{\alpha}}^{m} \partial_{m} G_{0}\left(x_{i}, x_{0}\right), \quad G_{0}\left(x_{i}, x_{0}\right)=\frac{1}{4 \pi^{2}\left(x_{i}-x_{0}\right)^{2}} \tag{11}
\end{equation*}
$$

and the derivative $\partial / \partial \mathrm{v}$ acts on $\exp \left(-S_{\text {inst }}^{n}\right)$, with the understanding that v and $\overline{\mathrm{v}}$ are always to be treated as independent variables. The omitted terms in (10) represent terms that fall off faster than $\left(x_{i}-x_{0}\right)^{-3}$, as well as terms that are independent of ξ^{1} or ξ^{2} and hence cannot saturate these integrations. Note that in the models with hypermultiplets, $\bar{\psi}^{\mathrm{LD}}$ and $\bar{\lambda}^{\mathrm{LD}}$ as given in (10) contain both linear and trilinear terms in Grassmann variables (hence would be tricky to derive using Feynman graphs rather than the methods of [18]). Substituting Eq. (10) into Eq. (9) and performing the ξ^{i} integrals yields

$$
\begin{equation*}
\int d^{4} x_{0} S_{\dot{\alpha}}^{\alpha}\left(x_{1}, x_{0}\right) S_{\alpha \dot{\beta}}\left(x_{2}, x_{0}\right) S_{\dot{\gamma}}^{\gamma}\left(x_{3}, x_{0}\right) S_{\gamma \dot{\delta}}\left(x_{4}, x_{0}\right) \frac{\partial^{4}}{\partial \mathrm{v}^{4}} \int d \tilde{\mu} e^{-S_{\text {inst }}^{n}} \tag{12}
\end{equation*}
$$

This one recognizes as the position-space Feynman graph for the effective 4-fermion vertex $-\frac{i}{32 \pi} \psi^{2} \lambda^{2} \mathcal{F}_{n}^{\prime \prime \prime \prime}(\mathrm{v})$ with [18]:

$$
\begin{equation*}
\left.\mathcal{F}_{n}(\mathrm{v}) \equiv \mathcal{F}(\mathrm{v})\right|_{n \text {-inst }}=8 \pi i \int d \tilde{\mu} e^{-S_{\mathrm{inst}}^{n}} \tag{13}
\end{equation*}
$$

Similarly, in order to generate the n-instanton contribution to the effective vertices (4a-b) one analyzes the Green's functions (5a-b), respectively. These require the longdistance expression for the anti-self-dual part of the field strength 18$]: 5$

$$
\begin{equation*}
v_{m n}^{\mathrm{ASD}, \mathrm{LD}}\left(x_{i}\right)=\sqrt{2} \xi^{1} \sigma^{p q} \xi^{2} G_{m n, p q}\left(x_{i}, x_{0}\right) \frac{\partial}{\partial \mathrm{v}}+\cdots \tag{14}
\end{equation*}
$$

where $G_{m n, p q}$ is the gauge-invariant propagator of $U(1)$ field strengths:

$$
\begin{equation*}
G_{m n, p q}\left(x_{i}, x_{0}\right)=\left(\eta_{m p} \partial_{n} \partial_{q}-\eta_{m q} \partial_{n} \partial_{p}-\eta_{n p} \partial_{m} \partial_{q}+\eta_{n q} \partial_{m} \partial_{p}\right) G_{0}\left(x_{i}, x_{0}\right) \tag{15}
\end{equation*}
$$

The omitted terms in (14) include terms that fall off faster than $\left(x_{i}-x_{0}\right)^{-4}$, as well as terms containing fewer than two of the ξ^{i} modes and hence cannot saturate these integrations. An important property of $G_{m n, p q}$ is that it only connects $v_{m n}^{\mathrm{SD}}$ to $v_{p q}^{\mathrm{ASD}}$ and vice versa (just as $S_{\alpha \dot{\alpha}}$ only connects λ to $\bar{\lambda}$, and ψ to $\bar{\psi}$). This property follows from the identity

$$
\begin{equation*}
\bar{\sigma}^{p q \dot{\alpha}}{ }_{\dot{\beta}} G_{m n, p q}(x)=\frac{2}{\pi^{2} x^{6}} \bar{x}^{\dot{\alpha} \alpha} \sigma_{m n \alpha}{ }^{\beta} x_{\beta \dot{\beta}} \tag{16}
\end{equation*}
$$

5 The fact that the gauge field strength develops an anti-self-dual piece in perturbation theory around the instanton is detailed in Sec. 4.4 of [17].
which implies

$$
\begin{equation*}
0=\bar{\sigma}_{\dot{\gamma} \dot{\delta}}^{m n} \bar{\sigma}_{\dot{\alpha} \dot{\beta}}^{p q} G_{m n, p q}(x)=\sigma_{\gamma \delta}^{m n} \sigma_{\alpha \beta}^{p q} G_{m n, p q}(x) \tag{17}
\end{equation*}
$$

Now the Green's functions ($5 a-b)$ may be calculated as before, by substituting the longdistance expressions (14) and (10) into the collective coordinate integration, and performing the ξ^{i} integrals explicitly. Thanks to Eq. (17), one indeed recovers the effective vertices (4a-b), with the n-instanton contribution to the prepotential still given by Eq. (13) as the reader can check [18].
3. Multi-instanton contribution to $\mathcal{H}(\Psi, \bar{\Psi})$. A straightforward extension of these methods gives useful information about $\mathcal{L}_{4 \text {-deriv }}$ too (as well as higher terms in the gradient expansion). As before, it is useful to expand $\mathcal{L}_{4 \text {-deriv }}$ in component fields, and to focus on the following nine effective vertices ${ }^{6}$:

$$
\begin{equation*}
\mathcal{L}_{4 \text {-deriv }} \supset 4 \sum_{k, k^{\prime}=1,2,3} \mathcal{V}^{k} \circ \overline{\mathcal{V}}^{k^{\prime}} \circ \mathcal{H}(\mathrm{v}, \overline{\mathrm{v}}) \tag{18}
\end{equation*}
$$

Here \mathcal{H} is the kernel in Eq. (2), the \mathcal{V}^{k} are the holomorphic vertices (4), and the $\overline{\mathcal{V}}^{k}$ are their Hermitian conjugates (e.g., $\overline{\mathcal{V}}^{2}=-\frac{i}{2 \sqrt{2}} \bar{\psi} \bar{\sigma}^{m n} \bar{\lambda} v_{m n}^{\mathrm{ASD}} \partial^{3} / \partial \overline{\mathrm{v}}^{3}$). Again as before, these nine vertices are probed, respectively, by the nine antiholomorphic \times holomorphic Green's functions

$$
\begin{equation*}
\mathbf{G}^{k, k^{\prime}}\left(x_{1}, \ldots, x_{k+1}, y_{1}, \ldots, y_{k^{\prime}+1}\right)=\left\langle\overline{\mathcal{O}}^{k}\left(x_{1}, \ldots, x_{k+1}\right) \mathcal{O}^{k^{\prime}}\left(y_{1}, \ldots, y_{k^{\prime}+1}\right)\right\rangle \tag{19}
\end{equation*}
$$

where the $\overline{\mathcal{O}}^{k}$ are given in (5) and the $\mathcal{O}^{k^{\prime}}$ are their Hermitian conjugates, $k, k^{\prime}=1,2,3$. We now need, in addition to Eqs. (10) and (14), the long-distance expansions of the fields $\psi_{\alpha}, \lambda_{\alpha}$ and $v_{m n}^{\mathrm{SD}}$. These are easily derived from the full $S U(2)$ expressions [14, 15, 17]:

$$
\begin{align*}
\left(v_{m n}^{\mathrm{SD}}\right)_{\dot{\beta}}^{\dot{\alpha}} & =4 \bar{U}^{\dot{\alpha} \alpha} b \sigma_{m n \alpha}{ }^{\beta} f \bar{b} U_{\beta \dot{\beta}} \tag{20a}\\
\left(\lambda_{\alpha}\right)^{\dot{\alpha}}{ }_{\dot{\beta}} & =\bar{U}^{\dot{\alpha} \gamma} \mathcal{M}_{\gamma} f \bar{b} U_{\alpha \dot{\beta}}-\bar{U}^{\dot{\alpha}}{ }_{\alpha} b f \mathcal{M}^{\gamma T} U_{\gamma \dot{\beta}} \tag{20b}
\end{align*}
$$

Here $\dot{\alpha}$ and $\dot{\beta}$ are color $S U(2)$ indices, the ADHM quantities U, f and b are as defined in Sec. 6 of [17], and \mathcal{M}_{γ} is the Grassmann collective coordinate matrix (6); for $\left(\psi_{\alpha}\right)^{\dot{\alpha}}{ }_{\dot{\beta}}$, substitute \mathcal{N}_{γ} for \mathcal{M}_{γ}. Projecting onto the unbroken $U(1)$ direction (which we assume for
${ }^{6}$ In $N=1$ language these nine vertices are all contained in the last term in Eq. (4.7) in [6], which in our $d^{2} \theta$ conventions reads $\frac{1}{4} \int d^{2} \theta d^{2} \bar{\theta} W^{2} \bar{W}^{2} \partial^{4} \mathcal{H}(\Phi, \bar{\Phi}) / \partial^{2} \Phi \partial^{2} \bar{\Phi}$.
definiteness to lie in the τ^{3} direction in color space) and utilizing the asymptotic formulae listed at the end of Sec. 6 of [17], one then obtains the long-distance expressions

$$
\begin{align*}
v_{m n}^{\mathrm{SD}, \mathrm{LD}}\left(y_{i}\right) & =\frac{4 i}{\left(y_{i}-x_{0}\right)^{6}} \sum_{k=1}^{n} \operatorname{tr}_{2} \bar{w}_{k} \tau^{3} w_{k}\left(\bar{y}_{i}-\bar{x}_{0}\right) \sigma_{m n}\left(y_{i}-x_{0}\right)+\cdots \\
& =2 i \pi^{2} G_{m n, p q}\left(y_{i}, x_{0}\right) \sum_{k=1}^{n} \operatorname{tr}_{2} \bar{w}_{k} \tau^{3} w_{k} \bar{\sigma}^{p q}+\cdots \tag{21a}\\
\lambda_{\alpha}^{\mathrm{LD}}\left(y_{i}\right) & =4 i \pi^{2} S_{\alpha \dot{\alpha}}\left(y_{i}, x_{0}\right) \sum_{k=1}^{n} \bar{w}_{k}^{\dot{\alpha} \beta}\left(\tau^{3}\right)_{\beta}{ }^{\gamma} \mu_{k \gamma}+\cdots \tag{21b}\\
\psi_{\alpha}^{\mathrm{LD}}\left(y_{i}\right) & =4 i \pi^{2} S_{\alpha \dot{\alpha}}\left(y_{i}, x_{0}\right) \sum_{k=1}^{n} \bar{w}_{k}^{\dot{\alpha} \beta}\left(\tau^{3}\right)_{\beta}^{\gamma} \nu_{k \gamma}+\cdots \tag{21c}
\end{align*}
$$

omitting terms with a faster falloff. Here w_{k}, μ_{k} and ν_{k} are the top-row elements of the collective coordinate matrices a, \mathcal{M} and \mathcal{N}, respectively (see Eq. (6)); the second equality in Eq. (21a) follows from Eq. (16).

We can now calculate, for example, the n-instanton contribution to the effective 8 -fermi vertex

$$
\begin{equation*}
\frac{1}{16} \psi^{2} \lambda^{2} \bar{\psi}^{2} \bar{\lambda}^{2} \frac{\partial^{4}}{\partial \mathrm{v}^{4}} \frac{\partial^{4}}{\partial \overline{\mathrm{v}}^{4}} \mathcal{H}(\mathrm{v}, \overline{\mathrm{v}}) . \tag{22}
\end{equation*}
$$

Inserting

$$
\begin{equation*}
\bar{\psi}_{\dot{\alpha}}^{\mathrm{LD}}\left(x_{1}\right) \bar{\psi}_{\dot{\beta}}^{\mathrm{LD}}\left(x_{2}\right) \bar{\lambda}_{\dot{\gamma}}^{\mathrm{LD}}\left(x_{3}\right) \bar{\lambda}_{\dot{\delta}}^{\mathrm{LD}}\left(x_{4}\right) \psi_{\alpha}^{\mathrm{LD}}\left(y_{1}\right) \psi_{\beta}^{\mathrm{LD}}\left(y_{2}\right) \lambda_{\gamma}^{\mathrm{LD}}\left(y_{3}\right) \lambda_{\delta}^{\mathrm{LD}}\left(y_{4}\right) \tag{23}
\end{equation*}
$$

into the collective coordinate integration and performing the ξ^{i} integrals leaves

$$
\begin{align*}
& \int d^{4} x_{0} \epsilon^{\kappa \lambda} S_{\kappa \dot{\alpha}}\left(x_{1}, x_{0}\right) S_{\lambda \dot{\beta}}\left(x_{2}, x_{0}\right) \epsilon^{\rho \sigma} S_{\rho \dot{\gamma}}\left(x_{3}, x_{0}\right) S_{\sigma \dot{\delta}}\left(x_{4}, x_{0}\right) \\
& \quad \times \epsilon^{\dot{k} \dot{\lambda}} S_{\alpha \dot{\kappa}}\left(y_{1}, x_{0}\right) S_{\beta \dot{\lambda}}\left(y_{2}, x_{0}\right) \epsilon^{\dot{\rho} \dot{\sigma}} S_{\gamma \dot{\rho}}\left(y_{3}, x_{0}\right) S_{\delta \dot{\sigma}}\left(y_{4}, x_{0}\right) \tag{24}\\
& \times \frac{\partial^{4}}{\partial \mathrm{v}^{4}} \int d \tilde{\mu} e^{-S_{\text {inst }}^{n}} \sum_{k, k^{\prime}, l, l^{\prime}=1}^{n} \frac{1}{4}\left(4 i \pi^{2}\right)^{4}\left(\nu_{k} \tau^{3} w_{k} \bar{w}_{k^{\prime}} \tau^{3} \nu_{k^{\prime}}\right)\left(\mu_{l} \tau^{3} w_{l} \bar{w}_{l^{\prime}} \tau^{3} \mu_{l^{\prime}}\right)
\end{align*}
$$

Again, we recognize this expression as the position-space Feynman graph for a local $\psi^{2} \lambda^{2} \bar{\psi}^{2} \bar{\lambda}^{2}$ vertex with an effective coupling given by the last line of Eq. (24). A comparison with the canonical form (22) gives a formal expression for the n-instanton contribution to $\mathcal{L}_{4 \text {-deriv }}$, valid to leading semiclassical order:

$$
\begin{equation*}
\left.\frac{\partial^{4}}{\partial \overline{\mathrm{v}}^{4}} \mathcal{H}(\mathrm{v}, \overline{\mathrm{v}})\right|_{n \text {-inst }}=64 \pi^{8} \int d \tilde{\mu} e^{-S_{\mathrm{inst}}^{n}} \sum_{k, k^{\prime}, l, l^{\prime}=1}^{n}\left(\nu_{k} \tau^{3} w_{k} \bar{w}_{k^{\prime}} \tau^{3} \nu_{k^{\prime}}\right)\left(\mu_{l} \tau^{3} w_{l} \bar{w}_{l^{\prime}} \tau^{3} \mu_{l^{\prime}}\right) \tag{25}
\end{equation*}
$$

This is the analog of Eq. (13) for the prepotential. Somewhat different (although necessarily consistent) formal expressions for $\partial^{2} \mathcal{H} / \partial \overline{\mathrm{v}}^{2}$ and $\partial^{3} \mathcal{H} / \partial \overline{\mathrm{v}}^{3}$ may be derived in the same way, by examining the Green's functions $\mathbf{G}^{k, 1}$ and $\mathbf{G}^{k, 2}$, respectively. Exchanging v and $\overline{\mathrm{v}}$ in Eq. (25) gives the n-antiinstanton contribution. There may also in general be mixed n-instanton, m-antiinstanton contributions to \mathcal{H} (unlike \mathcal{F} due to holomorphicity), but these lie beyond the scope of this paper.

As a simple illustration, let us calculate the 1-instanton contribution to \mathcal{H} in the case of pure $N=2$ SYM theory. In that case the instanton action reads [17]:

$$
\begin{equation*}
S_{\mathrm{inst}}^{n=1}=4 \pi^{2}|\mathrm{v}|^{2}|w|^{2}-2 \sqrt{2} i \pi^{2} \overline{\mathrm{v}} \mu^{\alpha}\left(\tau^{3}\right)_{\alpha}^{\beta} \nu_{\beta} \tag{26}
\end{equation*}
$$

where $|\mathrm{v}|=\sqrt{\mathrm{v} \overline{\mathrm{v}}}$. Also [17]:

$$
\begin{equation*}
\int d \tilde{\mu}=\frac{\Lambda^{4}}{2 \pi^{4}} \int d^{4} w d^{2} \mu d^{2} \nu \tag{27}
\end{equation*}
$$

with Λ the dynamically generated Pauli-Villars scale. The resulting integration in (25) is elementary, and givest

$$
\begin{equation*}
\left.\mathcal{H}(\mathrm{v}, \overline{\mathrm{v}})\right|_{1-\mathrm{inst}}=-\frac{1}{8 \pi^{2}} \frac{\Lambda^{4}}{\mathrm{v}^{4}} \log \overline{\mathrm{v}} \tag{28}
\end{equation*}
$$

in accord with an earlier prediction of Yung's, arrived at using completely different reasoning [12]. In contrast, for $N_{F}>0$, the first nonvanishing contribution to \mathcal{H} is at the 2-instanton level, due to a discrete \mathbb{Z}_{2} symmetry that forbids all odd-instanton contributions [2, 18]; it may be calculated straightforwardly using the methods of [17, 18].
4. Nonrenormalization theorem for the $N=2, N_{F}=4$ model. To make further progress, we note a second general property of $S_{\text {inst }}^{n}$ [17, 18,9]: when the hypermultiplet masses are zero, all dependence on v and $\overline{\mathrm{v}}$ can be eliminated from $S_{\text {inst }}^{n}$ by performing the collective coordinate rescaling

$$
\begin{align*}
& a \rightarrow a /|\mathrm{v}|, \quad \mathcal{M} \rightarrow \mathcal{M} / \sqrt{\overline{\mathrm{v}}}, \quad \mathcal{N} \rightarrow \mathcal{N} / \sqrt{\overline{\mathrm{v}}} \\
& \mathcal{K} \rightarrow \mathcal{K} / \sqrt{\mathrm{v}}, \quad \tilde{\mathcal{K}} \rightarrow \tilde{\mathcal{K}} / \sqrt{\mathrm{v}}, \quad \mathcal{R} \rightarrow \mathcal{R} / \sqrt{\mathrm{v}}, \quad \tilde{\mathcal{R}} \rightarrow \tilde{\mathcal{R}} / \sqrt{\mathrm{v}} . \tag{29}
\end{align*}
$$

Let us concentrate, first, on the $N=2$ models with $0 \leq N_{F} \leq 4$ flavors of massless fundamental hypermultiplets and no adjoint hypermultiplets. In these cases the rescaling (29) implies

$$
\begin{equation*}
d \tilde{\mu} \rightarrow|\mathrm{v}|^{4-8 n}(\sqrt{\overline{\mathrm{v}}})^{8 n-4}(\sqrt{\mathrm{v}})^{2 n N_{F}} \cdot d \tilde{\mu}=\mathrm{v}^{2-\left(4-N_{F}\right) n} \cdot d \tilde{\mu} \tag{30}
\end{equation*}
$$

7 Note that only mixed derivatives of \mathcal{H} with respect to both v and $\overline{\mathrm{v}}$ enter $\mathcal{L}_{4 \text {-deriv }}$ so that \mathcal{H} itself can be written in a variety of equivalent ways.
so that

$$
\begin{equation*}
\left.\mathcal{H}(\mathrm{v}, \overline{\mathrm{v}})\right|_{n \text {-inst }} \sim \frac{\log \overline{\mathrm{v}}}{\mathrm{v}^{\left(4-N_{F}\right) n}},\left.\quad \mathcal{F}(\mathrm{v})\right|_{n \text {-inst }} \sim \frac{1}{\mathrm{v}^{\left(4-N_{F}\right) n-2}} \tag{31}
\end{equation*}
$$

as follows from Eqs. (25) and (13), respectively. In particular, for the special case $N_{F}=4$, one has simply $\left.\mathcal{H}\right|_{n \text {-inst }} \sim \log \bar{v}$ so that the effective component vertices contained in $\mathcal{L}_{4 \text {-deriv }}$ (all of which involve differentiating \mathcal{H} with respect to both v and $\overline{\mathrm{v}}$) automatically vanish; likewise for the antiinstanton case with $v \leftrightarrow \overline{\mathrm{v}}$. Thus we confirm the nonperturbative nonrenormalization theorem of Dine and Seiberg in this model. 8 Giving any of the hypermultiplets a mass spoils the argument, since m_{i} rescales to m_{i} / v, and this rescaled mass can be pulled down from the exponent.
5. Nonrenormalization theorem for the $N=4$ model. Next we consider the $N=4$ theory, i.e., $N=2$ SYM coupled to a single massless adjoint hypermultiplet. In this model, after spontaneous symmetry breakdown, the low-energy dynamics involves a larger set of massless fields, corresponding to a single $N=4 U(1)$ multiplet. Concomitantly, $S_{\text {inst }}^{n}$ is now independent of four additional Grassmann collective coordinates: the 'trace' components of the $n \times n$ matrices $\mathcal{R}_{\gamma}^{\prime}$ and $\tilde{\mathcal{R}}_{\gamma}^{\prime}$ introduced in Eq. (7) [17,9]. Respectively, these components constitute the third and fourth supersymmetry modes, ξ_{γ}^{3} and ξ_{γ}^{4}. Now the collective coordinate integration takes the form

$$
\begin{equation*}
\int d^{4} x_{0} d^{2} \xi^{1} d^{2} \xi^{2} d^{2} \xi^{3} d^{2} \xi^{4} \mathcal{B}_{n}(\mathrm{v}, \overline{\mathrm{v}}) \tag{32}
\end{equation*}
$$

where \mathcal{B}_{n} is the n-instanton contribution to what one might call the "anteprepotential" in analogy to Eq. (13):

$$
\begin{equation*}
\mathcal{B}_{n}(\mathrm{v}, \overline{\mathrm{v}})=\int D \hat{\mu} e^{-S_{\mathrm{inst}}^{n}} \tag{33}
\end{equation*}
$$

Here $D \hat{\mu}$ is the properly normalized integration measure for all collective coordinates in the problem excepting the $N=4$ superspace position variables $\left(x_{0}, \xi_{\gamma}^{1}, \xi_{\gamma}^{2}, \xi_{\gamma}^{3}, \xi_{\gamma}^{4}\right)$. As before, these eight unbroken ξ_{γ}^{i} modes must be saturated by the insertion of an appropriate set of fields, for instance the eight antifermions

$$
\begin{equation*}
\mathbf{G}^{8}\left(x_{1}, \ldots, x_{8}\right)=\left\langle\bar{\psi}_{\dot{\alpha}}\left(x_{1}\right) \bar{\psi}_{\dot{\beta}}\left(x_{2}\right) \bar{\lambda}_{\dot{\gamma}}\left(x_{3}\right) \bar{\lambda}_{\dot{\delta}}\left(x_{4}\right) \bar{\chi}_{\dot{\kappa}}\left(x_{5}\right) \bar{\chi}_{\dot{\lambda}}\left(x_{6}\right) \bar{\chi}_{\dot{\rho}}\left(x_{7}\right) \overline{\tilde{\chi}}_{\dot{\sigma}}\left(x_{8}\right)\right\rangle, \tag{34}
\end{equation*}
$$

where χ and $\tilde{\chi}$ are the adjoint hypermultiplet Higgsinos associated with the collective coordinate matrices \mathcal{R} and $\tilde{\mathcal{R}}$, respectively. Now the action $S_{\text {inst }}^{n}$ in the $N=4$ model

[^0]has the discrete symmetry $\{\mathcal{M}, \mathcal{N}, \mathrm{v}\} \leftrightarrow\{\mathcal{R}, \tilde{\mathcal{R}}, \overline{\mathrm{v}}\}$ [9]. This symmetry, together with the long-distance expressions (10), implies
\[

$$
\begin{align*}
& \bar{\chi}_{\dot{\alpha}}^{\mathrm{LD}}\left(x_{i}\right)=i \sqrt{2} \xi^{3 \alpha} S_{\alpha \dot{\alpha}}\left(x_{i}, x_{0}\right) \frac{\partial}{\partial \overline{\mathrm{v}}}+\cdots \tag{35a}\\
& \bar{\chi}_{\dot{\alpha}}^{\mathrm{LD}}\left(x_{i}\right)=-i \sqrt{2} \xi^{4 \alpha} S_{\alpha \dot{\alpha}}\left(x_{i}, x_{0}\right) \frac{\partial}{\partial \overline{\mathrm{v}}}+\cdots \tag{35b}
\end{align*}
$$
\]

From Eqs. (10) and (32)-(35) it follows that $\left.\mathbf{G}^{8}\right|_{n \text {-inst }} \propto \partial^{8} \mathcal{B}_{n} / \partial \mathrm{v}^{4} \partial \overline{\mathrm{v}}^{4}$. However, the rescaling argument (29) implies that

$$
\begin{equation*}
D \hat{\mu} \rightarrow|\mathrm{v}|^{4-8 n}(\sqrt{\overline{\mathrm{v}}})^{8 n-4}(\sqrt{\mathrm{v}})^{8 n-4} \cdot D \hat{\mu}=D \hat{\mu} \tag{36}
\end{equation*}
$$

so that actually $\mathcal{B}_{n}(\mathrm{v}, \overline{\mathrm{v}})$ is a constant, independent of v and $\overline{\mathrm{v}}$. Thus all (multi-)instanton contributions to \mathbf{G}^{8} vanish, as predicted by Dine and Seiberg in this model as well.

Interestingly, in the $N=8$ theory in three space-time dimensions, obtained by dimensional reduction of the $N=4$ theory in 4D, this nonrenormalization theorem for the higher derivative terms no longer holds; indeed the non-vanishing one-instanton contribution to the corresponding 4-derivative/8-fermion term has been calculated in [19], and all higher multi-instanton contributions have been obtained in closed form in [20]. The significance of such instanton corrections for Matrix theory was discussed last week in [21].

ND is supported by a PPARC Advanced Research Fellowship, MPM by the Department of Energy, and MJS and WAW by PPARC studentships.

References

[1] N. Seiberg, Phys. Lett. B206 (1988) 75.
[2] N. Seiberg and E. Witten, Electric-magnetic duality, monopole condensation, and confinement in $N=2$ supersymmetric Yang-Mills theory, Nucl. Phys. B426 (1994) 19, (E) B430 (1994) 485 hep-th/9407087; and Monopoles, duality and chiral symmetry breaking in $N=2$ supersymmetric $Q C D$, Nucl. Phys B431 (1994) 484, hep-th/9408099.
[3] M.A. Shifman and A.I. Vainshtein, Nucl. Phys. B277 (1986) 456;
M. Dine and Shirman, Phys. Rev. D50 (1994) 5389, hep-th/9405155.
[4] G. Sierra and P.K. Townsend, in Supersymmetry and Supergravity 1983, proc. XIXth Winter School, Karpacz, ed. B. Milewski, World Scientific 1983, p.396;
S.J. Gates, Nucl. Phys. B238 (1984) 349;
B. de Wit, P.G. Lauwers, R. Philippe, S.-Q. Su and A. Van Proeyen, Phys. Lett. B134 (1984) 37.
[5] R. Grimm, M. Sohnius and J. Wess, Nucl. Phys. B133 (1978) 275.
[6] M. Henningson, Extended Superspace, Higher Derivatives and $S L(2, \mathbb{Z})$ Duality, Nucl. Phys. B458 (1996) 445, hep-th/9507135.
[7] B. de Wit, M.T. Grisaru and M. Rocek, Nonholomorphic Corrections to the One-loop $N=2$ Super Yang-Mills Action, Phys. Lett. B374 (1996) 297, hep-th/9601115.
[8] N. Dorey, V.V. Khoze and M.P. Mattis, On $N=2$ supersymmetric $Q C D$ with 4 flavors, hep-th/9611016.
[9] N. Dorey, V.V. Khoze and M.P. Mattis, On mass-deformed $N=4$ supersymmetric Yang-Mills theory, Phys. Lett. B396 (1997) 141, hep-th/9612231.
[10] A. Pickering and P. West, The One Loop Effective Superpotential and Nonholomorphicity, Phys. Lett. B383 (1996) 54, hep-th/9604147.
[11] U. Lindstrom, F. Gonzalez-Rey, M. Rocek and R. von Unge, On $N=2$ Low-Energy Effective Actions, Phys. Lett. B388 (1996) 581, hep-th/9607089.
[12] A. Yung, Instanton-induced Effective Lagrangian in the Seiberg-Witten Model, Nucl. Phys. B485 (1997) 38, hep-th/9605096; and Higher Derivative Terms in the Effective Action of $N=2$ SUSY QCD from Instantons, hep-th/9705181.
[13] M. Dine and N. Seiberg, Comments on Higher Derivative Operators in Some SUSY Field Theories, hep-th/9705057.
[14] M. Atiyah, V. Drinfeld, N. Hitchin and Yu. Manin, Phys. Lett. A65 (1978) 185.
[15] E. Corrigan, P. Goddard and S. Templeton, Nucl. Phys. B151 (1979) 93;
E. Corrigan, D. Fairlie, P. Goddard and S. Templeton, Nucl. Phys. B140 (1978) 31.
[16] H. Osborn, Ann. Phys. 135 (1981) 373.
[17] N. Dorey, V.V. Khoze and M.P. Mattis, Multi-instanton calculus in $N=2$ supersymmetric gauge theory, Phys. Rev. D54 (1996) 2921, hep-th/9603136.
[18] N. Dorey, V.V. Khoze and M.P. Mattis, Multi-instanton calculus in $N=2$ supersymmetric gauge theory. II. Coupling to matter, Phys. Rev. D54 (1996) 7832, hepth/9607202.
[19] J. Polchinski and P. Pouliot, Membrane Scattering with M-momentum Transfer, hepth/9704029.
[20] N. Dorey, V.V. Khoze and M.P. Mattis, Multi-Instantons, Three-Dimensional Gauge Theory and the Gauss-Bonnet-Chern Theorem, hep-th/9704197.
[21] T. Banks, W. Fischler, N. Seiberg and L. Susskind, Instantons, Scale Invariance and Lorentz Invariance in Matrix Theory, hep-th/9705190.

[^0]: ${ }^{8}$ Notice that, in contrast to \mathcal{H}, in the $N_{F}=4$ model one also has $\left.\mathcal{F}\right|_{n \text {-inst }} \sim \mathrm{v}^{2}$ so that the effective $U(1)$ complexified coupling $\tau_{\text {eff }}=\mathcal{F}^{\prime \prime}(\mathrm{v})$ actually receives contributions from all (even) instanton numbers; see Refs. [18,8 for a discussion of this point.

