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Abstract

Flaviviruses include a highly diverse group of arboviruses with a global distribution and a high 

human disease burden. Most flaviviruses cycle between insects and vertebrate hosts; thus, they are 

obligated to use different cellular machineries for their replication and mount different 

mechanisms to evade specific antiviral responses. In addition to coding for viral proteins, the viral 

genome contains signals in RNA structures that govern the amplification of viral components and 

participate in triggering or evading antiviral responses. In this review, we focused on new 

information about host-specific functions of RNA structures present in the 3’ untranslated region 

(3’ UTR) of flavivirus genomes. Models and conservation patterns of RNA elements of distinct 

flavivirus ecological groups are revised. An intriguing feature of the 3’ UTR of insect-borne 

flavivirus genomes is the conservation of complex RNA structure duplications. Here, we discuss 

new hypotheses of how these RNA elements specialize for replication in vertebrate and 

invertebrate hosts, and present new ideas associating the significance of RNA structure 

duplication, small subgenomic flavivirus RNA formation and host adaptation.
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Flaviviruses

The Flavivirus genus includes a large number of taxonomically recognized species, many of 

which are important human pathogens such as dengue, yellow fever, Japanese encephalitis, 

West Nile and other viruses that cause fever and encephalitis. Dengue virus (DENV) is the 

most important viral disease in humans transmitted by insects. It is responsible for about 390 

million infections each year, without vaccines or antivirals available for its control. Yellow 

fever virus (YFV) is endemic in a number of African and South American countries, and 

causes 200,000 cases and 30,000 deaths in Africa even with effective vaccines available 

(http://www.who.int/csr/disease/yellowfev/

YellowFeverBurdenEstimation_Summary2013.pdf). Other diseases caused by flaviviruses 
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include West Nile encephalitis and Zika fever, which are considered emerging diseases with 

important outbreaks around the world [1].

Despite the similar organization of flavivirus genomes and their mechanisms of replication, 

they possess differences in their host ranges and transmissibilities. In this regard, 

flaviviruses are divided into four large ecological groups: the mosquito borne group 

(MBFV), the tick borne group (TBFV), the vertebrate specific flavivirus group, referred to 

as no known vector viruses (NKFV), and the ones that have been only isolated from insects, 

which constitutes a growing group of viruses known as insect specific flaviviruses (ISFV) 

(for a recent review see [2]) (Figure 1A).

Flaviviruses are small, enveloped viruses with a single, positive-strand RNA genome of 10 

to 12 kb. A type I cap structure is present at the 5’ end followed by the conserved 

dinucleotide 5’-AG-3’ [3]. The cap structure of flaviviruses contains a methyl group at the 

N7 position, and a second methyl group at the ribose 2’OH position of the first nucleotide, 

m7GpppAmpN2 [4, 5]. The 3’ end of the genome lacks a polyadenylate tail and terminates 

in a conserved 5’-CU-3’ [6]. The genome encodes a single open reading frame flanked by 

highly structured 5’ and 3’ untranslated regions (UTR). The 5’ UTRs are about 100 

nucleotides long while the 3’ UTRs are in general between 400 and 700 nucleotides, while 

in some exceptional cases it can be over 900 nucleotides [2, 7, 8]. Although different 

flavivirus groups contain conserved RNA structures in the 5’ and 3’ UTRs, only two RNA 

elements are conserved in all flavivirus genomes. These are the Y shape stem-loop A 

structure (SLA) present at the 5’ end of the viral genome (Figure 1B), and the small hairpin 

3’ stem-loop (sHP-3’ SL) located at the 3’ end of the viral RNA. These two essential RNA 

structures participate in the basic mechanism of viral RNA synthesis (Figure 1C). Sequence 

and structural features of the SLA as the promoter for viral polymerase binding and 

activation were first described in DENV and then extrapolated to other flaviviruses [9–11, 

12]. The 3’ SL was the first RNA structure described in flaviviruses and it was originally 

observed in the genome of MBFVs [13–15]. Sequence conservation analysis within each 

flavivirus group indicates that both the SLA and the 3’ SL are the most conserved regions of 

the viral genomes (Figure 2). In addition, an important conserved feature in the genome of 

all flaviviruses is the presence of inverted complementary sequences that mediate genome 

cyclization, which allows the polymerase, bound to the promoter SLA, to reach the 3’ SL 

initiation site for RNA synthesis (for review see [16]). In this review, we will discuss the 

function of viral RNA elements that specialize for flavivirus replication in insect and 

mammalian hosts.

Specialization of RNA Structures as a Strategy for Viral Adaptation to 

Mosquito or Human Cells

MBFV are a large group of viruses that cycle between Aedes or Culex mosquitoes and 

vertebrates. The process of jumping between such different hosts requires adaptation to 

different cellular machineries for viral replication and evasion of different types of antiviral 

responses. In general, RNA viruses have high capacity to adapt to different environments 

due to the genetic diversity of viral populations [17, 18]. However, it has been proposed that 

viruses that naturally alternate between different hosts evolve less rapidly than those that 
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specialize in a single host [19]. This evolutionary constraint can be attributed to conflicting 

demands for efficient infection in different hosts [20].

A number of studies have investigated genetic variations that take place during flavivirus 

adaptation to vertebrate and invertebrate hosts (reviewed in [21, 22] and [23]). However, 

little is known about variations in functional RNA structures that act as cis-acting factors 

during flavivirus host adaptation. Several reports have documented mutations in flavivirus 

3’ UTRs with differential impact on viral replication in insect or mammalian hosts [24–29]. 

For DENV a host specific requirement of the sHP present at the viral 3’ UTR has been 

reported [30]. In this regard, point mutations in the sHP abrogated infection in mosquito 

cells without affecting replication in mammalian cells. In a recent study, DENV restriction 

to replicate in vertebrate or invertebrate cells resulted in the selection of different viral 

populations with a hot spot for variations in the viral 3’ UTR [31]. Deep sequencing of viral 

populations revealed that mutations selected in mosquito cells mapped in a single RNA 

structure, named stem loop II (SLII, Figure 2). Selected mutations disrupting this RNA 

structure were associated with higher viral fitness in mosquito cells and in Aedes albopictus 

mosquitoes as compared with viruses with an intact SLII. In contrast, mutations that 

disrupted this RNA structure reduced viral replication in human cells [31]. Interestingly, 

cycles of disruption and reconstitution of the SLII structure were observed after host switch. 

These observations provide an example of a viral RNA structure that is under opposite 

selective pressures in mosquito and human cells and highlight a process of host 

specialization of a cis-acting RNA element.

The DENV2 3’ UTR is structurally divided into three regions: region I is located just 

downstream of the translation stop codon and contains a hypervariable sequence followed 

by two SLs similar in sequence and structure (SLI and SLII), with sequences involved in 

pseudoknot interactions (PKI and PKII, respectively); region II contains a duplication of a 

conserved structure known as dumbbell (DBI and DBII) also involved in pseudoknot 

interactions (PKIII and PKIV, respectively); and region III includes the essential terminal 

structure sHP-3’ SL (Figure 2). The functional significance of complex RNA structure 

duplication in the viral 3’ UTR is still unknown. Regarding the host-dependent variation of 

DENV SLII, it is important to mention that the sequence and structure of SLI remains intact 

during viral replication in mosquito or human cells, supporting the idea of a functional 

diversification of the duplicated SL elements.

The available data provides evidence of distinct functions of flavivirus RNA structures 

during infection in vertebrate and invertebrate hosts, resulting in different adaptation 

processes.

Functional Significance of Flavivirus RNA Structure Duplication

The presence of two SLs and two DBs is a conserved feature in most MBFV 3’ UTRs. 

Sequence similarities and defined structural blocks in the SLs and DBs support duplication 

as the origin of these RNA structures; however, recent functional studies provided evidence 

that each SL and each DB have distinct roles during viral replication [31–35]. In the case of 

SLI and SLII, studies using DENV2 indicate that while deletion or mutations of SLII 
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provide a great replication advantage in mosquito cells, deletion of SLI marginally reduces 

viral replication, supporting different functions of the two structures. In contrast, in human 

cells, the two SLs appeared to play redundant functions. In this regard, while deletion of 

either structure slightly reduces viral replication, deletion of both results in a large decrease 

in viral fitness [31]. Regarding the DB elements, sequences involved in DB1 and DB2 

formation were reported to play opposite roles in flavivirus genome cyclization. While DB1 

bears nucleotides that are complementary to sequences present at the 5’ end of the genome 

that enhance long range RNA-RNA interactions and genome cyclization [34, 36], the 

sequence at the top-loop of DB2 competes with genome cyclization by forming a PK with 

nucleotides that overlap with 3’CS, one of the most conserved cyclization element among 

flaviviruses [32–34]. These observations support a diversification of function between the 

two SLs and between the two DBs.

Interestingly, RNA sequence alignments and RNA structure comparison using RNAforester, 

which estimates RNA structural similarities based on the tree alignment model [37], shows 

that SLI from different DENVs are more closely related than SLI and SLII from the same 

virus (Figure 3). This observation was extended to all members of the Japanese encephalitis 

virus (JEV) group, supporting the idea that SL structure duplication occurred early during 

emergence of these viral groups, and then each of the duplicated element evolved, acquiring 

specific functions. To avoid confusion with the nomenclature of RNA structures from 

different groups, in Figure 3, the related SLI and SLII are also referred as SL5’ and SL3’, 

respectively (based on their location).

In the case of YFV, which naturally bears a single SL and likely has less capacity to tolerate 

mutations in this region, an interesting correlation between viral virulence and the integrity 

of the single SL was found [38]. In this case, sequence and structure comparison of wild and 

vaccine strains of YFV (performed to define determinants of viral attenuation) revealed that 

all vaccine strains, except 17DD, displayed a disrupted SL and PK structures (originally 

referred to as Region I). In the wild type strains, the SL structure was maintained, displaying 

several covariations. Interestingly, 17DD was the only vaccine strain that retained the SL-

PK structure (also by co-variations) and was the most virulent of the vaccine strains in a 

mouse model [39]. This pioneering analysis of 3’ UTR structures provided an interesting 

correlation between SL-PK integrity and YFV pathogenesis.

More recently using DENV, the presence of a double SL-PK in the viral 3’ UTR was found 

to facilitate host switch from mosquito to humans [31]. In this regard, recombinant viruses 

with a single SL carrying mosquito adaptive mutations failed to replicate in human cells, 

while this was reverted by incorporation of a second SL. Based on these observations, it is 

possible that SL duplication serves as a mechanism for higher tolerance of mutations that are 

beneficial in one host but deleterious in the other, by maintaining one of the two structures 

intact during host switch.

In summary, experimental evidence supports the significance of RNA structure duplication 

in members of the MBFV group. Instead of a redundant function, as it was originally 

proposed, each of the duplicated RNA elements appear to play distinct roles during viral 
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replication [31–34], and in some cases are directly linked to specific requirements in 

different host.

RNA Structure Duplication, Viral Fitness and sfRNA Production

During flavivirus infection, in addition to the full-length genomic viral RNA, other smaller 

RNA species accumulate, named subgenomic flavivirus RNAs (sfRNAs) [40–42]. Several 

recent studies provide interesting ideas on how the sfRNAs enhance flavivirus infections 

[42–48]. For a comprehensive description of the sfRNA functions, the reader is referred to 

recent reviews [49, 50].

The sfRNAs are products of partial degradation of viral RNAs. After removal of the cap 

structure present at the 5’ end of flavivirus genomes, the RNA is degraded by the host 

exoribonuclease XRN1 from the 5’ to the 3’ direction [42]. The biogenesis of sfRNAs is 

linked to highly structured RNA elements (xrRNAs) present at the viral 3’ UTR, which stall 

the XRN1 exonuclease activity [51–53]. The process results in the accumulation of small 

RNA molecules with nucleotide sequences corresponding to viral 3’ UTRs. In the case of 

JEV group members, the first of the duplicated SLs appears to be the main structure 

responsible for XRN1 stalling and sfRNA accumulation [42, 54]. In YFV, the single SL-PK 

(also known as SL-E) has been proposed to be the structure responsible for sfRNA 

formation [55]. For members of the DENV group, it is still uncertain which one of the two 

duplicated SL-PK structures is the main determinant for XRN1 arrest for sfRNA formation 

in vivo.

Interestingly, infection with flaviviruses carrying mutations that artificially disrupt SL-PK 

structures showed that RNA degradation by the XRN1 advances towards the 3’ end of the 

genome, but then stalls at the DB-PK structures, generating shorter sfRNA species [54]. 

This observation indicates that there are at least two types of structures in the MBFV 3’ 

UTRs capable of stalling the XRN1 activity (the SL-PK and the DB-PK). Based on the 

mechanism of sfRNA formation, it is intriguing the conserved duplication of RNA structures 

responsible for XRN1 arrest. Moreover, the process of DENV adaptation to mosquito cells 

specifically disrupts a SL-PK structure, which likely results in accumulation of different 

types of sfRNAs. These observations lead us to speculate about a possible link between host 

adaptation and sfRNA production (Figure 4, Key Figure). In addition, a recent study using 

different DENV isolates, proposed an association between the levels of sfRNA 

accumulation and the viral epidemiological fitness [48]. Based on the available data, it is 

possible that the variability observed at the 3’ UTR of different DENV isolates is a 

consequence of specific selective pressures in the mosquito.

Conserved RNA Structure Duplications in the 3’ UTRs of Flavivirus 

Genomes

To understand the biological significance of RNA structure duplication in the flavivirus 

genomes, the conservation of structural blocks of RNA elements found in each group of the 

Flavivirus genera was constructed and compared (Figure 5 and 6). Models of secondary 

structures of flavivirus 3’ UTRs including MBFVs, TBFVs, NKFVs, and ISFVs were 
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elaborated using RNAalifold, RNAz and CentroidFold software [56–58]. When available, 

information from chemical or enzymatic probing was included in the predictions. The 

models described here also gather information from previous studies that identified a 

number of structural features shared by different flavivirus 3’ UTRs [35, 59–66].

MBFVs

This large group of viruses transmitted by Aedes or Culex mosquitoes is divided into seven 

subgroups: the DENV group, JEV group, YFV group, Aroa virus group, Kokobera virus 

group, Ntaya virus group, and Spondweni virus group [67]. Most MBFV genomes display 

conserved structural blocks that were defined as SLs or DBs [31]. For clarity the names SLI 

and SLII are used to refer to the duplicated conserved elements present in region I of MBFV 

3’ UTRs, included in the structures also known as xrRNA1 and xrRNA2, respectively [52–

53].

DENV 3’ UTRs bear duplicated SLs and DBs (Figure 5). The exception is DENV4 that 

contains a single SL and a duplicated DB.

Models of RNA structures in the JEV group were constructed using sequences of the 

following viruses: WNV-LI, WNV-LII, JEV, Saint Louis encephalitis virus (SLEV), Alfuy 

virus (ALFV), Usutu virus (USUV), Kunjin virus (KUNV) and Murray Valley encephalitis 

virus (MVEV). They contain a more complex 3’ UTR as compared with that of members of 

the DENV group (Figure 5). In region I of the 3’ UTR, just downstream of the translation 

stop codon, four structural elements can be defined: a duplicated SL with conserved 

structural blocks similar to that observed in DENV, preceded and intercalated by two 

unrelated structures (Figure 5). The first structure is a U rich element (UU-SL) of variable 

length with low GC content. This RNA element is absent in some members of the group, 

such as in SLEV. The second structure is located between the two conserved SLs (bt-SL) 

and is present in all JEV group members analyzed (Figure 5). The loop sequence of this 

structure is predicted to form a tertiary interaction with a sequence located within the 

upstream SL [31]. When first described, the four RNA elements of region I of the JEV 

group were named SLI, SLII, SLIII and SLIV according to their position in the genome; 

however, only the originally described SLII and SLIV contain the structural blocks and 

sequences conserved in the duplicated SL elements found in all MBFVs [42]. The 

duplicated DB structures (DBI and DBII) are also present in most JEV group members. In 

this regard, although both DBs form pseudoknot interactions, the two loop sequences 

display contacts with sequences present downstream of DBII, showing a different 

arrangement as that observed for members of the DENV group (see WNV-LI arch PK 

structures, Figure 5).

Members of the YFV group, including YFVs, Sepik virus (SEPV) and Wesselbron virus 

(WSSV), contain single copies of the conserved SL and DB structures. However, they bear 

repetitions of hairpin structures specific to this group, named YFV repeats (YFVR). In this 

regard, three YFVR were observed in YFV isolates from West Africa, two repeats in 

isolates from East Africa and single structures in South American isolates [64, 68]. An 

additional RNA structure was identified with remnant elements of a DB, named pseudo 

dumbbell (ΨDB) (Figure 5). A similar arrangement of a ΨDB and DB structures was 

Villordo et al. Page 6

Trends Microbiol. Author manuscript; available in PMC 2017 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



observed in Zika and Kedougou viruses, belonging to the Spondweni and the DENV groups, 

respectively. Interestingly, in certain YFV isolates from Brazil a duplication of the DB 

structure was found [69]. This observation places the question of whether an original YFV 

3’ UTR contained a duplicated DB.

TBFVs

In this group the 3’ UTR of tick borne encephalitis virus (TBEV) vasilchenko, TBEV 

neudoerfl, TBEV hypr, Powassan virus (POWV), Louping ill virus (LIV), Langat virus 

(LGTV), and Alkhurma hemorrhagic fever virus (AHFV) were included in the analysis. The 

3’ UTRs of these viruses show size heterogeneity and do not contain SLs or DBs as the ones 

described for MBFVs; instead they contain duplications of group-specific RNA structures in 

which conserved structural blocks were identified. Three different group-specific structures 

were defined (Figure 6). The first structure named Y shape stem-loop (Y-SL) [8] is often 

duplicated in different locations and its top loop sequence is involved in a PK structure with 

downstream sequences (Figure 6). The second structure also forms a stem-loop (referred to 

as GC-SL) that is duplicated in many TBFV members, with a loop containing a conserved 

GGC sequence involved in a PK interaction. The third structure forms a very stable stem-

loop (referred to as AU-SL) with a loop containing a conserved AAUU sequence involved 

in a PK interaction. This last element is found in a single copy and is located just upstream 

of the conserved terminal sHP-3’ SL (Figure 6). Although TBFV members do not bear SL 

or DB duplications, they have group specific RNA structure duplications.

NKFVs

Members of this group were most commonly isolated from rodents and bats [70]. The 

sequences used for this analysis included the 3’ UTRs from Yokose virus (YOKV), Rio 

Bravo virus (RBV), Leucoencephalitis miotis virus (MMLV), Apoi virus (APOIV) and 

Modoc virus (MODV). The 3’ UTRs of these viruses contain in general single copies of 

conserved RNA structures that resemble that found in mosquito or tick borne viruses [71, 

72]. Based on sequence and prediction comparisons at least three RNA structural elements 

were observed: one Y-SL and one AU-SL, similar to those described in TBFVs; and one DB 

element containing structural blocks and sequences of that conserved in MBFVs but with no 

evidence of PK formation (Figure 6). Many members of the NKFV group including MODV, 

MMLV, APOIV and RBV have been associated to both TBFVs and MBFVs, suggesting a 

common origin of these viruses (Figure 7). In addition, YOKV bears 3’ UTR structures 

resembling the SL and DB of MBFV and has been associated to the YFV group [73, 74]. It 

is possible that this virus evolved with MBFVs but lost the ability to replicate in insects.

ISFVs

A general property of the 3’ UTRs of these viruses is the presence of multiple direct 

sequence repeats [65], but the analysis presented here suggests the lack of high-order RNA 

structure duplication. For predicting formation of conserved RNA structures, this group was 

divided in two sub-groups: one that is distinct to all known flaviviruses, known as classical 

ISFVs, and the other one related to MBFVs [2, 75]. In the case of the classical ISVFs, 

including the cellular fusion agent virus (CFAV), Culex flavivirus (CxFV), Aedes flavivirus 

(AEFV) and Quang Binh virus (QBV), the 3’ UTRs display a variable number of short 
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hairpins some of them duplicated with low potential for high order interactions. One 

duplicated structure with a potential PK interaction was predicted in some viruses isolated 

from Aedes mosquitoes (Ae-SL, Figure 6). The other members of the ISFV group, including 

Chaoyang virus (CHAOV) and Nhumirin virus (NHUV), contain RNA elements with 

conserved structural blocks similar to SLs and DBs of MBFVs but in single copies.

RNA secondary structure comparisons of flavivirus 3’ UTRs allows an association between 

RNA structure duplication and the ability of a virus to replicate in vertebrate and 

invertebrate hosts. MBFVs bear duplications of SLs and DBs, while TBFVs bear 

duplications of Y-SLs and GC-SLs. In contrast, in most of the single host flaviviruses 

NKFVs and ISFVs, the presence of secondary structure duplications is less evident, 

although they conserve stretches of repeated nucleotide sequences [8]. Common RNA 

structural modules for each region of the 3’ UTR of all available flavivirus genomes are 

shown in Figure 7. Hopefully, this unique and comprehensive analysis of RNA structures 

will stimulate further evolutionary and functional studies of this important group of insect-

borne human viral pathogens.

Concluding Remarks

Models of common structural RNA elements present at the 3’ UTR of all flaviviruses have 

been revised to facilitate functional studies and as tools for comparisons between different 

viral groups. There is an evident association between flaviviruses that alternate between 

insects and mammalian hosts and conserved complex RNA structure duplications. 

Interestingly, the identification of opposite selective pressures on RNA structures in 

mosquito and human cells provide new ideas for understanding the need of duplicated 

elements.

A great deal of experimental information has been generated in the past few years that had 

led to an association between host specialization of RNA structures, sfRNA production, and 

viral fitness. These studies will be instrumental in generating new models that explain 

evolutionary mechanisms that enable flaviviruses to replicate in multiple hosts (see 

Outstanding Questions).

Understanding how host-virus interactions shape viral evolution will help to elucidate the 

factors that govern the emergence of new viruses and the expansion of already known RNA 

viral pathogens.
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Outstanding Questions

The SLII RNA structure is beneficial for DENV replication in human cells but 

detrimental in mosquito cells. What is the benefit of evolving conflicting requirements 

within a cis-acting RNA structure for viral replication in different hosts? Is this 

differential requirement the cause of RNA structure duplication as a mechanism for host 

adaptation?

What is the selective pressure on the viral SLII structure in infected human and mosquito 

cells? sfRNA accumulation requires an intact SL-PK structure. Is the requirement of 

specific sfRNA species in different hosts the cause of the cyclic disruption/reconstitution 

of SL-PK?

Why are the RNA structures that stall the XRN1 duplicated in mosquito-borne 

flaviviruses?

What is the impact of flavivirus 3’UTR variability on viral transmission?

Is the mechanism of RNA structure specialization observed during DENV replication in 

different hosts common to other arboviruses?
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Trends

• Recent advances in molecular virology provide new hypotheses of how RNA 

structures in mosquito-borne flavivirus genomes mediate host adaptation, viral 

replication and evasion of antiviral responses.

• Dengue virus RNA structures play different functions during infection in 

vertebrate and invertebrate hosts.

• Conflicting requirements of viral RNA elements shape the composition of viral 

populations obtained in human or mosquito cells.

• Viral RNA structures can modulate the type and extent of host antiviral 

responses.

• Complex RNA structures present at the viral 3’ untranslated region (3’UTR) 

that stall the host exoribonuclease XRN1 and generate small viral-derived RNAs 

are duplicated in mosquito-borne flaviviruses.

• Conservation of RNA structure duplication in the 3’UTR of insect-borne viruses 

is associated with mechanisms of host adaptation.
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Figure 1. 
Conserved Features and Mechanism of Flavivirus RNA Synthesis. a) Schematic 

representation of the distance tree of the four ecological groups of flaviviruses drawn using 

the neighbor joining method and jukes-cantor substitution model. b) Predicted RNA 

structure and sequence of SLA elements of different flaviviruses. c) General mechanism of 

viral RNA synthesis that involves the promoter element SLA at the 5’ end of the viral RNA, 

cyclization of the viral genome, and polymerase initiation at the 3’ end.
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Figure 2. 
Plot of Sequence Conservation of the Four DENV Serotypes. The 3’ UTR is divided into 

three regions according to the sequence variability (regions I, II, and III). Below, is a 

secondary structure model of the 3’ UTR of DENV2 predicted by conservation, stability and 

chemical probing; deletions (red lines) or point mutations (circles) rescued from mosquito 

cell-adapted populations are indicated.
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Figure 3. 
Representation of Local Analysis of RNA Structure Similarities Using the RNAforester 

Algorithm. Top, comparison of the duplicated structures SLI (SL5’, indicated in green) and 

SLII (SL3’ indicated in red) of members of the DENV group. A fan dendrogram indicating 

the distance between these structures is shown with the corresponding circle plot with the 

sequence and arcs denoting base pairings. Bottom, a similar comparison of SL5’ and SL3’ 

structures are shown for members of the JEV group. Bar indicates number of nucleotide 

substitution per site
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Figure 4, Key Figure. 
New Functions of RNA Structures Present at the 3’ UTR of Mosquito-Borne Flaviviruses. 

Host adaptation selects different dengue virus populations and the link between RNA 

structure duplication, host adaptation, and production of subgenomic flavivirus RNAs 

(sfRNAs) is described. Red lines under each population illustrate the change in frequency of 

the same viral variant.
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Figure 5. 
Models of Conserved RNA Structural Elements of Mosquito Borne Flavivirus 3’ UTRs. 

Schematic representation of RNA structures and conserved RNA motifs for each group 

(DENV, JEV and YFV) are shown. Below the models, an example of one member of each 

group (DENV2, WNV-LI, and YFV-17D) is shown using an Arc plot secondary structure 

representation, including the nucleotide sequence. The color code for each structural motif is 

maintained in all the representations. Pseudoknot interactions (PKs) are indicated 

underneath each Arc plot. Abbreviations: SL: stem-loop, DB: dumbbell, sHP: small hairpin, 
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3’ SL: 3’ stem-loop, UU-SL: U rich stem-loop, bt-SL: between stem-loop, YFVR: yellow 

fever virus repeat, ORF: open reading frame.
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Figure 6. 
Models of Conserved RNA Structural Elements of Tick-Borne, No-Known Vector, and 

Insect-Specific Flaviviruses. Schematic representation of RNA structures and conserved 

RNA motifs for each group are shown. Below the models, an example of one member of 

each group is shown using an Arc plot secondary structure representation including the 

nucleotide sequence: Powassan virus (POWV), Modoc virus (MODV) and for insect 

specific flavivirus examples the cellular fusion agent virus (CFAV), Culex flavivirus CxFV), 

and Chaoyang virus (CHAOV) are included. The color code for each structural motif is 
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maintained in all the representations. Pseudoknots interaction (PKs) are indicated 

underneath each Arc plot. Abbreviations: Y-SL: Y-shape stem-loop, AU-SL: AU containing 

stem-loop, GC-SL: GC containing stem-loop, DB: dumbbell, sHP: small hairpin, 3’ SL: 3’ 

stem-loop, AeSL: Aedes stem-loop, ORF: open reading frame.
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Figure 7. 
Phylogenetic Relationships between Members of the Flavivirus Genus with Arch 

Representations of Conserved Structures of the Viral 3’ UTRs. Phylogenetic tree using 

coding regions of flaviviruses employing a neighbor-joining method is shown. 3’ UTR 

structures are represented in arc plots using the following color code: SL structures in 

orange, DB and ΨDB in pale blue, YFVR in brown, UU-SL in green, bt-SL in gray, YSL in 

violet, GC-SL in pink, AU-SL in pale green and sHP-3’ SL in blue. Mosquito-borne 

flavivirus taxonomic groups: DENV group, JEV group, YFV group, Aroa virus group 
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(AROVG), Kokobera virus group (KOKVG), Ntaya virus group (NTAVG), and Spondweni 

virus group (SPOVG).
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