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Glaucomatous damage specifically affects retinal ganglion cells (RGCs) and their axons and

leads to progressive thinning of the retinal nerve fiber layer (RNFL) accompanied by

structural changes within the optic nerve head (ONH). These changes typically appear as

diffuse or focal enlargement of the optic cup corresponding to neuroretinal rim loss,

displacement, barring and variation in caliber of the retinal vessels, optic disc hemorrhages,

RNFL defects, and peripapillary atrophy. The detection of early glaucomatous optic nerve

damage during a clinical examination is often challenging, even for experienced clinicians,

because of a wide range of normal ONH appearances. Similarly, the interpretation of optic

disc stereo-photographs, traditionally used to document the appearance of the ONH over

time and to provide evidence of progression, is highly subjective, whereas poor quality

images and differences in focus, exposure, magnification, and camera angle may often result

in a false impression of progression.

The progressive loss of RGCs can lead to visual field (VF) defects. VF assessment routinely

performed with standard automated perimetry (SAP) is subjective and prone to high short-

and long-term inter-test variability. Because this variability can confound the assessment of

VF changes over time, it is desirable to confirm these changes with objective test methods.

Additionally, in many cases the loss of RGCs and resulting thinning of the RNFL and

damage to the ONH have been shown to precede the onset of a glaucomatous VF

defect.22; 48; 49; 57 Because glaucomatous damage is irreversible, early detection of structural

changes is imperative for timely diagnosis of glaucoma and monitoring of glaucomatous

progression.
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Considerable improvements in ocular posterior segment imaging have been made in recent

years. Imaging techniques such as optical coherence tomography (OCT), scanning laser

polarimetry (SLP) and confocal scanning laser ophthalmoscopy (CSLO) rely on different

properties of light to provide objective structural assessment of the RNFL, ONH and

macula, thus assisting clinicians in the diagnosis of glaucoma and monitoring of its

progression.

ONH and RNFL Imaging For Glaucoma Diagnosis

Optical Coherence Tomography

Based on the principle of low coherence interferometry, OCT provides cross-sectional

visualization of ocular structures.26; 52; 53 Low-coherence light is aimed at a beam splitter,

which splits the light and directs it to the retina and a reference mirror. The light reflected

from the mirror then recombines with the light reflected from the retina creating an

interference pattern caused by the altered magnitude and time delay of light as it encounters

different optical reflectance across the depth of the tissue. Segmentation algorithms can be

applied to the cross-sectional images to obtain retinal and RNFL thickness and ONH

structural information. Stratus OCT (Carl Zeiss Meditec, Dublin, CA), the most commonly

used time-domain OCT (TD-OCT) produces cross-sectional images with an axial resolution

of 8 – 10µm and a transverse resolution of approximately 20µm. Peripapillary RNFL

thickness measurements are obtained using a 3.4 mm diameter circular scan centered on the

ONH. RNFL thickness is automatically determined and reported as an overall mean, by

quadrants, and by clock hours. Quantitative information is also provided for the ONH

structures and for total macular thickness.

TD-OCT RNFL and ONH measurements have been shown to discriminate well between

healthy and glaucomatous eyes.4; 7; 39; 40; 45; 67 Mean RNFL thickness, inferior quadrant and

superior quadrant RNFL thickness provide the best diagnostic accuracy. There is good

measurement reproducibility for both diffuse and focal RNFL defects.3; 5; 6; 21; 47; 54

Spectral-domain OCT (SD-OCT)—SD-OCT is a newer generation of the OCT

technology offering several benefits over TD-OCT, such as enhanced resolution (3–6 µm

axial resolution) and faster scanning (40–110 times faster with commercial SD-OCT

systems).51 Unlike TD-OCT, which requires the use of a moving reference mirror to record

the depth information of the reflections from the target tissue, SD-OCT captures this

information in the frequency domain, enabling all the reflections included in one A-scan to

be captured simultaneously.64 Moreover, SD-OCT offers image registration and 3D

rendering capabilities. These advantages result in improved measurement reproducibility

compared with TD-OCT.18; 27; 33; 51 Although most studies showed that the glaucoma

diagnostic ability of SD-OCT is similar to TD-OCT,9; 33; 51; 55; 61 SD-OCT has an improved

capability in early-stage glaucoma detection.46 Figure 1 shows an example of an early

glaucomatous damage detected by SD-OCT.
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Scanning Laser Polarimetry

SLP (GDx, Carl Zeiss Meditec, Dublin, CA) determines the peripapillary RNFL thickness

by measuring the amount of the retardation of polarized light, which is linearly correlated

with the birefringent properties of the retina. As a result of the parallel orientation of the

microtubules within the RGC axons, a change in the polarization of light, called retardation,

occurs when light passes through the RNFL. This change can be quantified and is

proportionate to the thickness of the RNFL.63 The most recent commercially available

iterations of this technology are named GDx VCC (Variable Corneal Compensator), GDx

ECC (Enhanced Corneal Compensator), and GDx PRO. These devices provide

individualized compensation for the birefringence of the media (mainly the cornea). The

ECC version is an improvement over VCC resolving most of atypical retardation patterns

(ARPs) that confound RNFL thickness measurement in a substantial subset of healthy and

glaucomatous eyes. GDx provides reproducible measurement of RNFL thickness.13; 23; 63; 69

GDx VCC outperforms the earlier iterations of this technology that used fixed corneal

compensation in its ability to discriminate between healthy and glaucomatous

eyes.12; 20; 59; 62 GDx ECC performs better than VCC in the detection of early

glaucoma.36; 56 GDx NFI (Nerve Fiber Index), a machine classifier parameter that combines

several measurements, consistently offers the best diagnostic performance.14; 15; 50

However, this parameter is no longer available in most recent iterations of this technology

and average TSNIT, quantifying the RNFL thickness, is the best diagnostic parameter

among the existing parameters. Figure 2 shows an example of an early glaucomatous

damage detected by the GDx PRO device.

Confocal Scanning Laser Ophthalmoscopy

The CSLO (Heidelberg Retina Tomograph (HRT); Heidelberg Engineering, Heidelberg,

Germany) uses a 670nm diode laser beam with a confocal detector device that scans the

ONH and provides three-dimensional measurements of ONH topography. It then generates a

number of stereometric parameters, such as rim area, cup area, rim volume, and cup-to-disc

ratio. The device has good reproducibility10; 16; 30 and glaucoma discriminating

ability,2; 41; 44; 65; 66 comparable to optic disc assessment by glaucoma experts.65 In Ocular

Hypertension Treatment Study participants, HRT was able to detect structural glaucomatous

changes up to eight years before functional defects were seen on VF testing.71

The latest version of the CLSO, the HRT III, offers a large normative database as well as

advanced analytical tools such as the Moorfields Regression Analysis (MRA)66 and the

Glaucoma Probability Score (GPS).58 The MRA improves the diagnostic accuracy of the

instrument by using the global and sectoral neuroretinal rim area adjusted for disc size and

age. This method is highly capable of discriminating between healthy and glaucomatous

eyes.42; 66 The GPS provides disease probability scores and minimizes operator error by

relying on an automated approach to the optic disc classifying procedure. The discrimination

ability of the GPS is similar to the MRA.8 An example of early glaucomatous damage

detected by the HRT III is shown in Figure 3.
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Comparison of imaging technologies for glaucoma diagnosis

Studies comparing the glaucoma discriminating ability of TD-OCT, GDx and HRT19; 40; 70

demonstrated that the best parameters of all three instruments performed similarly.

Subjective evaluation of the ONH by glaucoma experts was as good as the objective

imaging modalities in discriminating glaucomatous and healthy eyes; however, this may not

reflect common clinical practice as it has been shown that glaucoma experts perform better

than general ophthalmologists.1 Indeed, it has been recently demonstrated that the diagnostic

ability of the three imaging techniques was better than subjective assessment of the ONH by

general ophthalmologists.60

SD-OCT may outperform SLP and CSLO in ability to diagnose glaucomatous damage. VF

defects correlated better with RNFL thickness loss measured by SD-OCT compared to

RNFL thinning as measured by SLP.25 SD-OCT may have a higher sensitivity for glaucoma

detection than HRT.35

Monitoring of glaucoma progression

Glaucomatous progression typically occurs either as a continuous linear process where

tissue and function are gradually affected or in a stepwise pattern where sudden damage

caused by an acute event is followed by a period of minimal change that lasts until another

acute event takes place. In some individuals these two scenarios may coexist or they can

occur in different phases of the disease. As the exact mode of progression in a given subject

cannot be easily predicted, the assessment of glaucomatous progression requires clinical

judgment as well as event- and trend-based analyses. In trend analysis, regression analysis of

a dependent variable (e.g. RNFL thickness) on serial measurements provides progression

rate over time. In event analysis, progression occurs when a follow-up measurement exceeds

a pre-established threshold for change from baseline.

In clinical practice automated perimetry has been the standard for detecting glaucoma

progression. In many subjects, however, structural damage precedes VF changes or occurs

without simultaneous progressive VF changes.43; 48; 57 This creates the need for tools

capable of reliable and objective evaluation of progressive structural changes. Longitudinal

assessment of glaucoma with imaging devices poses a significant challenge because of the

rapidly evolving technology and resulting frequent software and hardware changes.

Moreover, because of the lack of commonly acceptable reference standard that can be used

to indicate progressive glaucomatous change, it is difficult to determine whether progression

detected by an imaging device in the absence of VF loss reflects structural changes

preceding functional loss as measured by SAP or is a false positive.

Most OCT progression studies use TD-OCT because of the longer follow up

period.68, 31; 32; 37 In a study on 64 glaucomatous and glaucoma suspect eyes followed for a

mean period of 4.7 years, progression events defined by OCT occurred more frequently than

progression events defined by VF.68 The OCT progression studies in which progression was

defined based on red-free fundus photographs demonstrated that analyzing both the mean

and sectoral RNFL thicknesses is important in maximizing the detection of progression.31; 32
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The inferotemporal (7 o'clock) sector and inferior quadrant RNFL thickness are most

predictive of progression.24; 28; 32; 37

The advantages offered by SD-OCT result in improved intra-visit and inter-visit

measurement reproducibility, indicating this instrument’s potential for detecting early

progression. In a recently published longitudinal study comparing SD-OCT with TDOCT,

out of 128 glaucomatous eyes that were followed for a minimum of two years, 19 and 4 eyes

were identified as progressing with SD-OCT and TD-OCT, respectively.34 Figure 4 shows

an example of glaucomatous progression detected by SD-OCT.

SLP derived structural measurements have a higher sensitivity for progression detection than

SAP.11 In a recent study evaluating progression with GDx-ECC, rates of RNFL loss were

significantly greater in eyes that showed evidence of glaucoma progression based on SAP

and/or optic disc stereophotographs compared to eyes that remained stable.38 The GDx-ECC

version of this technology performed significantly better than the VCC version for detection

of change, suggesting that it could improve longitudinal evaluation of the RNFL. Figure 5

shows an example of glaucomatous progression detected by GDx.

Several longitudinal studies compare HRT with optic disc stereophotography and SAP in

glaucomatous patients. In these studies, progression identified by HRT’s topographic change

analysis (TCA) was more frequent than progression identified with expert

stereophotographic assessment of ONH and progression identified by SAP.17; 29 There was

a poor agreement, however, among the three techniques. The discrepancy was attributed to

the inability of HRT change analysis to detect features such as splinter hemorrhages or

defects in nerve fiber layer. HRT can detect small topographical changes that are otherwise

not easily appreciated. Figure 6 shows an example of glaucomatous progression detected by

HRT.

Conclusion

Imaging devices play an essential role in the diagnosis of glaucoma by providing a set of

objective quantitative measurements and statistical classifications using comparisons to

normative data. They cannot, however, reliably detect certain abnormal features such as an

optic disc hemorrhage or disc pallor and therefore should not replace a clinical examination.

Instead, they provide important complementary information intended to assist the clinician

in the diagnostic process. As these technologies undergo constant evolution, their

capabilities continue to improve, both for disease detection and identification of progression.

None of the three main imaging modalities has been reliably demonstrated to be superior to

another, although recently published studies using SD-OCT indicate that this technology

may outperform SLP and CSLO in its ability to detect glaucomatous damage. Imaging-

derived measures of progression have been shown to be more sensitive to change than SAP

but, without the reference measure of progression, the reliability of these measures remains

unknown. Due to the temporal dissociation between structure and function and the fact that

glaucoma is a slowly progressive disease, longer follow-up periods are needed to establish

whether structural changes identified with these imaging technologies can predict the

subsequent development of VF loss. Because imaging may falsely identify glaucoma and its
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progression, clinical management decisions should always be based on a combination of

structural and functional measures and the results of a clinical examination.
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Figure 1.
Early glaucomatous damage as detected by spectral-domain optical coherence tomography.

Wedge shaped thinning of the retinal nerve fiber layer (RNFL; red zones in the RNFL

Deviation Map) are evident in the superior and inferior regions in the right eye. RNFL

Thickness profile also demonstrates localized thinning in the same regions. Quantitative

analysis shows deviation from normal range in the overall, quadrant and clock-hour RNFL

thickness analysis.
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Figure 2.
Scanning laser polarimetry imaging showing superior and inferior retinal nerve fiber layer

(RNFL) atrophy in the right eye and inferior RNFL atrophy in the left eye (deviation map).

Compared with age matched healthy controls, several retardation parameters are outside

normal limits and marked by the red background (RNFL Summary Parameters table).

Kotowski et al. Page 11

Surv Ophthalmol. Author manuscript; available in PMC 2015 July 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Figure 3.
Early glaucomatous damage as detected by Confocal Scanning Laser Ophthalmoscopy.

Neuroretinal rim defect is marked in the temporal inferior region corresponding to an

adjacent retinal nerve fiber layer defect (upper right). This region experienced a statistically

significant deterioration from baseline as marked by the red region (upper left). Compared

with healthy control data, several quantified parameters were outside the normal range.
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Figure 4.
Spectral-domain optical coherence tomography retinal nerve fiber layer (RNFL) Guided

Progression Analysis. Likely progression (marked in red) is identified in the inferotemporal

and superotemporal regions on the RNFL Thickness Map and RNFL Thickness Profiles

Progression. Average RNFL Thickness Progression shows likely progression in the overall,

inferior and superior sector thickness. Trend lines are drawn and rates of change are

provided all of which show statistically significant rate of RNFL thinning.
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Figure 5.
Scanning laser polarimetry Guided Progression Analysis. The Image Progression Map

shows progression in the inferotemporal and superotemporal regions. TSNIT Progression

Graph shows progression in the superior region. Summary Parameter Charts show a

significant decrease in TSNIT average, superior and inferior RNFL thicknesses.
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Figure 6.
Scanning laser ophthamoscopy Topographical Change Analysis (TCA). A surface height

depression (red pixels on follow-up scans) can be seen initially in the inferotemporal region.

Progressive wedge shaped enlargement of the depressed area is seen on the follow-up

images.
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