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ABSTRACT 

This study is focused on the application of automated techniques on low-speed bearing diagnostics. 

The diagnosis in low-speed conditions is hampered by the long periods between defect-related 

impulses and the high level of noise relative to the magnitude of the impulses. To detect a localised 

defect in such conditions, a new approach that uses vibration signals and information on the bearing 

defect frequencies is proposed. At first, the vibration signal is filtered in a specific frequency range 

to enable the detection of the impulses hidden in the signal. The filtered signal is then segmented 

into short time windows, the length of which are selected based on the bearing defect frequencies. 

Statistical time domain features are calculated from these windows to amplify and compress the 

impulses inflicted by the defect. Then, a criterion based on the autocorrelation values of specific time 

lags is calculated. An exhaustive search procedure is used to determine the frequency band for 

signal filtering and to select the statistical feature, which together maximises the proposed criterion. 

The highest value of the criterion is finally compared with the corresponding value from the baseline 

condition to detect the localised defect. The proposed technique is demonstrated on simulated 

signals, and validated based on the vibration signals from laboratory tests with undamaged, slightly 

damaged and severely damaged rolling elements in a rolling element bearing. Different conditions 

with shaft speeds from 20 to 80 rpm were studied in the laboratory tests. The proposed technique 

was compared with automated envelope spectrum diagnosis approaches based on the peak ratio 

and peak-to-median indicators and the fast kurtogram. The results reveal that the criterion based on 

autocorrelation gave defect indications associated with the correct type of defect in various 

circumstances while the tested envelope spectrum approaches were prone to induce an incorrect 

conclusion. Moreover, the results indicate that the approach could be used successfully on signals 

with a length that includes relatively few defect periods or impulses. The approach requires a high 

sampling rate relative to the defect frequencies, which may limit its suitability for the higher shaft 

speeds. 
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1. Introduction 

Faults in rolling element bearings (REBs) are a common reason for maintenance work on industrial 

applications. REBs are used in a large variety of equipment and mechanical devices from roll necks 

in rolling mills to the main shafts in wind turbines, for example. Abrupt faults in such equipment can 

be disastrous, cause increased maintenance costs and a decreased rate of productivity. Therefore, 

the fault prognosis and diagnosis methodologies for REBs have been studied for decades [1]. The 

localised defects, where a piece of a contact surface in the bearing is dislodged during operation, 



are the common fault type studied in the literature [2]. These defects presumably generate a quasi-

periodic impulse train in the measured signals [3]. These signals can also be considered 

cyclostationary [2]. The defects are commonly analysed based on vibration signals by focusing on 

the bearing defect frequencies [4]. However, in the case of slowly rotating bearings that are typical 

in industrial applications, the defect-related signal features tend to become weak due to various 

factors, such as the skidding of the rolling elements, the vibration of other machine parts and 

machines, noise and disturbances [5]. The conventional diagnostic techniques often turn out 

insufficient under such circumstances [6]. 

Shaft speeds in the range from 20 to 600 rpm are often referred to as low speed [7] and significantly 

lower speeds are sometimes classified separately [8]. However, there is no generally accepted 

criterion for speed classification. Although there are studies where the slowly rotating bearings have 

been diagnosed based on vibration signals with successful results [5,6,7,9,10,11,12], the use of 

vibration appears generally unfavourable. A major part of recent research is focused on the Acoustic 

Emission (AE) techniques [8,13,14,15,16], but other techniques, such as the Shock Pulse Method 

(SPM) [17], stress waves [18], and the ultrasound technique [19], have been applied as well. AE 

techniques have limitations, such as unestablished methods for sensor calibration [20,21] and high 

sampling rate which may cause computational challenges [15]. The AE waveform also requires a 

direct transmission path through the solid material to avoid an intermittent signal [20], which is not 

guaranteed in REBs. The well-established vibration measurements can be considered more 

practical with respect to such limitations. Therefore, the research on their application on the 

diagnosis of slowly rotating bearings is also important. 

The bearing diagnosis in the low-speed conditions has specific challenges. The impulse strength 

caused by the localised defects is relative to the shaft speed and it decreases if the shaft speed 

decreases [5,22]. This may cause difficulties in the diagnosis, if the noise level is high [6]. The 

industrial surroundings have background noise originating from different machine components and 

other machines. Consequently, the noise does not decrease although the bearing rotates with a 

lower speed, which results in a low signal-to-noise ratio in the measured vibration signal. Moreover, 

the periods between the shocks caused by the bearing defects are relatively long in the low-speed 

domain. Long samples are required to ensure an adequate number of defect-related impulses in the 

signals analysed. On the other hand, the spectral smearing due to speed fluctuations and skidding 

of rolling elements may hinder the diagnosis significantly in such long samples [7,23]. Therefore, a 

method that is usable on a relatively short signal that includes only a few of such weak defect-related 

impulses can generally be considered a fitted approach for the low-speed conditions. 

The signal processing methods for bearing diagnostics are commonly divided into three categories, 

which are time, frequency and time-frequency analysis [24]. The time domain techniques traditionally 

use various statistical features, such as generalised norms [25] and features derived from them [26]. 

One application for such techniques is the detection of shock-like phenomena in the signal, often 

based on threshold values. However, it is difficult to diagnose the precise nature of the defect based 

on the time domain information alone. The frequency domain techniques are used to identify the 

defect-related spectral components from the signal. The most common method in this category is 

the high frequency resonant technique (envelope analysis) [27]. Finally, the time-frequency analysis 

shows how the frequency content of the signal changes with time. This field of analysis is rich with 

methods, such as short-time Fourier transform [28], wavelet transform [29] and ensemble empirical 

mode decomposition [30] among others [31]. Such methods appear appropriate for nonstationary 

signals under time-varying operational conditions [31] such as the start-up or rundown of a machine. 

In addition, the family of techniques in the cyclostationary analysis [32] has captured a broad interest 

of the scientific community recently [33]. 

Furthermore, the methods for the automation of diagnosis draw increasing attention. The automated 

solutions for diagnosis are studied from the viewpoints of partial and complete automation. As a 



partial solution, the automation of envelope spectrum diagnosis, for example, has been studied from 

many viewpoints. Shiroishi et al. [34] used the peak ratio indicator and Ericsson et al. [24] used the 

peak-to-median indicator to extract defect-related features in the envelope spectrum diagnosis. 

Additionally, several methods have been proposed for the frequency band selection in the band-

pass filtering stage of the method. These include the spectral kurtosis [28], the fast kurtogram based 

on multirate filter-bank [35], the combination of the fast kurtogram and genetic algorithms [36], the 

kurtosis of envelope spectra amplitudes [37], and adaptive time-frequency analysis based on window 

superposition [38], to mention only a few. 

The methods which aim at the fully automated solutions often use machine learning approaches, 

which classify different bearing conditions based on the supervised learning techniques [39,40]. 

These approaches commonly utilise an exhaustive feature set to separate the fault signature [41]. 

Samanta and Al-Balushi [39], for example, used time domain features, Widodo et al. [15] used 

features from envelope spectra together with time domain features and Rauber et al. [41] extended 

the feature set even more by incorporating time-frequency features. The inclusion of dimension 

reduction [42] or feature selection [43] methods is commonly required to improve the viability of the 

machine learning approach. In addition, the machine learning in industrial applications requires 

highly careful data pre-processing in order to remove the effects of disturbances unrelated to the 

operation of the monitored system [44]. A recent addition to the machine learning approach is to 

generate the training data based on bearing simulations [40]. 

The research question of this study is focused on the automated detection of localised defects in 

slowly rotating rolling element bearings based on vibration measurements. The main contribution is 

the introduction of the criterion that is based on the autocorrelation of statistical features calculated 

from band-pass filtered signals. The features are extracted in short time windows, which have 

lengths defined based on the fundamental defect frequencies of the bearing. These statistical 

features are selected based on their sensitivity to the shocks inflicted by the defect. The short time 

windows compensate for the minor speed variations and the fact that the defect-related shocks are 

weak and do not appear in exactly periodic time instances in the raw signal. The criterion is proposed 

especially for the low-speed bearing diagnosis cases, where the sampling rate is markedly high 

relative to the presumed defect frequencies and the defect-related impulses are weak in the raw 

signal. The method is different from the supervised learning approaches in that it does not require 

training based on the previous operation. On the contrary, the method automatically defines the 

appropriate diagnostic parameters based on the current operation. 

The proposed method is compared with automated envelope spectrum diagnosis approaches, 

where the defects are identified based on the peak ratio and peak-to-median indicators. Two different 

approaches are tested for the frequency band selection, because it is the focal processing stage but 

does not have a single established approach that would be appropriate for each situation. Recently, 

it has become popular to select the optimal frequency band for demodulation by identifying the band, 

which shows the strongest response to impulses without considering the origin of the impulses [45]. 

This approach tends to give fallacious results due to the presence of interfering vibration content in 

the signals in practical applications [2,37,46]. Therefore, in the first tested approach, the selection is 

done by maximising the peak ratio and peak-to-median indicators. This approach is based on the 

idea that the impulses related to the bearing defect frequencies, which are associated with the 

indicators, explicitly determine the appropriate frequency band. The fast kurtogram was selected as 

the second approach due to its computational efficiency and the popularity in the current mechanical 

fault diagnosis literature [45,47,48]. In this approach, the origin of the impulses is not considered. 

The paper is organised as follows. The proposed autocorrelation-based criterion and the approaches 

used for the envelope spectrum diagnosis are introduced in Section 2. Section 3 describes the test 

rig, the settings and the measurements applied in the rolling element bearing diagnosis experiment 

under the slow rotational speed circumstances. Section 4 provides the results and discussion based 



on the tests on simulated signals and experimental data from the test rig. Finally, Section 5 concludes 

the paper. 

 

2. Methodology 

The criterion based on autocorrelation is introduced in Section 2.1. Section 2.2 introduces the 

envelope spectrum diagnosis approach based on the peak ratio and peak-to-median indicators. The 

application of the fast kurtogram in the frequency band selection based on the kurtosis maximisation 

principle is described in [35]. 

 

2.1. Criterion based on autocorrelation 

The proposed approach can be divided into separate parts, which include signal filtering, 

segmentation, feature extraction, and the calculation of autocorrelation and the criterion. A flowchart 

that illustrates how the parts are linked with each other is presented in Fig. 1. Firstly, the vibration 

signal is filtered in the frequency domain, which is explained in Section 2.1.1. Then, the filtered signal 

is segmented into short time windows as shown in Section 2.1.2. These short time windows are 

compressed into single data points by the extraction of statistical features, which is introduced in 

Section 2.1.3. Autocorrelation is calculated from each feature, as discussed in Section 2.1.4, and 

then the criterion based on autocorrelation is calculated, which is introduced in Section 2.1.5. The 

whole procedure is repeated several times by using different frequency bands in filtering. When all 

the frequency bands are checked, the optimal settings are selected based on the proposed criterion. 

The optimal settings include the statistical feature and the frequency band, which together result in 

the highest value of the proposed criterion with the applied time window size. A demonstration of the 

signal processing stages in the calculation of the criterion is provided in Section 2.1.6. Finally, 

Section 2.1.7 illustrates the significance of sampling rate and defect frequency on the resolution of 

the practical segmentation procedure in the proposed approach. 

 



 

Fig. 1. Flowchart demonstrating the stages in the calculation of the criterion. The optimal settings 

include the statistical feature and the frequency band, which together maximise the proposed 

criterion with the applied time window size. 

 

The highest value of the criterion gives insight into the current bearing condition. This value is 

compared with the corresponding reference value from the baseline condition. The baseline data 

have been acquired in an earlier stage from the same bearing in a good condition. The operational 

situations in both bearing conditions are preferably the same including the same rotational speed 

and load on the bearing. The reference value is computed from the baseline data by using the optimal 

settings defined from the currently monitored bearing condition. Therefore, the settings applied on 

the processing of the baseline signal and the monitored signal include the same frequency band, the 

same segment size (in per cent), and the same statistical feature. The monitored signal is processed 

first and the baseline signal is processed thereafter using the settings defined based on the 

monitored signal. 

If the value from the current bearing condition is higher than the reference value, a change in the 

condition can be assumed. Therefore, the fully automated diagnosis requires the definition of a 



threshold value for the difference between the current and the baseline conditions. The definition of 

an appropriate threshold value is done in a case-by-case basis and it is a compromise between the 

sensitivity to change and false alarms. Additionally, the criterion value from the monitored signal can 

be used to evaluate the periodically repeating patterns that are associated with the defect 

frequencies, if the baseline data are not available. 

 

2.1.1. Filtering 

Before filtering the acceleration signal in the frequency domain, it is essential to multiply the time 

domain signal by a window function, such as the Tukey window in this study. If the windowing is not 

applied, ripples could be created in the time domain signal in the filtering procedure. After the 

windowing stage, the fast Fourier transform (FFT) is used to transform the vibration signal into the 

frequency domain. The unwanted frequency components are then removed by multiplying the 

corresponding complex numbers by zero. This procedure enables the selection of certain frequency 

range and the removal of all the frequency components outside the specified range. After this 

procedure, the signal is transformed back into the time domain by using the inverse FFT. 

The acceleration signal is filtered repeatedly by selecting different frequency bands, as indicated by 

the loop in the flowchart in Fig. 1. In this study, a specific procedure for frequency band segmentation 

was applied. The applicable frequency band was divided into sub-bands with different sizes, as 

illustrated in Fig. 2. The frequency bands with sizes 2.5%, 3.3%, 5%, 10%, 20%, and 50% of the 

applicable range were tested. The number of frequency bands with these sizes were 40, 30, 20, 10, 

5, and 2, respectively. The applicable frequency range could be from 0 Hz to Nyquist frequency or it 

could cover the linear frequency response range of an accelerometer. 

 

 

Fig. 2. Frequency bands used in the selection of the optimal frequency range for signal filtering. In 

this graph, the applicable frequency range is normalised into range 0–1. 

 

2.1.2. Segmentation 

The low-speed bearing signal requires a long recording time, because the repetitive pattern of the 

localised defect has a slow rate. The processing of long signals results in major computational load 

if some computational procedure is applied on each data point individually. To solve this problem, 



the signal can be compressed by chopping it in short consecutive segments (or time windows), from 

which the features of choice are then calculated. However, it is important to select the proper 

segment size carefully. Quite often the signal is chopped into segments that have a size unrelated 

to the frequency of the fault pattern [39,41]. In such a case, the periodic repetitive pattern of the fault 

becomes masked in the segments and in some cases the fault-related shocks may appear unevenly 

spread in the segments. The solution proposed in this study is to chop the signal based on the 

bearing defect frequencies. This means that the segmentation is done in various lengths, because 

several types of defects are monitored in the automated bearing diagnosis applications. By using 

this approach, the shocks generated by a particular defect are located on the segments at specific 

intervals and become thus detectable. Under the assumption that there is no skidding between the 

rolling elements and races, the defect frequencies are calculated as follows 
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where BPFO is the ballpass frequency for the outer race, BPFI is the ballpass frequency for the inner 

race, FTF is the fundamental train frequency (cage speed), and BSF is the rolling element (roller or 

ball) spin frequency. Parameter fr is the shaft rotational frequency, n is the number of rolling 

elements, d is the rolling element diameter, D is the pitch diameter of the bearing, and ϕ is the angle 

of the load from the radial plane. 

In order to chop the signals into segments, the defect periods are calculated by taking the inverse of 

bearing defect frequencies. The length of a segment is set to be 1–2% of the defect period, because 

this length is proportional to the typical amount of variation due to skidding [2]. If the segment length 

is considerably increased, the impulses unrelated to the defect possibly begin to dominate in the 

segments and the risk of misdiagnosing increases. 

The segmentation approach requires consideration of the practical sampling rate used for the 

vibration measurements. Above all, the sampling rate must enable the separation of different defect 

frequencies. Therefore, the sampling rate is selected in such a way that the rounded number of data 

points in a segment is a different positive integer for different defect frequencies. In addition, the ratio 

of the sampling rate to the defect frequency must be high enough to ensure a sufficient resolution in 

the segmentation approach, which is demonstrated in Section 2.1.7. These issues are likely to be 

more challenging in the higher shaft speeds than in the low-speed conditions. 

 

2.1.3. Feature extraction 

The localised faults in rolling element bearings presumably produce series of shocks, which are 

manifested in the acceleration signal. Therefore, the computational features have to be sensitive to 

shock-like phenomena. However, it is unclear which feature is the most sensitive to the weak 

characteristics of the defect in the low-speed case. The generation of a relatively large set of 

candidate features gives a well-founded basis for the solution. In this study, twenty statistical features 

were computed. These features have minor requirements for the computing capacity and therefore 

their use in practical applications is reasonable. Most of the features are based on the lp norm which 

is also named as the generalised norm [49]. It is defined by 
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where the real number α represents the order of derivative, x is displacement, N is the number of 

data points in the time window, and the real number p is the order of the norm. The lp norm has the 

same form as the generalised mean, also known as Hölder mean or power mean [50]. In this study, 

only the acceleration signals (x(2)) were used. 

Several lp norms and ratios of lp norms were calculated in this study. As demonstrated for example 

in [44], the lp norm with low order (e.g. p = 0.5 or p = 2) is sensitive to changes in the signal amplitude 

level, whereas the norm with high order (e.g. p = 10) is more sensitive to individual peaks in the 

signal. The ratios of high-order and low-order lp norms give indications about the ratio between the 

peaks and the general amplitude level. Additionally, indicators, which describe the shape of 

probability distribution, such as the kurtosis (6) and skewness (7) of signal values, and 95th percentile 

of absolute signal values, were calculated. Kurtosis and skewness are defined by 
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1
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The kurtosis of a univariate normal distribution is 3. In this study, the excess kurtosis was used to 

describe the distribution of the signals as well. In that case, the kurtosis of a univariate normal 

distribution is zero. The set of twenty candidate features is presented in Table 1. 

 

Table 1 Definition of the candidate features. 

Features Definition 

l0.5, l2, l4, l10, l20 Generalised norms, p = {0.5, 2, 4, 10, 20} 
l20 / l10 Ratio of two high-order generalised norms, p = {10, 20} 
l20 / l2, l10 / l2, l10 / l1, l20 / l0.5, l10 / l0.5 Ratios of high-order generalised norms, p = {10, 20}, to low-

order generalised norms, p = {0.5, 1, 2} 
l4 / l0.5, l4 / l1, l4 / l2 Ratios of a relatively high-order generalised norm, p = 4, to 

low-order generalised norms, p = {0.5, 1, 2} 
l∞ Maximum of absolute signal values (peak) 
l∞ / l2 Crest factor, ratio of peak to root-mean-square 
l∞ / l0.5 Margin factor, ratio of peak to low-order generalised norm, p 

= 0.5 
P95(|x(2)|) 95th percentile of absolute signal values 
Kurtosis Kurtosis describes the tails of probability distribution 
Skewness Skewness describes the asymmetry of probability distribution 

 

2.1.4. Autocorrelation 

Autocorrelation is a tool for finding periodically repeating patterns in a signal. It provides information 

about the structure of the signal or its behaviour in time domain. The autocorrelation for lag τ can be 

defined by 

𝑅𝑥𝑥(𝜏) =
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where cτ is the estimate of the autocovariance and c0 is the sample variance of the time series [51]. 

This is a measure of correlation between the signal and its time-shifted variant. In rolling element 

bearing diagnostics, autocorrelation is commonly applied on time series that have the same sampling 

rate as the raw signal [11,29,46,47]. In such a case, it is assumed that the defect is shown by the 

peaks that repeat at nearly fixed intervals. The defect period, however, typically deviates 1–2% from 

the calculated value [2], which corresponds to a large number of data points in low-speed 

applications, which have accelerometers as sensors. In addition, the shocks generated by the defect 

tend to be weak and their detection may require derived values, such as the features introduced in 

the previous section. Therefore, the segmentation approach introduced in Section 2.1.2 is used to 

compensate for the small frequency variation and the features given in Section 2.1.3 are used to 

magnify shocks. 

After segmentation, the 50th time lag can be considered defect-related, when the segment length is 

2% of the defect period. Similarly, the 100th time lag is associated with the defect frequency, when 

the segment length is 1% of the defect period. With this approach, the autocorrelation function can 

be used to identify the shocks associated with the defect in a straightforward manner. 

 

2.1.5. Calculation of the criterion based on autocorrelation 

The proposed criterion is used to extract the most separable peak at the time lag corresponding to 

the bearing defect frequency (50th or 100th time lag). This extraction is based on the selection of the 

statistical feature and the frequency band, which maximise the value of the criterion, i.e. produce the 

most separable peak. To determine the best setting for this purpose, the autocorrelation of the time 

lag, which corresponds to the defect frequency, is compared with the autocorrelation values of other 

time lags nearby. The criterion can be defined as 

𝐶𝑟𝑖𝑡𝑒𝑟𝑖𝑜𝑛 = 𝑚𝑎𝑥(𝑅𝑥𝑥(𝜏1)) − 𝑃𝑘(𝑅𝑥𝑥(𝜏2)),      (10) 

where τ1 = { τdefect - 1, τdefect, τdefect +1} denotes the search range around the time lag of defect (τdefect). 

This narrow search range (1–2% in both directions) is applied to find the maximum value close to 

the theoretical defect time lag. The term Pk(Rxx(τ2)) denotes the kth percentile of autocorrelation 

values for time lags τ2 = {1, …, τlimit}, τ1 ∉τ2. The upper limit (τlimit) for the considered time lags is 

defined, because only the time lags close to τdefect are of interest. In this study, τlimit = 2.5·τdefect. 

Criterion values above zero indicate there is a discernible peak at the time lag of the defect. The 

second term Pk(Rxx(τ2)) can be negative, which may result in a high criterion value even when the 

autocorrelation value of the time lag of the defect is low. Therefore, the kth percentile in the second 

term of (10) should be a high percentile. It is well-known that the autocorrelation values of signals 

composed with noise and sporadic impulses tend to be close to zero, as demonstrated in [46]. In 

such a case, the median (P50) for example could be an unfounded choice for the second term 

because it would be close to zero, P50(Rxx(τ2)) ≈ 0. Then the second term would practically invalidate 

itself. In addition to noise and sporadic impulses, it is highly probable that the signal includes 

frequency components unrelated to the defect. These components may cause high autocorrelation 

values at the time lag of the defect and at other time lags nearby. In order to distinguish the time lag 

of the defect from other time lags in such a case, it is important to compare it with high values nearby. 

However, the second term in (10) does not have to be the maximum value (P100Rxx(τ2)) to make a 

successful comparison. A practical approach is to select the percentile Pk so that 50 << k < 100. In 

this study, k = 95. 

 

 



2.1.6. Demonstration of signal processing stages 

The stages for the calculation of the criterion are illustrated in Fig. 3. A 30-second signal from the 

experiment introduced in Section 3 is used in this demonstration. The raw acceleration signal is 

shown in plot A. In plot B, the signal is band-pass filtered. Distinct peaks are seen in the filtered 

signal, but their relation to the defect is unclear. 

The tapered parts formed in the filtering procedure contained 10% of the total signal length, as shown 

in plot B. To remove the tapered parts, 1.5 seconds from both ends of the signal were removed for 

the next processing stage, which is illustrated in plot C. The filtered signal was segmented into time 

windows, which have a length related to the bearing defect frequency. In this case, it is 2% of the 

defect period. Each point in plot C corresponds to 0.056 seconds, which equals nearly 2890 points 

in the original signal presented in plot A. In plot C, the peaks that repeat with the interval of 50 points 

(2.8 seconds) are associated with the defect frequency, which is FTF in this case. The peaks 

extracted by the feature (the ratio of l10 to l1) are clearly magnified in plot C when compared with the 

filtered signal in plot B. 

Finally, plot D gives an illustration for the terms in the proposed criterion (10). The first term 

(max(Rxx(τ1)) is the maximum autocorrelation value for τ1. In this case, it is the value for τdefect – 1. 

The second term (P95Rxx(τ2)) is the 95th percentile of autocorrelation values in the range τ2. 

In this particular signal, the second multiple of the time lag of defect (5.6 seconds) has also relatively 

high autocorrelation. The multiples of defect time lags can be used for diagnosis purposes in some 

cases. Considering an automated routine, the use of multiples as defect indications however 

increases the risk of misdiagnosing, because such components are not undoubtedly related only 

with the defect. 

 

 

Fig. 3. Demonstration of the stages of the proposed method. 



2.1.7. Significance of sampling rate and defect frequency for resolution in segmentation 

The sampling rate and the monitored defect frequency together affect the accuracy of the defect 

period approximation as a result of the segmentation approach presented in Section 2.1.2. The 

rounding procedure applied in the generation of segments weakens the resolution of the proposed 

criterion in the practical solution. If the number of data points in a single segment is relatively low, a 

high error is induced. In other words, the actual defect period (aka inverse of defect frequency) and 

the approximated defect period differ considerably. The approximated defect period is the sum of 

fixed-sized segments, i.e. the sum of fifty time windows, when the 2% window size is used. 

In order to study the appropriate ratio between the sampling rate and the defect frequency, the 

following equation was used 

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑎𝑡𝑎 𝑝𝑜𝑖𝑛𝑡𝑠 = 𝑐𝑒𝑖𝑙(|𝑓𝑠 ∙ 𝑣𝑎𝑟1 − 𝑣𝑎𝑟2 ∙ 𝑣𝑎𝑟3| − 𝑣𝑎𝑟4 ∙ 𝑓𝑠 ∙ 𝑣𝑎𝑟1),   (11) 

where fs is the sampling rate (Hz); var1 is the inverse of the defect frequency (s); var2 is the number 

of segments in a defect period (50 or 100 segments); var3 is the length of a time window in data 

points after rounding (positive integer); and var4 is the percentual window size in decimals (0.02 or 

0.01). The resulting number shows the distance of the approximated defect period from the defined 

window (2% or 1%) around the actual defect frequency. If the number is positive, the approximated 

defect period is outside the window, which indicates a poor resolution. A negative number indicates 

that the resolution is adequate. 

Plot A in Fig. 4 shows the ratio of sampling rate to defect frequency. The sampling rates 20 and 51.2 

kHz were tested and the defect frequencies up to 50 Hz are shown with 0.1 Hz step size. Plots B 

and C show the results of (11) with 1% and 2% window sizes, respectively. The points where (11) 

gave higher value than zero for the first time, while the defect frequency increased, are marked in 

plot A. The ratios associated with these points give indications about the appropriate ratio between 

the sampling rate and the defect frequency. 

Plot A indicates that a ratio larger than 1225 should be used with 51.2 kHz sampling rate in the case 

of 2% window size. The use of the 1% window requires a higher ratio (>4452). The appropriate ratios 

are relatively similar in the case of 20 kHz sampling rate, but significantly lower defect frequencies 

should be diagnosed. It should be mentioned that lower ratios are adequate in some cases, because 

such ratios may also result in negative values in (11), as shown in plots B and C. However, the 

resolution is not always adequate then. A poor resolution can be compensated in some cases by 

using an appropriate search range around the time lag associated with the defect period, as shown 

in Section 2.1.5. 

 



 

Fig. 4. Effects of ratio between sampling rate and defect frequency on resolution in segmentation. 

Plot A shows the ratio. Plots B and C show the corresponding effects on the resolution based on Eq. 

(11). 

 

2.2. Peak ratio and peak-to-median indicators 

The following procedure is used for the calculation of envelope spectra in this study. The time domain 

signal is windowed with a Tukey window using 10% taper. The signal is filtered by the approach 

explained in Section 2.1.1. The filtered signal is rectified by calculating the absolute values and then 

the average is subtracted from the rectified signal. The average is subtracted to ensure that the non-

zero average does not cause high amplitudes at the low frequencies in the envelope spectrum. Five 

percent of data points are removed from each end of the filtered signal to remove the tapered parts. 

Finally, the filtered signal is windowed with a Tukey window using a 10% taper and FFT is used to 

generate the envelope spectrum. 

The peak ratio is a dimensionless ratio applied on the envelope spectrum amplitudes [34]. The peak 

ratio is defined as the sum of the peak values of the defect frequency and its harmonics over the 

average value of the spectrum as follows 

𝑃𝑒𝑎𝑘 𝑟𝑎𝑡𝑖𝑜 =
𝑁∙∑ 𝑃𝑗

𝑛
𝑗=1

∑ 𝐴𝑘
𝑁
𝑘=1

,         (12) 

where Pj is the amplitude value of the peak located at the defect frequency or its multiple, Ak is the 

amplitude of frequency k, and N is the number of points used from the spectrum. The number of 

peaks in the selected spectrum area is n. 



Due to the practical considerations, slight modifications were made on the peak ratio presented in 

[34]. Firstly, the bearing frequencies can only be estimated in a search range limited by some 

maximum error ε due to the measurement precision, skidding and speed variations. The peaks are 

selected from the search ranges Ij = [j·f(1-ε), j·f(1+ε)], where f is the bearing defect frequency. In this 

study, the peak value is the maximum value inside such a search range limited by ε = 0.02, which 

equals 2% of the considered frequency. Parameter j is restricted to be one or two due to the fact that 

a large number of harmonics increases the risk of misdiagnosing in an automated approach. The 

search range used for peak detection increases as the number of harmonics increases, which 

consequently increases the risk that peaks unrelated to the defect become representative features 

of the defect. The number of points (N) in the spectrum is restricted to be (n+1)·nf, where nf is the 

running number of the frequency component corresponding to bearing defect frequency f. 

The peak-to-median ratio is calculated by dividing the maximum peak Pj by the median value of the 

amplitudes Ak at any frequency except the points inside the search ranges for peaks (Ij). A slightly 

different form of the indicator was presented in [24]. 

In the first tested approach, the optimal frequency band for band-pass filtering is selected based on 

the maximum value given by the peak ratio or peak-to-median indicator. The frequency bands 

introduced in Fig. 2 are applied in this study. In the second tested approach, the frequency band is 

selected based on the fast kurtogram. In diagnosis, the condition under analysis is compared with 

the baseline condition using the same band for filtering. 

 

3. Experimental setup 

Section 3.1 introduces the test rig, the rolling element bearing and the defects, which were studied 

in the laboratory tests. Section 3.2 describes the instrumentation and the measurements including a 

statistical description of the measured acceleration signals. 

 

3.1. Test rig 

The measurements were done in the RWTH Aachen test laboratory. The basic layout of the test rig 

is sketched in Fig. 5 [12]. The studied bearing is located in between the test drive shafts. In addition, 

the test rig includes an asynchronous motor rotating the power train comprised of straight shafts, a 

loading mechanism (retaining device) and a reverse gear with the gear ratio 5:4. The rotational 

speed, the load of the system and the angle of the test drive shafts can be adjusted in the test rig. 

Twelve test rig states were used in the study of three bearing conditions, which included the baseline 

condition, initial defect and worsened defect. The settings for each run are shown in Table 2. Three 

different speed settings were applied in the asynchronous motor. In half of the test runs, the test 

drive shafts were straight and in the other half, they had 5° angle. Considering the bearing 

monitoring, it is assumed that the angle of the load in the radial plane is fixed in Eqs. (1)–(4) in the 

test runs with different shaft angles. Half of the test runs had a small load applied in the system by 

using the loading mechanism, which is shown in photo A in Fig. 6. Unfortunately, the system had no 

measurement showing the absolute value of the load. However, it was made sure that the system 

had a fixed load in the loaded states by using a torque wrench. The maximum torque that can be 

applied in the test rig is 10 kNm. The load applied in the tests had a small effect on the shaft speed, 

which was slightly lower than in the unloaded tests. This is demonstrated in Table 3, which shows 

the mean and variation (two standard deviations) of the drive shaft speed. 

 



 

Fig. 5. Drawing of drive shaft test rig (modified from [12]). 

 

Table 2 Test rig settings in the test runs. 

Test rig state Motor speed setting (rpm) Shaft angle (degrees) Load 

1 30 0 no 
2 60 0 no 
3 90 0 no 
4 30 5 no 
5 60 5 no 
6 90 5 no 
7 30 0 yes 
8 60 0 yes 
9 90 0 yes 
10 30 5 yes 
11 60 5 yes 
12 90 5 yes 

 

Table 3 Measured rotational speed (µ ± 2σ) of the drive shaft next to the bearing based on 60-

second samples (in rpm).  

Test rig state Baseline Initial defect Worsened defect 

1 24.21 ± 0.54 23.83 ± 0.46 24.23 ± 0.44 
2 48.42 ± 0.64 48.01 ± 0.38 48.45 ± 0.47 
3 72.62 ± 0.93 72.20 ± 0.47 72.63 ± 0.66 
4 23.97 ± 0.65 23.93 ± 0.65 23.70 ± 0.74 
5 48.15 ± 0.63 48.09 ± 0.40 47.85 ± 0.60 
6 72.23 ± 0.89 72.26 ± 0.43 71.98 ± 0.73 
7 23.57 ± 0.59 23.61 ± 0.53 22.94 ± 0.58 
8 47.70 ± 0.61 47.79 ± 0.36 47.16 ± 0.53 
9 71.86 ± 0.90 71.92 ± 0.45 71.30 ± 0.68 
10 23.79 ± 0.95 23.22 ± 1.09 23.36 ± 0.91 
11 47.92 ± 0.70 47.35 ± 0.51 47.51 ± 0.67 
12 72.05 ± 0.92 71.45 ± 0.50 71.60 ± 0.78 

 



 

Fig. 6. Photographs of the drive shaft test rig. Photo A shows the loading mechanism of the test rig. 

The accelerometer used for vibration measurements is mounted on top of bearing housing and the 

eddy current sensor is located next to the bolts in the drive shaft in photo B. The test rig is depicted 

from the angle of the motor in photo C. 

 

The bearing type in the test rig was FAG 23028-E1A-K-M + H3028. The defect frequencies related 

to 60 rpm are 11.1173, 13.8827, 4.4178, and 0.4447 (Hz) for BPFO, BPFI, BSF, and FTF, 

respectively. To generate the initial defect, one rolling element from both sides in the bearing was 

slightly damaged by drilling with a multipurpose tool. In the case of worsened defect, the other rolling 

element was damaged even more. Fig. 7 shows the defects from one side of the bearing. 

 

3.2. Instrumentation and measurements 

The accelerometer used for the vibration measurements was IMI Sensors 622A01, which has a 

frequency response from 0.2 to 10000 Hz with ±3 dB deviation. The measurements were done in 

the vertical direction and the sensor was stud-mounted on top of the bearing housing, as shown in 

photo B in Fig. 6. The measurement hardware included NI9234 data acquisition card. The sampling 

rate was 51.2 kHz and the only filter used at the hardware level was the built-in antialiasing filter of 

the data acquisition card. 



The shaft speed was measured by an eddy current sensor by recording the pulses caused by the 

bolts in the rotating shaft. The arrangement is shown in photo B in Fig. 6. NI cRIO-9215 data 

acquisition card was used and the sampling rate was 10 kHz in the shaft speed measurements. 

LabVIEW software was used for the recording of the signals. 

Fig. 8 shows the l2 (root-mean-square) and excess kurtosis values of the 60-second acceleration 

signals to give an illustration of the signals from each test rig state. The values of l2 describe the 

signal amplitude level, whereas the kurtosis values give an insight into the tails of the distribution. 

The l2 values clearly indicate that the amplitude level increased together with the shaft speed, but 

the increase was smaller when the test drive shafts were bent. According to the excess kurtosis, the 

baseline condition at the lowest shaft speed had the most leptokurtic distribution. Otherwise, the 

differences between the signals in different bearing conditions were generally small based on these 

statistical features. 

 

 

Fig. 7. Defects in the rolling element of the bearing. The initial defect in the roller element is shown 

on the left and the worsened defect in the same roller element is shown on the right. 

 



 

Fig. 8. Root-mean-square (on the left) and excess kurtosis (on the right) computed from 60-second 

samples of the acceleration signals. 

 

4. Results and discussion 

The performance of the methods was evaluated based on the bearing fault simulations and 

laboratory test data. Section 4.1 presents the results from the simulations. The proposed method is 

first compared with the reference approaches based on the bearing fault simulations. Thereafter, a 

sensitivity study is made for the proposed method and the computation time of the method is studied. 

Results from the laboratory tests are presented in Section 4.2. Finally, Section 4.3 discusses the 

results presented in the previous sections and outlines the applicability of the tested methods in 

automated bearing diagnosis. 

The full bandwidth and the 107 frequency bands shown in Fig. 2 were used in the frequency band 

selection stage of the criterion based on the autocorrelation and the peak ratio and peak-to-median 

based selections. Tukey window with 10% taper was used before the application of FFT on these 

methods. In the frequency band selection based on the fast kurtogram, six decomposition levels 

were used which stands for 220 frequency bands altogether [33]. 

In the criterion based on autocorrelation, both window sizes i.e. 1% and 2% of the defect period, 

were tested. Unless stated otherwise, the window size that gave the highest criterion value was used 

in the diagnosis. 

 

 

 



4.1. Simulation study 

4.1.1. Comparison of the bearing diagnosis methods 

An inner race defect was studied on a simulated system in Matlab®. A gear was included in the 

system to produce harmonic effects that could be included also in a practical application and to see 

if these simplified gear signals influence the performance of the tested diagnosis approaches. The 

BPFI was calculated using the formula (2). The number of rolling elements in the bearing was n = 8 

with the diameter d = 0.02 (m). The pitch diameter was D = 0.12 (m) and the contact angle was ϕ = 

15 (o). Each defect-related shock was modelled as a 3 kHz sinusoid that had amplitude 1. The 

sinusoid was windowed by a Kaiser window with the length L = 100 points and beta = 40 in the 

Kaiser function in Matlab®. The sampling rate in the simulations was 20 kHz, and therefore, the 

length of the simulated shock was 5 milliseconds. The shock was made periodic by convolving it with 

a comb function that had value 0.33 at the periods corresponding to the BPFI and zero elsewhere. 

The defect was studied with input shaft speeds 20, 40, 60, and 300 rpm, which correspond to fr = 

{⅓, ⅔, 1, 5} Hz. The corresponding defect frequencies were 1.548 Hz, 3.096 Hz, 4.644 Hz, and 

23.220 Hz, respectively. In addition to the shocks, the signal included sinusoids corresponding to 

the gear mesh frequency, input shaft speed and output shaft speed with the amplitudes 1, 0.4, and 

0.2, respectively. The gear mesh frequency was fmesh = fr·Np and the output shaft frequency was fgear 

= fr·Np/Ng. The number of teeth on the pinion (input) was Np = 13 and the number of teeth on the 

gear was Ng = 35. Normally distributed noise with variance σ2 = 0.04 was added on each signal. 

Similar signals without the shocks caused by the defect were created as the baseline signals for 

comparison. All the signals had the length of 20 seconds. 

Fig. 9 presents the amplitude spectra of each signal with the defect. The defect is visible around 3 

kHz frequency on the 60 and 300 rpm cases and masked behind the noise in the lower speed cases. 

Table 4 shows the frequency bands that were selected by each of the tested methods in the BPFI 

diagnosis. The deterministic gear frequencies apparently had no effect on the diagnosis results, 

because they were filtered out by each method during the frequency band selection stage. However, 

more complicated gear effects are likely to happen in real applications. 

The criterion based on autocorrelation identified a frequency band around 3 kHz in each case. 

Interestingly, this frequency band matches with the frequency of the sinusoids modelling the shocks. 

The peak ratio and peak-to-median based approach resulted in a relatively high frequency band in 

the 20 rpm shaft speed. The selection of the band was presumably influenced by the small but 

indiscernible variations of the random noise in the signal (see Fig. 9). The frequency bands 

presented in Table 4 are based on the peak ratio indicator with two harmonics, because it had the 

highest value in each case. Furthermore, the largest differences between the defect and baseline 

conditions were obtained with this indicator in each rotational speed. 

The fast kurtogram resulted in a relatively high frequency band with the shaft speeds 20 and 40 rpm, 

which indicates that these bands had the highest kurtosis in lowest shaft speeds. The higher shaft 

speeds resulted in the selection of frequency bands close to 3 kHz. The maximum excess kurtosis 

values of the complex envelopes [35] based on the fast kurtogram were 0.188, 0.183, 0.261, and 

0.770 from the slowest to the highest shaft speed, respectively. 

In the criterion based on autocorrelation, the selected statistical features were l10, l4, P95(|x(2)|), and 

l4 on the shaft speeds from the lowest to the highest, respectively. This result indicates that a single 

feature, which would be optimal for all conditions, did not exist. The selected segment size was 2% 

of the defect period in each case. 

The values of the indicators used in the diagnosis are given in Fig. 10. The upper part of Fig. 10 

shows the peak ratio values, when the optimal frequency bands were selected based on the peak 



ratio and the fast kurtogram. The lower part shows the values of autocorrelation at the defect time 

lags and the values obtained by the criterion based on autocorrelation. Fig. 10 demonstrates that 

the peak ratio shows the defect clearly only on the two highest shaft speeds when the value from 

the defect is compared with the value from the baseline condition. The slightly higher values in the 

defect condition in 20 and 40 rpm speeds do not give a clear basis for unambiguous defect detection. 

In the case of the autocorrelation-based criterion, the difference between the defect and baseline 

conditions is more obvious. However, the values of the criterion are low. The autocorrelation of the 

defect time lag and the proposed criterion reveal the defect equally clearly in these simulated cases. 

The autocorrelation values of the selected time domain features (l10, l4, P95(|x(2)|), and l4) for each 

rotational speed are shown in Fig. 11 in order to illustrate how successfully the defect time lag is 

separated from other time lags. A distinguishable peak can be seen at the time lag associated with 

the defect period (e.g. the inverse of the defect frequency) in each case in the defect condition. Figs. 

12 and 13 show the envelope spectra, which had the filtering bands selected based on the peak 

ratio and the fast kurtogram, respectively. These plots confirm that the defect became diagnosable 

only in 60 and 300 rpm shaft speeds. Distinct peaks emerged at the defect frequency and its 

multiples in those cases. 

 

Table 4 Selected frequency bands (Hz) for filtering based on the 20-second signals.  

Shaft speed (rpm) 20 40 60 300 

Crit. based on autocorrelation  2000–4000 2000–4000 2000–4000 2000–4000 

Peak ratio (two harmonics) 7659–7992 2997–3330 2000–4000 2000–4000 

Fast kurtogram 6667–10000 6667–10000 2500–3125 2917–3333 

 

 

Fig. 9. Amplitude spectra of the simulated 20-second signals with an inner race defect. The effect of 

the defect is visible around the 3 kHz region in the shaft speeds 60 and 300 rpm. 



 

Fig. 10. Values of indicators in defect and baseline conditions. 

 

 

Fig. 11. Autocorrelation of the selected time domain features from the signals simulating different 

shaft speeds. 

 



 

Fig. 12. Envelope spectra from the signals simulating different shaft speeds using the frequency 

bands selected based on the peak ratio indicator. 

 

 

Fig. 13. Envelope spectra from the signals simulating different shaft speeds using the frequency 

bands selected based on the fast kurtogram. 



In order to demonstrate the influence of signal length on the autocorrelation and envelope spectrum, 

an additional test was done on 300-second signals simulating the 20 rpm case. In this case, both 

the proposed criterion and the peak ratio with two harmonics resulted in the selection of the 2-4 kHz 

frequency band. The proposed criterion value was 0.10 and the corresponding baseline value was -

0.02. The value of peak ratio with two harmonics was 9.84 and the corresponding baseline value 

was 4.12. The results indicate that the performance of the approach based on envelope spectrum 

improved when the signal length was significantly increased (15×) from the 20-second length. The 

results of the criterion based on autocorrelation did not have such a substantial change. The 

autocorrelation of the selected feature with 2% segment size and the envelope spectrum are 

illustrated in Fig. 14. 

 

 

Fig. 14. Autocorrelation of feature l10 (above) and the envelope spectrum (below) using 300-

second signals simulating the 20 rpm shaft speed case. 

 

4.1.2. Sensitivity study of the criterion based on autocorrelation 

Simulations were done to study the sensitivity of the proposed criterion on the number of shocks and 

their magnitudes. Moreover, both window sizes (1% and 2%) were used separately to study the 

effect of the window size. The simulation settings were otherwise the same as in the simulations in 

Section 4.1.1 with the 20-second signals, but in this case, the comb function amplitude varied from 

0.1 to 1 with the step size 0.1 to simulate varying shock magnitudes. Two shaft speeds, 20 and 60 

rpm, were tested to illustrate the effect of the number of shocks on the criterion value. The lower 



speed case included 30 full defect periods while the defect frequency was 1.548 Hz. Similarly, the 

higher speed case included 92 full defect periods. 

Fig. 15 shows the criterion values with the studied settings. The results reveal that the criterion value 

increased together with the defect amplitude. The 2% window size resulted in a higher criterion value 

than the smaller window size each time. 

The number of shocks in the monitored period had only a small influence on the results, which is 

shown by the small deviation between the values calculated from the cases with different shaft 

speeds with a comparable window size. The higher shaft speed, i.e. more shocks, resulted in a 

slightly higher value of the criterion in most cases. However, the lower shaft speed resulted in higher 

values in some cases with the 2% window size, including the cases with defect amplitudes 0.1, 0.2, 

0.5, and 0.8. Based on Fig. 15, it can be concluded that the defect amplitude had a larger influence 

on the criterion value than the signal length. 

 

 

Fig. 15. The criterion values from simulations with two shaft speeds using 1% and 2% window sizes. 

The defect amplitude on the horizontal axis is equal to the amplitude of the comb function used in 

the inner race defect simulation. 

 

4.1.3. Computation time of the criterion based on autocorrelation 

Simulations were done to evaluate the computation time used by the proposed criterion. The 

computation time is directly related to the length of a signal, and therefore, each simulation was done 

on a signal that had the length of ten defect periods. Four defect frequencies {0.1, 0.2, 1, 5} Hz from 

the low-speed circumstances were studied. The corresponding signal lengths were therefore {100, 



50, 10, 2} seconds, respectively. Two sampling rates, 20 and 51.2 kHz, were applied to illustrate the 

influence of the number of data points on the computation time. 

Two servers administered by the University of Oulu, which are named here as servers A and B, were 

applied in the simulations to increase the objectivity of the results. Server A includes four 2.13 GHz 

dual-thread 8-core E7-4830 Xeon processors with 256 GB memory. Server B includes two 2.8 GHz 

10-core E5-2680v2 Xeon processors with 512 GB memory. The computations were done with 

Matlab® R2019a by using a single processor and by using 12 workers for parallel computing. 

The computation times given in Fig. 16 are the mean values of ten simulations. The results reveal 

that computation was faster with the larger window size (2%), which can be explained by the lower 

number of segments in a signal. In addition, the computation was faster with the lower sampling rate 

(20 kHz) due to the smaller number of data points in a time window compared with the case with the 

higher sampling rate (51.2 kHz). The results show that the computation becomes faster as the defect 

frequency increases. This can be explained by the fact that the number of data points in a time 

window decreases when the frequency increases. In addition, the results clearly show that the type 

of computer and the parallelism of computation both have a major influence on the computation time 

in general. 

 

 

Fig. 16. Average computation time spent in the computation of one criterion value. The upper plots 

show the computation time with a single processor, whereas the lower plots show the computation 

time when 12 workers were applied in parallel computing. 

 

4.2. Validation on experimental data 

All the bearing defect frequencies (1) – (4) were analysed, because in practice the nature of the 

developing defect would be unknown in automated diagnosis. The defect frequencies were 

calculated based on the mean drive shaft speeds shown in Table 3 and the reference frequencies 

given in Section 3.1 for the 60 rpm speed. Section 4.2.1 reports the analysis results for each defect 



frequency by focusing on the difference of diagnostic values between the damaged and undamaged 

bearing. The emphasis is on the detection of the correct type of bearing defect. Only the rolling 

elements were damaged and therefore the defect should be presumably shown on the BSF or FTF 

frequencies [48]. 

Section 4.2.2 provides detailed results from the diagnosis of one bearing defect frequency (FTF) by 

using the criterion based on autocorrelation. The reference results for the FTF diagnosis obtained 

by the automated envelope spectrum diagnosis approaches are given in Section 4.2.3. Finally, 

Section 4.2.4 compares the frequency band selections done by the applied methods in the FTF 

diagnosis. These three sections focus on the parameter selection behind the automated diagnosis 

of one defect frequency. 

The bearing condition was studied based on 30-second and 60-second signals separately in order 

to evaluate the effect of signal length on the indicator values in a practical application. The upper 

limit for the applicable frequency range in signal filtering was set 9 kHz, which is 1 kHz below the 

upper limit of the ±3 dB frequency response range specified by the manufacturer of the 

accelerometer (see Section 3.2). To be on the safe side, only the frequencies below this limit were 

accepted in the frequency band selection. In addition, the full bandwidth signals were tested. 

The frequency bands for filtering and the statistical features were selected based on the damaged 

conditions. The selections were done for each test rig state, both signal lengths and both damaged 

conditions separately. The same settings were then used in the baseline condition to obtain the 

reference values for comparison. The same approach was used for all the tested methods. 

 

4.2.1. Diagnosis of all defect frequencies 

Fig. 17 presents the values of the autocorrelation-based criterion in the initial defect condition (left), 

baseline condition (middle), and the difference of the values (right). The highest value was obtained 

on the fundamental train frequency (FTF) in each test rig state in the initial defect condition. The 

corresponding values were lower in the baseline condition. However, the baseline values were 

relatively high in test rig states 3 and 9 as well. The values of other defect frequencies were lower 

than 0.1 in the damaged condition except for test rig state 3 where BPFO was above this value. The 

differences between the criterion values from the 30-second and 60-second signals are mainly a 

result of different parameter configurations, which are omitted from this section.  Considering the 

difference between the defect and baseline conditions, FTF had a larger difference than the other 

defect frequencies in most test rig states. However, the difference values should not be examined 

alone because the baseline signals often had negative values as shown in Fig. 17. 

Fig. 18 shows the values of the autocorrelation-based criterion in the worsened defect and baseline 

conditions and their differences. Like in the initial defect condition, the highest value was obtained 

by FTF in each test rig state in the case of worsened defect. However, the deviation from the values 

of BPFI, BPFO, and BSF was small in the test rig states with 5° angle in the drive shafts (test rig 

states 4–6 and 10–12). The baseline value was generally near zero or negative, but in two cases it 

was above 0.1. Apart from the test rig state 5 with the 60-second signal, an increased value for FTF 

was obtained in each case in the damaged condition when compared with the baseline condition. 

Based on Figs. 17 and 18, the defect frequencies BPFI, BPFO, and BSF gave weak signs or no 

signs of the defect. BPFO had an increased value (>0.1) in the test rig state 3 in the damaged 

conditions, but the value was lower than the value for FTF. In the case of worsened defect, BSF was 

slightly increased (≈0.13) when compared with the baseline values (<0) in test rig state 8. However, 

BSF did not generally have substantially increased values even though the rolling element was 

damaged. 



The signal length had some influence on the results. Figs. 17 and 18 clearly indicate that the largest 

effects were seen on FTF. However, the signal length, which would generally give the clearest 

damage indication cannot be concluded based on these results. 

 

 

Fig. 17. Values of criterion based on autocorrelation in twelve test rig states. The initial defect is 

shown on the left, the corresponding baseline condition is shown in the middle and their difference 

is shown on the right. 



 

Fig. 18. Values of criterion based on autocorrelation in twelve test rig states. The worsened defect 

is shown on the left, the corresponding baseline condition is shown in the middle and their difference 

is shown on the right. 

 

Fig. 19 shows the differences between the defect and baseline conditions based on the peak-to-

median with two harmonics. The frequency band was selected based on the maximum value of the 

same indicator in the defect condition. The positive values in Fig. 19 indicate that the indicator had 

a higher value in the defect condition than in the baseline condition. The negative values indicate an 

opposite result. 

The highest value was obtained by different defect frequencies depending on the test rig state in 

consideration. In many test rig states, the highest difference was obtained based on defect 

frequencies, such as BPFO and BPFI, which are unrelated to the actual damage. However, the 

defect-related frequencies BSF and FTF had the highest values in certain test rig states as well. In 

conclusion, the relatively high values on defect frequencies that are unrelated to the actual damage 

increase the risk of misdiagnosing. A similar risk of misdiagnosing is present in the peak-to-median 

with one harmonic and peak ratio indicators. Those results are omitted in this section due to their 

low additional evidential value. 

Like in Fig. 19, the differences between the bearing conditions based on the peak-to-median 

indicator are shown in Fig. 20, but the frequency band for band-pass filtering was selected by using 

the fast kurtogram. The differences between the defect and baseline conditions are generally lower 

in Fig. 20 when compared with Fig. 19. This indicates that the bearing defect was not shown clearly 

in most of the test rig states in Fig. 20. Moreover, BPFI or BPFO had the highest difference in many 

cases, which increases the risk of misdiagnosing. The results indicate that sound diagnosis 



conclusions cannot be done based on this data set by using the fast kurtogram for the selection of 

the frequency band. However, in some cases, such as the test rig states 8 and 9, the worsened 

defect was correctly indicated by the relatively high values on FTF. 

 

 

Fig. 19. Differences between the defect and baseline conditions based on peak-to-median indicator 

with two harmonics. The frequency bands for band-pass filtering were selected based on the peak-

to-median indicator. 



 

Fig. 20. Differences between the defect and baseline conditions based on peak-to-median indicator 

with two harmonics. The frequency bands for band-pass filtering were selected based on the fast 

kurtogram. 

 

Finally, the computation time used by the proposed criterion is shown in Fig. 21. The total 

computation time for individual signals is shown on the left and the computation time for each defect 

frequency is shown on the right. The computations were done by using parallel computing on server 

B, introduced in Section 4.1.3. The presented results are the mean of 10 tests. Both segment sizes 

(1% and 2%) were included in the computations. 

The results are shown from test rig states 1–3 with the worsened defect using 30-second signals. 

The other test rig states (4–12) with nearly the same defect frequencies had very similar computation 

times to the results presented. The computation times on the 60-second signals were approximately 

twofold. The results show that the computation time increased together with the shaft speed and the 

defect frequency. This is explained by the increasing number of segments in the fixed length signals. 



 

Fig. 21. Total computation time for individual signals (left) and computation time for each defect 

frequency (right) based on the proposed criterion using 30-second signals from the worsened defect 

case on test rig states 1–3. 

 

4.2.2. Diagnosis of the fundamental train frequency based on the proposed criterion 

Fig. 22 illustrates the values of the proposed criterion based on autocorrelation in each test rig state 

as bars. The values of initial and worsened defects are shown in the upper part and the 

corresponding values from the baseline condition are shown in the middle part in Fig. 22. The 

differences between the defect and baseline conditions are shown on the lowest part. At least a 

small change can be observed in all the test rig states by comparing the damaged and baseline 

conditions. In general, the defects had higher values than the corresponding baseline condition. 

Test rig states 1–3 and 7–9, where the drive shafts were straight, show increasing damage the most 

explicitly. The worsened defect resulted in higher values than the initial defect in these test rig states. 

Otherwise, the signs of increasing damage are mainly indistinct. The relatively low values on the 

defect conditions in the test rig states with five degrees angle in the drive shafts give unclear 

evidence of the damage. A potential reason for the low values is the skidding of the rolling elements 

inside the bearing in these test rig states. 

In some test rig states, such as the states 3 and 9, the baseline values were relatively high when the 

parameter settings of the initial defect were used. The criterion values of the initial defect were still 

slightly higher, but the indication of damage is unclear in those cases. In the test rig state 5 with 60-

second signals, the criterion value was actually higher (=0.22) in the baseline condition than in the 

worsened defect condition (=0.13). In the case of the 30-second signal, the result was the opposite; 



worsened defect had value 0.18 and the baseline had the value 0.05. This result clearly indicates 

that it is necessary to compare the defect and the baseline conditions with each other in order to 

make sound diagnostic conclusions. 

In the test rig states 6 and 7, the baseline condition had relatively high negative values. A high 

negative value indicates that the time lags around the defect time lag had higher autocorrelation 

values than the defect time lag. This indicates that the parameters identified based on the monitored 

condition may distort the signal from the baseline condition in some cases. 

Table 5 presents the statistical features that were selected by the proposed criterion in each test rig 

state. Fourteen different features from the set of twenty features described in Section 2.1.3 were 

selected. This result indicates that the characteristics of the damage in the vibration signals were 

varying in different conditions and a large set of candidate features became therefore justifiable. In 

most cases, the segment length that was 2% of the defect period gave clearer defect indications 

than the shorter alternative. The longer time window apparently had a better tolerance for the 

variation of the period between the shocks inflicted by the damaged bearing. Interestingly, a different 

feature was selected in many test rig states from the 30-second and 60-second signals. The initial 

and worsened defect resulted in the selection of different features in the most of the test rig states 

as well. 

The selected features were mostly the ones, which are generally responsive to shocks. These 

include kurtosis, skewness, 95th percentile, generalised norms with relatively high order, and the 

ratios of generalised norms. In addition, l2 (root-mean-square) became selected in many test rig 

states (3, 7, 8, 9, 12) although it is generally not the most sensitive feature to the shocks. It is probable 

that the criterion based on autocorrelation yields relatively similar values on different statistical 

features in certain situations. Only the feature, which resulted in the highest value of the criterion, 

had significance in this study. The selected statistical feature was considered only as a part of the 

optimal settings to be used in the automated approach. 

 



 

Fig. 22. The values of the criterion based on autocorrelation in FTF diagnosis. Baseline values were 

computed using the settings defined based on the defect conditions. 

 

Table 5 The statistical features and segment lengths (percentage from the defect period) for each 

test rig state based on the proposed autocorrelation-based criterion. 

 Initial defect Worsened defect 

 30-second signal 60-second signal 30-second signal 60-second signal 
     
Test rig 
state 

feature length feature length feature length feature length 

         
1 skewness 1 skewness 2 kurtosis 2 kurtosis 2 
2 l4 2 l4 2 kurtosis 2 kurtosis 2 
3 l2 2 l2 2 l4 2 l2 2 
4 skewness 2 skewness 1 l20 / l10 2 l10 / l2 2 
5 peak 2 P95(|x(2)|) 2 l10 / l1 2 kurtosis 2 
6 kurtosis 2 kurtosis 2 l20 2 P95(|x(2)|) 1 
7 skewness 2 l2 1 kurtosis 2 l20 / l0.5 2 
8 l2 2 l2 2 kurtosis 2 kurtosis 2 
9 l2 2 l4 2 kurtosis 2 l10 2 
10 l4 / l0.5 2 l4 / l0.5 2 skewness 1 crest factor 2 
11 kurtosis 2 l10 2 l4 2 l10 2 
12 l4 2 l2 2 l4 1 l4 1 

 



4.2.3. Diagnosis of the fundamental train frequency based on the peak ratio and peak-to-median 

indicators 

The maximum differences between the defect and baseline conditions based on the peak ratio and 

peak-to-median indicators are shown in Fig. 23. In this case, the same indicators were used as the 

method to select the frequency band. Fig. 23 reveals that higher values were obtained in the defect 

conditions than in the baseline condition in each test rig state. The difference was generally the 

smallest in the lowest shaft speed; in the test rig states 1, 4, 7, and 10. In the test rig states 5, 6, and 

10, the difference was larger with the initial defect, but the worsened defect resulted in a larger 

difference from the baseline condition more commonly. 

Fig. 24 shows the corresponding differences by using the fast kurtogram as the approach to 

frequency band selection. In many cases, the difference values between the defect and baseline 

conditions were low (<2) or even negative which suggests that the bearing condition had not 

degraded. The clearest defect indications with both signal lengths were given in the test rig states 3, 

8, and 9 in the case of the worsened defect. The depicted differences in Fig. 24 are lower than in 

Fig. 23, which indicates that the frequency bands selected by the fast kurtogram were generally not 

as appropriate as the ones selected based on the peak ratio and peak-to-median indicators. 

The peak ratio and peak-to-median indicators, which yielded the results shown in Fig. 23 are 

presented in Table 6 together with their values in the defect conditions in each test rig state. Table 

6 indicates that the values of the indicators increased together with the shaft speed in the defect 

conditions with some exceptions. Moreover, the results indicate that different indicators with a 

varying number of harmonics became selected in different conditions. The corresponding indicators 

and their values that were computed by using the frequency bands selected by the fast kurtogram 

are given in Table 7. The comparison between the results in Tables 6 and 7 reveals that the indicator 

values were mostly higher in Table 6 in the corresponding test rig states and with the same signal 

length. 

 

 

Fig. 23. Maximum differences between the defect and baseline conditions based on the peak ratio 

and peak-to-median indicators. 



 

 

Fig. 24. Maximum differences between defect and baseline conditions based on the peak ratio and 

peak-to-median indicators. The frequency bands for band-pass filtering were selected based on the 

fast kurtogram. 

 

Table 6 Maximum peak ratio and peak-to-median values in defect conditions. The term ‘PTM’ stands 

for peak-to-median, ‘PR’ stands for peak ratio, and the following number stands for the number of 

FTF harmonics. 

 Initial defect Worsened defect 

 30-second signal 60-second signal 30-second signal 60-second signal 
     
Test rig 
state 

indicator value indicator value indicator value indicator value 

1 PTM 2 6.50 PTM 1 6.86 PTM 1 4.90 PR 2 6.62 
2 PR 2 6.01 PTM 1 10.21 PTM 1 8.31 PR 2 10.98 
3 PTM 1 18.78 PTM 1 22.70 PTM 1 11.01 PR 2 20.70 
4 PTM 2 3.18 PTM 2 2.30 PTM 1 4.34 PR 2 4.23 
5 PTM 2 10.22 PTM 1 6.44 PTM 1 5.29 PR 2 11.00 
6 PTM 2 21.16 PTM 2 28.27 PR 2 7.30 PTM 1 11.11 
7 PR 2 3.64 PTM 2 5.78 PTM 2 4.69 PTM 2 4.95 
8 PTM 2 7.15 PTM 1 7.92 PTM 2 7.54 PTM 1 12.85 
9 PTM 1 12.09 PR 1 8.85 PR 2 10.12 PR 2 16.08 
10 PTM 1 4.62 PTM 1 4.97 PTM 1 4.06 PR 2 5.15 
11 PTM 1 8.10 PTM 1 7.37 PTM 2 5.37 PR 2 10.71 
12 PTM 1 6.80 PR 2 7.54 PTM 2 9.70 PTM 1 13.51 

 



Table 7 Maximum peak ratio and peak-to-median values in defect conditions. The frequency bands 

were selected based on the fast kurtogram. 

 Initial defect Worsened Defect 

 30-second signal 60-second signal 30-second signal 60-second signal 
     
Test rig 
state 

indicator value indicator value indicator value indicator value 

1 PTM 1 0.67 PTM 1 1.42 PTM 2 1.43 PTM 2 2.64 
2 PR 1 1.73 PR 1 0.58 PR 2 3.45 PR 2 5.41 
3 PR 1 1.62 PR 1 2.07 PR 2 10.46 PR 2 19.38 
4 PR 2 1.36 PR 2 1.47 PR 2 1.93 PR 2 2.44 
5 PR 2 2.63 PR 1 1.84 PR 2 3.37 PR 2 3.47 
6 PTM 1 2.30 PTM 1 3.79 PR 1 0.39 PR 2 2.31 
7 PR 2 2.49 PTM 2 5.55 PR 2 2.16 PR 1 1.24 
8 PR 2 2.70 PR 2 4.49 PTM 2 7.66 PTM 2 13.56 
9 PR 2 1.62 PR 1 1.77 PR 2 8.91 PTM 1 8.28 
10 PTM 2 1.80 PTM 2 2.39 PTM 1 2.83 PR 2 2.28 
11 PTM 2 2.42 PR 2 6.06 PTM 2 1.42 PR 2 3.84 
12 PR 1 1.49 PR 1 1.11 PR 1 0.81 PR 2 3.85 

 

4.2.4. Analysis of the selected frequency bands 

This section discusses the frequency band selections made by each of the tested methods in the 

FTF diagnosis. The selections for the initial defect are presented on the left and the selections for 

the worsened defect are shown on the right in Fig. 25. The optimal frequency band varied 

significantly based on the method used, the length of a signal, the state of the test rig, and the 

severity of the damage. The fast kurtogram was an exception, because the most commonly selected 

frequency band was 0–2133 Hz. However, this band was a poor alternative considering the defect 

detection, as shown in Fig. 24. A different frequency band was selected in the cases, from which an 

indication about the defect can be concluded. 

The same frequency band was selected based on both signal lengths by the fast kurtogram apart 

from the test rig state 11 with the initial defect and the test rig state 10 with the worsened defect. On 

the contrary, the approach based on the peak ratio and peak-to-median indicators resulted in the 

same band for both signal lengths only in the test rig states 3 and 11 with the initial defect and in the 

test rig states 1, 3, 9, and 10 with the worsened defect. The criterion based on autocorrelation yielded 

the same band for different signal lengths in the test rig states 3, 6, 8, 9, 11, and 12 with the initial 

defect and in the test rig states 2, 3, 8, 11, and 12 with the worsened defect. These results indicate 

that the signal length had the biggest influence on the peak ratio and peak-to-median based 

frequency band selection. 

The width of the selected frequency bands varied considerably. In the case of initial defect, the 

narrowest band (225 Hz) became selected on three test rig states by the criterion based on 

autocorrelation. The peak ratio and peak-to-median based approach had the 225 Hz band in three 

test rig states with the initial defect and in four test rig states with the worsened defect. The narrowest 

band selected based on the fast kurtogram was 400 Hz.  

The full bandwidth was selected on some occasions as well. The criterion based on autocorrelation 

selected the full bandwidth in the test rig states 8 and 9 with the worsened defect. The approach 

based on the peak-to-median and peak ratio indicators selected the full bandwidth in the test rig 

state 9 with the worsened defect. On the other hand, the use of the fast kurtogram interestingly 

resulted in 533 Hz and 400 Hz bands in the corresponding cases. In the test rig state 3 with the 



worsened defect, almost the same frequency bands became selected based on the fast kurtogram 

(400–800 Hz) and the peak ratio and peak-to-median (450–900 Hz) based approach. The selection 

by the proposed criterion resulted in a higher and wider frequency band (1800–3600 Hz). Obviously, 

the characteristics of the worsened defect were present in a wide frequency range in the test rig 

states 3, 8, and 9, which can be concluded based on the results in Figs. 22, 23, and 24. In those 

cases, the defect was diagnosable with multiple parameter settings and all the methods. Fig. 25 

clearly indicates that the varying operating conditions had a notable influence on the automated 

selection of the optimal frequency band. 

 

 

Fig. 25. Selected frequency bands. The lines continuing above 9 kHz indicate full bandwidth. The 

lines portraying the selected frequency bands by different methods are non-overlapping for the 

clarification. 

 

Finally, Appendix A shows the autocorrelation values and the envelope spectra, of which frequency 

bands for band-pass filtering were selected based on the peak ratio or peak-to-median indicators 

and the fast kurtogram. These plots can be used to confirm the diagnostic conclusions in the case 

of 30-second signals. 

 

4.3. Discussion 

Based on the simulations and the laboratory tests, the proposed criterion based on autocorrelation 

was able to indicate defects also on the lowest shaft speeds, whereas the envelope analysis gave 

weak or obscured indications. The FTF diagnosis on test rig states 1 and 7 with the worsened defect 



and the simulation study with the lowest rotational speeds gave the strongest proof of that. However, 

the performance of the envelope analysis improved in the simulation study, when the signal was 

lengthened substantially. On the higher rotational speeds, the envelope analysis gave indications 

about the defects in many cases, if the frequency band was selected based on the peak ratio and 

peak-to-median indicators. Frequency band selection based on the fast kurtogram was mostly 

unsuccessful apart from the simulation study with the highest rotational speeds and the FTF 

diagnosis on test rig states 3, 8, and 9 with the worsened defect. 

The results reveal that the frequency band selection based on the defect frequencies gave superior 

results compared with the selection by the fast kurtogram. The reason behind the weaker 

performance of the latter approach could be the low magnitude of the shocks inflicted by the defects 

in the speed regime under consideration. In addition, shocks unrelated to the defect may distractingly 

increase the values of kurtosis in certain frequency bands. 

In some cases, such as the FTF diagnosis on test rig states 3 and 5 with the initial defect, the 

envelope spectra, which had frequency bands selected based on the peak ratio and peak-to-median 

based approach, gave the clearest indication about the defects. However, a drawback of this method 

was given in Section 4.2.1, which revealed that the method yields high values for the defect 

frequencies unrelated to the actual damage, such as BPFI and BPFO. The latter is a harmonic of 

FTF, which can be concluded based on (1) and (3), but a high value for BPFI indicates a different 

type of defect. Such performance restricts the applicability of this approach on automated fault 

diagnosis. A supplementary study, which is not presented here, indicated that the use of squared 

envelope spectrum does not remove this problem on the studied data set either. 

The peak ratio and peak-to-median indicators are ratios and therefore sensitive to the low values of 

the frequency amplitudes around the peaks. If the mean or median of amplitudes is close to zero, 

then even low peaks may result in high ratios. Moreover, such indicators are sensitive to frequency 

components with high amplitudes inside the search range used for the peaks. This could be a 

problem especially on the higher frequencies with relatively wide search range, such as the search 

range presented in Section 2.2. 

The signal length is an essential factor for successful diagnosis in the slow rotational speed. It should 

be adjusted based on the shaft speed. However, the signal length optimisation is challenging in 

practice because the rolling elements of the bearing may skid, and then the shocks disappear 

completely or have a variable period. A signal length that could theoretically contain e.g. 2–3 shocks 

based on the presumed bearing defect frequency would be too short. In this study, the presumed 

period between the defect related shocks was around 5.9 seconds in the slowest case, which was 

test rig state 7 with the worsened defect. This means that six of such shocks at the most could be 

expected in a 30-second signal. The proposed criterion was able to give a clear indication of the 

defect contrary to the other tested methods. Moreover, the results presented in Figs. 15 and 22 

suggest that lengthening the signal (i.e. increasing the number of defect periods) does not give 

explicit advantage to the diagnosis. This indicates that the proposed criterion could be used 

successfully with relatively short signals, whereas the envelope analysis requires a higher number 

of defect-related impulses to show the defects clearly, as illustrated in Figs. 12 and 14. 

The automated data-driven approach to the frequency band selection excludes the possibility of poor 

selection by the vibration analyst. However, further research is recommended on the optimisation of 

the frequency band selection. The proposed method is optimal on the grounds that all the defined 

frequency bands become tested and the optimal one becomes selected based on the considered 

criterion. This is not the optimal solution considering the speed of computation, as indicated by the 

results in Sections 4.1.3 and 4.2.1. Therefore, some rules of thumb for the appropriate frequency 

bands and their sizes should be defined to reduce the search space. However, parallel computing 

accelerates the computation significantly, which was demonstrated in Section 4.1.3. 



Moreover, the automated selection is vulnerable to disturbances and machine vibrations that have 

the same frequency as the bearing defect. In such a case, high criterion values may be generated 

by factors unrelated to the damage. The difference between the currently monitored and baseline 

conditions may reveal change in the bearing condition, if the disturbance unrelated to bearing defect 

stays constant in both conditions. However, in certain applications some additional method for 

filtering out sinusoids from other sources may be required. 

The selection of the optimal frequency bands and computational features by the techniques under 

discussion requires two stages. At the first stage, the optimal settings are defined and the values of 

condition indicators are calculated in the monitored system state. At the second stage, the defined 

settings are applied on the baseline signal from a corresponding undamaged system state. The 

second stage is essential for diagnosis, because without comparison to normal situation the 

discussed condition indicators do not contain sufficient diagnostic information, as indicated by the 

results in Section 4.2. The selections in the laboratory tests, such as the frequency bands shown in 

Fig. 25 and the features in Table 5, reveal that different conditions in the monitored system resulted 

also in different parameter selections. This indicates that raw baseline data should be saved from 

different operating conditions for an automated diagnostic application. Exactly the same parameters 

can then be used for the comparison of the currently monitored and baseline conditions. Pre-

determined signal processing settings would potentially yield sub-optimal results in varying 

conditions. This should be considered in the development of autonomous and intelligent sensors, 

which process acquired signals before sending the processed information forward. 

Considering an automated application, it is important to define suitable thresholds, which indicate 

defects or potential defects. In the case of damage, the criterion based on autocorrelation should 

have a positive value, which is higher than the corresponding value in the baseline state. Based on 

Figs. 10 and 22, the criterion value around 0.1 and the difference from the baseline around 0.1 could 

together indicate a small change in the condition. With such thresholds, the defect at the lowest shaft 

speed case would have remained undetected in the simulation study (Fig. 10). On the other hand, 

too low thresholds result in repeated alarms, which is a problem in many automated solutions. In the 

cases, where the reference value from the baseline condition is negative, it may be advantageous 

to use zero as the reference value. The thresholds obviously require case-specific consideration. If 

abundant data are available from the monitored system, the methods of Statistical Process Control 

(SPC) [52] could provide appropriate tools for the threshold definition. 

Considering the peak ratio and peak-to-median indicators, the threshold adjustment is even more 

difficult, because these indicators are ratios. Even a difference around value 4 between the damaged 

and baseline conditions was not large enough to give an unambiguous indication of damage in some 

cases. This can be inferred based on the results from test rig state 1 with the worsened defect, as 

shown in Fig. 23 and Appendix A (Fig. A4), for example. However, the peak ratio and peak-to-median 

indicators could be used together with the envelope spectrum to support the analysis in a semi-

automated approach. One solution for an automated approach would be to combine diagnosis 

methods. If the criterion based on autocorrelation indicates a change in the bearing condition, other 

methods such as the envelope spectrum could be used to verify the observation. 

Finally, the roller element defect was shown only by the frequency component associated with FTF 

in the laboratory tests. This means that a certain differentiation between the roller element and cage 

defects was not achievable based on the acquired data and the methods tested. Because only the 

roller element defects were diagnosed in the laboratory tests, further research on the diagnosis of 

different bearing defects and multiple simultaneous defects by using the proposed method would be 

advantageous. 

 



5. Conclusions 

A criterion based on autocorrelation was proposed to the localised defect diagnosis in slow rotating 

rolling element bearings. The steps in the criterion calculation included filtering, signal segmentation, 

statistical feature selection and autocorrelation computation. In order to enhance the defect 

manifestation, the autocorrelation of the time lag corresponding to the defect was compared with 

other time lags. The signal processing settings were selected so that the defect time lag became the 

most discernible based on the criterion. The approach was compared with automated envelope 

spectrum diagnosis approaches based on a simulation study and experiments on a drive shaft test 

rig. 

The results revealed that the proposed criterion yielded correct defect indications at the lowest shaft 

speeds, while the envelope spectrum approaches gave obscured results or no defect indications at 

all. On the experimental data, the proposed criterion indicated increased values on the fundamental 

train frequency, which could be associated with the rolling element damage. However, the lack of 

defect signs on the roller spin frequency indicated that a certain differentiation between the roller 

defect and cage defect was not achievable in this case. The automated envelope spectrum diagnosis 

provided defect indications unrelated to the actual damage, which increases the risk of 

misdiagnosing. Nevertheless, the worsened defect in the rolling element was found by each 

approach based on the fundamental train frequency in some cases. In addition, the results indicate 

that the proposed criterion could be used successfully on relatively short signals, which include only 

a few defect periods. 

The results also suggest that the signal processing settings should be identified based on the 

prevailing condition, because pre-determined signal processing settings produce non-optimal results 

in systems with varying conditions. In addition, the results suggest that the automated fault diagnosis 

benefits from the acquisition of unprocessed baseline signals in different conditions as the reference 

information. Further research is recommended on the use of the proposed criterion in the real-world 

cases with different types of defects and multiple simultaneous defects. Moreover, the combination 

of different methods should be studied to advance the development of robust automated diagnostic 

techniques. 
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Appendix A. Autocorrelations and envelope spectra in laboratory test runs 

Appendix A illustrates the autocorrelation values and the envelope spectra calculated from the 30-

second signals in the laboratory experiments focusing on the fundamental train frequency diagnosis. 

Fig. A1 shows the autocorrelation values of the initial defect and the baseline conditions. Similarly, 

Fig. A2 shows the autocorrelation values of the worsened defect and the baseline conditions. The 

configurations used in the computations include the statistical features presented in Table 5 and the 

frequency bands given in Fig. 25. Figs. A3 and A4 illustrate the corresponding envelope spectra from 

the cases, where the frequency bands were selected based on the peak ratio and peak-to-median 

indicators. Finally, Figs. A5 and A6 show the envelope spectra from the cases, which had the 

frequency bands selected by the fast kurtogram. 



 

Fig. A1. Autocorrelation values from the initial defect and baseline conditions based on 30-second 

signals. 

 

 

Fig. A2. Autocorrelation values from the worsened defect and baseline conditions based on 30-

second signals. 



 

Fig. A3. Envelope spectra from the initial defect and baseline conditions based on 30-second 

signals. The frequency bands were selected based on the peak ratio and peak-to-median indicators. 

 

 

Fig. A4. Envelope spectra from the worsened defect and baseline conditions based on 30-second 

signals. The frequency bands were selected based on the peak ratio and peak-to-median indicators. 



 

Fig. A5. Envelope spectra from the initial defect and baseline conditions based on 30-second 

signals. The frequency bands were selected based on the fast kurtogram. 

 

 

Fig. A6. Envelope spectra from the worsened defect and baseline conditions based on 30-second 

signals. The frequency bands were selected based on the fast kurtogram. 
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