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Flash-flood hazard assessment using Ensembles and Bayesian-based machine learning 14 

models: application of the simulated annealing feature selection method 15 

 16 

Abstract 17 

Flash-floods are increasingly recognized as a frequent natural hazard worldwide. Iran has been 18 

among the most devastated regions affected by the major floods. While the temporal flash-flood 19 

forecasting models are mainly developed for warning systems, the models for assessing hazardous 20 

areas can greatly contribute to adaptation and mitigation policy-making and disaster risk reduction. 21 

Former researches in the flash-flood hazard mapping have heightened the urge for the 22 

advancement of more accurate models. Thus, the current research proposes the state-of-the-art 23 

ensemble models of boosted generalized linear model (GLMBoost) and random forest (RF), and 24 

Bayesian generalized linear model (BayesGLM) methods for higher performance modeling. 25 

Furthermore, a pre-processing method, namely simulated annealing (SA), is used to eliminate 26 

redundant variables from the modeling process. Results of the modeling based on the hit and miss 27 

analysis indicates high performance for both models (accuracy= 90−92%, Kappa= 79−84%, 28 

Success ratio= 94−96%, Threat score= 80−84%, and Heidke skill score= 79−84%). The variables 29 

of distance from the stream, vegetation, drainage density, land use, and elevation have shown more 30 

contribution among others for modeling the flash-flood. The results of this study can significantly 31 

facilitate mapping the hazardous areas and further assist watershed managers to control and 32 

remediate induced damages of flood in the data-scarce regions.  33 

Keywords: Flash-flood; hazard; ensemble machine learning; Bayesian; simulated annealing 34 
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1. Introduction 35 

Abnormality in precipitation is rapidly increasing worldwide (Hao et al., 2019; Li et al., 2019; 36 

Lyubchich et al., 2019). Besides, climate change is alternating the hydrometeorological patterns 37 

in terms of frequency, irregularity, and severity of precipitation which has led to the rise of the 38 

life-threatening hydrological disasters (Hennequin et al., 2018; Serago and Vogel, 2018; Shkolnik 39 

et al., 2018). On the other hand, the vulnerability to hydrological disasters, e.g., the flood has 40 

recently been magnified due to the rapid urbanization and population growth, particularly in the 41 

developing countries (Ahmadalipour et al., 2019; Casagrande et al., 2017; Kubwarugira et al., 42 

2019). Thus, for the purpose of mitigation and planning to extreme events, more than ever, there 43 

is an urge for the advancement of reliable modeling techniques to accurately identify the hazardous 44 

areas (Chiang and Ling, 2017; Frigerio et al., 2018; Henriksen et al., 2018).  45 

Spatial assessment of flood hazard is of utmost importance for the urban and the built environment 46 

planning and land use management, infrastructures engineering and design, and the advancement 47 

of the mitigation structures to optimally reduce the devastation (Al-Juaidi et al., 2018; Muhamad 48 

et al., 2019; Sozer et al., 2018). Advancement of the novel methods and continued progress in 49 

improving the methods for hazard susceptibility mapping are especially vital for flash-floods 50 

hazard mitigation due to their higher destructive power in a brief period of time compared to the 51 

river and coastal floods, for instance (Abuzied et al., 2016; Youssef et al., 2016). The accordance 52 

of flash-flood follows a complex interaction of the meteorology with hydrology (Doswell III et al., 53 

1996). Multi-criteria decision-making analysis methods, (e.g., Alves et al., 2018; Kanani-Sadat et 54 

al., 2019; Roslee and Norhisham, 2018; Tang et al., 2018; Tiryaki and Karaca, 2018), the statistical 55 

methods, e.g., frequency ratio, regression logistics, Shannon’s entropy, generalized linear model, 56 

statistical index, weights-of-evidence, weighting factor, multivariate discriminant analysis, 57 
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flexible discriminant analysis, multivariate logistic regression, generalized additive model, and 58 

further bivariate and multivariate statistical approaches (Giovannettone et al., 2018; Shafapour 59 

Tehrany et al., 2019; Youssef et al., 2016), the fuzzy rule-based systems (Bui et al., 2019b, Sahana 60 

and Patel, 2019), time series (Kuenzer et al., 2013, Kwak et al., 2014, Sghaier et al., 2018, Sciance 61 

and Nooner, 2018), physical models for rainfall-runoff modeling, (e.g., Hofierka and Knutová, 62 

2015; Zhou et al., 2012; Motevalli and Vafakhah, 2016), and the soft computing and machine 63 

learning methods, e.g.,  artificial neural networks (ANNs), backpropagation ANNs, support vector 64 

machines (SVM), least squares SVM (LSSVM), classification and regression trees (CART), 65 

random forest (RF), decision trees (DT), Naïve Bayes (NB), adaptive neuro-fuzzy inference 66 

system (ANFIS), quick unbiased efficient statistical tree (QUEST), and genetic algorithm rule-set 67 

production (GARP) (Hong et al., 2018; Darabi et al., 2019; Chen et al., 2017; Lee et al., 2017; Yan 68 

et al., 2018) are among the most popular methods used for flood susceptibility mapping to identify 69 

flood-prone areas. A number of recent comparative studies reported promising results using 70 

machine learning methods (Khosravi et al., 2018, Khosravi et al., 2019; Shafapour Tehrany et al., 71 

2019, Siahkamari et al., 2018, Tehrany and Kumar, 2018; Chen et al., 2017). Consequently, 72 

machine learning has become the key instrument in susceptibility mapping (Chapi et al., 2017; 73 

Alfieri et al., 2015; Lindenschmidt et al., 2016). Machine learning methods have shown promising 74 

results in dealing with the complexity raised in modeling the flash-flood hazard maps (Mahmood 75 

and Rahman 2019; Mahmood et al. 2019) which encompasses the multiple spheres of total 76 

environment, e.g., Anthroposphere, Hydrosphere, Atmosphere, and Lithosphere (Bui et al., 2018a; 77 

Kanani-Sadat et al., 2019; Ngo et al., 2018). Recently the accuracy of perdition models for flood 78 

susceptibility mapping has been dramatically increased using the emerging novel hybrid machine 79 

learning models (Bui et al., 2019a, Bui et al., 2018b, Chen et al., 2019,), as well as ensemble 80 
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models (Al-Abadi, 2018; Bui et al., 2019b, Choubin et al., 2019b; Razavi Termeh et al., 2018). 81 

Hybrid models are generally created through combination of the regular machine learning models 82 

with the soft computing techniques, multi-criteria decision-making analysis methods, optimization 83 

algorithms, and/or other machine learning methods or an integration of multiple of them (Chen et 84 

al., 2019; Costache, 2019; Ngo et al., 2018). Ensemble models are often developed using either of 85 

the bagging, boosting, or random subspace methodologies to employ more than one learning 86 

system to achieve higher performance and accuracy for predictors (Buchen and Wohlrabe, 2011, 87 

Bui et al., 2019b).  88 

The future trend in the data-driven models for the flood susceptibility mapping has heightened the 89 

need for advancing sophisticated machine learning models (Shafizadeh-Moghadam, et al., 2018; 90 

Valavi, et al., 2019; Khosravi et al., 2018; Bui et al., 2019b). Surveys such as that conducted by 91 

Mosavi et al. (2018), and various comparative studies, e.g., (Khosravi et al., 2019, Chen et al., 92 

2017) suggest that, the ensemble and Bayesian variations of the machine learning models generally 93 

provide higher accuracy and performance compared to their conventional forms. However, the 94 

existing literature provides minor knowledge on the performance of various techniques of 95 

ensemble models (bagging and boosting) and Bayesian, considering the flash-flood hazard 96 

assessment. Although a number of researches have used bagging and boosting for increasing the 97 

quality of the prediction, very limited studies exist on the comparative study of bagging, boosting 98 

and Bayesian methods. Thus, there is a general lack of research in this regard, and there has been 99 

little discussion about potential, differences, and individual characteristics of boosting, bagging 100 

and Bayesian in modeling the susceptibility mapping. Consequently, the main objective of this 101 

study is to provide a comparative study between the boosting, bagging and Bayesian-based models. 102 

The comparative study is conducted between the novel method of Bayesian generalized linear 103 
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model (BayesGLM), and the ensemble methods of boosted generalized linear model (GLMBoost), 104 

and random forest (RF) (bagging-based method). The proposed comparative study employs a 105 

promising feature selection (FS) method (Kira and Rendell, 1992, Liu and Motoda, 2007), namely 106 

simulated annealing (SA) (Van Laarhoven and Aarts, 1987) to eliminate redundant variables from 107 

the modeling process.  108 

Section two presents the material and methods used in this study, which begins by describing the 109 

study area and then proceeds with explaining the methodology, modeling process, and validating 110 

the results. Section three analyzes the results and discusses them. Finally, in section four, the 111 

conclusion gives a summary and areas for further researches.  112 

 113 

2. Material and methods 114 

2.1. Study area  115 

Gorganroud River Basin, located in the north of Iran within Golestan Province, extends between 116 

latitudes of 36º 25ꞌ to 38º 15ꞌ N and longitudes of 56º 26ꞌ to 54º 10ꞌ E. It has an area about 11,290 117 

km2 which drainages the Eastern Alborz Mountains into the Caspian Sea. The elevation changes 118 

between -96 m a.s.l. and 3669 m a.s.l. for western regions (Caspian Sea) towards southern areas 119 

(Fig. 1). According to the long-term (1988-2018) weather stations’ data in the study area 120 

(presented in Fig. 1), the mean annual rainfall is about 500 mm with a mean temperature of 121 

approximately 17.8°C. The main climates of the study area are including semi-arid, Mediterranean, 122 

semi-humid, and humid.  123 

This watershed is known as one of the most affected regions by floods in Iran (Safaripour et al., 124 

2012), which experienced many floods. From 1991 to 2019, more than 120 large and small floods 125 

occurred in this watershed (Jannati, 2019). For example, during the flood that occurred on 11 126 
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August 2001, the Gorganroud discharge reached about 3020 m3, and the width of the river 127 

increased from 10 meters (the normal width) to 400 meters. This flood killed more than 500 people, 128 

which is considered as the most casualty flood in Iran (Jannati, 2019). Another example is on 17 129 

March 2019, which most of the cities such as Aqqala and Gomishan, at least 70 villages, about 130 

12000 houses, infrastructures, agricultural areas, and gardens were damaged along the Gorganroud 131 

river (Donya-e-eqtesad, 2019). However, identifying the hazardous areas in this most extremely 132 

flooded area is most important for reducing the damages.  133 

Fig. 1 SOMEWHERE HERE 134 

 135 

2.2. Methodology 136 

The procedural approach taken in the present research can be summarized as (i) collection and 137 

preparation of the required data for the flash-flood modeling in the study area, (ii) extraction of 138 

the flooded locations using Sentinel 2 images, (iii) consideration of the factors affected flash-flood, 139 

(iv) feature selection (FS) using simulated annealing (SA) method, (v) machine learning modeling 140 

of flash-flood, (vi) validation of the results using hit and miss analysis, (vii) extraction of the hazard 141 

areas induced by flash-flood in the study area. These steps are explained in details as follow: 142 

2.2.1. Preparation of flash-flood inventory map    143 

Due to the lack of recorded location of flood occurrences, we extracted the inundation area using 144 

the Modified Normalized Difference Water Index (MDNWI) of Sentinel-2 satellite through 145 

Google Earth Engine (GEE, 2019a) environment. Many litterateurs have demonstrated that 146 

MNDWI is more appropriate to extract water bodies (e.g., Du et al., 2014; Du et al., 2016; Xu, 147 

2006; Li et al., 2013; Singh et al., 2015). Radiometrically calibrated and terrain corrected Sentinel-148 

2 Level-1C dataset is stored within GEE. GEE provides free cloud computing facilities for research 149 
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(Clement et al., 2018), however, to remove the effects of cloud, pixels with less than 2% cloud 150 

were filtered and used. Also, we used the quality band (QA60) to mask the clouds and cirrus 151 

(respectively bits 10 and 11 in the QA60). MDNWI is defined as (Xu, 2006):  152 

MNDWI=
BGreen- BSWIR

BGreen+ BSWIR
                         (1) 153 

where BGreen and BSWIR are respectively the Top-Of-Atmosphere (TOA) reflectance of the green 154 

(i.e., Band 3) and Shortwave-Infrared (SWIR; Band 11) bands. The bandwidth for green (SWIR) 155 

band, central wavelength, and spatial resolution are respectively equal to 35 (90) nm, 560 (1610) 156 

nm, and 10 (20) m (Du et al., 2016). MNDWI varies between -1 to 1, which values greater than 157 

zero is considered as water (Du et al., 2016; Clement et al., 2018).  158 

Fig. 2a indicates the inundated area extracted by MNDWI during a period from 11 March 2019 to 159 

10 April 2019, which flash-flood affected large parts of Iran. In this period, the Gorganrood River 160 

Basin was most severely faced with flood disasters, and flooding has surrounded about 70 villages. 161 

Also, some of the cities, such as Aqqala in this watershed was submerged during this period (for 162 

around more than one month) (Fig. 3).  163 

After identifying the inundated area, the number of 368 flash-flood locations were randomly 164 

considered from the inundated pixels (Fig. 2b), and their locations were confirmed through many 165 

field surveys and reports from Iran's Minister of Energy (IMOE). It should be stated that the 166 

existing water bodies were masked from MNDWI, so the considered flash-flood locations were 167 

not from the existing water bodies. Also, the equal number of the flood occurrence locations, 368 168 

non-flood occurrence locations were randomly considered from the non-inundated pixels (Fig. 2b). 169 

These flood/non-flood points were considered as the dependent variable and used for flash-flood 170 

modeling using machine learning (ML) models. Section 2.2.4 (i.e., Flash-flood modeling) provides 171 

more details about the flash-flood modeling.  172 
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Fig. 2 SOMEWHERE HERE 173 

Fig. 3 SOMEWHERE HERE 174 

 175 

2.2.2. Flash-flood influencing factor (FFIF) 176 

According to the data availability in the study area and due to the literature review, number of 15 177 

factors including elevation, slope, aspect, topographic roughness index (TPI), topographic position 178 

index (TPI), flow accumulation (FA), topographic wetness index (TWI), drainage density (Dd), 179 

distance from stream (Dfs), precipitation, normalized difference vegetation index (NDVI), soil 180 

depth, soil type, land use, and lithology (Fig. 4) were considered as predictors to model flash-flood 181 

in the Gorganroud River Basin.  182 

The topographical factors, including elevation, slope, aspect, TPI, and TRI, are important factors 183 

that affect flood occurrences. An ASTER Digital Elevation Model (DEM) with a cell size of 30 m 184 

× 30 m was used to extract the topographic factors. The elevation is among the most essential 185 

factors in flood modeling (Fig. 4a), and the probability of flood events in areas with high elevation 186 

is almost impossible (Botzen et al., 2012). Water flow moves from high elevations towards low 187 

elevations, and therefore, the possibility of flood occurrence is naturally higher in flat regions. The 188 

slope layer is another factor which plays a major role in flood event through effects on movement 189 

and velocity of runoff, speed of the water (Torabi Haghighi et al., 2018). The slope layer changes 190 

from 0 to 433 percent (0 to 77 degrees) in the study area (Fig. 4b). The different aspects (Fig. 4c) 191 

have different effects on the flood due to the difference in receiving solar energy and rainfall in 192 

each aspect (Mojaddadi et al., 2017). The TRI indicates the roughness of the ground which affects 193 

flood movement (Kalantar et al., 2017). The value of the TRI layer (Fig. 4d) in the study area 194 

varies from 0 to 73. The TPI (Fig. 4e) shows regions that have high (the positive values) and low 195 
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(the negative values) elevation than average of their surroundings. The TPI layer in the study area 196 

changes from -52 to 53. The TPI and TRI layers were generated by SAGA-GIS software. 197 

The FA layer (Fig. 4f) indicates several accumulated pixels in upstream of a given pixel. So, this 198 

can be a good index to show the areas with highly accumulated water (Kia et al., 2012). The TWI 199 

layer (Fig. 4g) represents the wetness conditions due to the topography, which is important in 200 

surface runoff generation (Nampak et al. 2014; Sajedi‐Hosseini et al., 2018; Alilou et al., 2019). It 201 

was generated in the SAGA-GIS environment. The drainage density (Fig. 4h) is related to the 202 

slope, elevation, and structures of lithology. A lot of floods occur in a high drainage density area 203 

due to the large accumulation of water. When the drainage density of an area is high, it 204 

demonstrates a high runoff and low infiltration rate and vice versa (Prasad et al, 2008). Naturally, 205 

areas close to rivers and streams have more probability of flooding. The Dfs layer was created 206 

using the Euclidian distance tool in ArcGIS (Fig. 4i). The precipitation is the motive of a flood, 207 

which in this study its map for flooding periods (Fig. 4i) was created using precipitation data of 208 

weather stations (Fig. 1) obtained from the Iran Meteorological Organization through Inverse 209 

Distance Weighting (IDW) method.  210 

The event of a flood is oppositely related to the density of vegetation (Kia et al., 2012). Hence, 211 

NDVI (Fig. 4K), as an index indicating vegetation conditions, was extracted for flooding period 212 

(March 2019) using Landsat 8 satellite images through Google Earth Engine (GEE, 2019b). The 213 

soil is an effective factor in the generation or infiltration of runoff (Csáfordi et al., 2012). The most 214 

dominant soil types of the study area are Mollisol, Alfisol, Inceptisol, Entisol, Aridisol, Rock 215 

Outcrop, and Salt flat (Fig. 4m). Soil type (Fig. 4m) and soil depth (Fig. 4l) affects the drainage 216 

process because of different characteristics such as penetrability degree, texture, and structure. 217 

Land use is another important factor for a flood event. Conditions of runoff vary with different 218 
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land uses (Wang et al, 2015). Precipitation on the barren land run over the surface quickly 219 

compared to the forest land (Kia et al., 2012). In this study, the land use map includes nine 220 

dominant classes, namely forest, agriculture, rangeland, dry farming, orchard, bareland, water 221 

bodies, woodland, and residential areas (Fig. 4n). The lithology is another factor which can affect 222 

flood sensitive areas. The lithology units based on the rock permeability is also required in flood 223 

hazard assessment. According to the lithology map, most of the study area located in west is Qm 224 

unit (Quaternary- swamp and marsh). In this study, the Iranian Water Resources Management 225 

Company (IWRMC) provided the essential data on the soil, land use, and the lithology maps.  226 

Fig. 4 SOMEWHERE HERE 227 

 228 

2.2.3. Feature selection using simulated annealing (SA) method 229 

In this study, at first, we considered FFIFs based on the literature reviews. Due to the lack of a 230 

universal guideline for selecting factors in flood hazard assessment studies, the FS methodology 231 

was conducted on data to select key variables and avoid the effects of redundant factors on flash-232 

flood modeling. Therefore, the SA method was carried out to select key features. SA is an efficient 233 

global optimization method based on a random search technique, widely used to identify the 234 

optimum in relatively large design space (Kirkpatrick et al., 1983, Aarts and Korst, 1988). SA 235 

particularly suitable in avoiding the local solutions traps through displacing toward the uphill 236 

following the probability 𝑝 = 𝑒𝑥𝑝(−∆𝐸/𝑇), where T is representing the annealing parameter, and 237 

the ∆𝐸 would be the value of the uphill movement. Uphill movements are regulated for organized 238 

progress towards the optimum while avoiding the big movement to maintain the accuracy of the 239 

solution. To do so a primary solution is randomly selected. The value of the cost function is 240 

accordingly calculated aiming at the minimum value. In every step, the value of the cost function 241 
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is compared with the value of the neighboring points. The new values must be less than the former 242 

values, or the Boltzman's probability (Aarts and Korst, 1988) must be satisfied to be accepted. The 243 

workflow will continue to find the global minimum value of the function. Literature includes 244 

several studies where SA has been used in hydrological forecasting for optimizing the input feature 245 

subset selection and used to reduce the redundant variables from the modeling process (Zhu and 246 

Wu, 2013, Huang et al., 2018, Choubin et al., 2020). In this study, the SA method was conducted 247 

using a k-fold (10-fold) cross-validation methodology by training data set (70% of the data) within 248 

the R environment through the Caret package (Kuhn, 2015).  249 

 250 

2.2.4. Flash-flood modeling 251 

After preparing the predictand (flood/non-flood locations) and predictors (FFIF selected by SA) 252 

variables respectively as output and inputs data, flash-flood modeling was conducted using 253 

machine learning (ML) models. In this study, the flooded and non-flooded points (Fig. 2b) are 254 

converted into a binary scale (or presence-absence). So, the values of 0 and 1 were assigned into 255 

the non-flood and flood occurrence locations respectively. Then, the corresponding values of the 256 

predictors in the location of the non-flood and flood points were extracted. From the whole 257 

datasets, 70% of the data (including 258 flood and 258 non-flood occurrence locations) was 258 

considered for training objectives and rest 30% of the data (including 110 flood and 110 non-flood 259 

occurrence locations) was used to evaluate data. A k-fold cross-validation methodology (k=10) 260 

was used to train the ML models.  261 

 262 

2.2.4.1. Boosted Generalized Linear Model (GLMBoost) 263 
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For fitting generalized linear model (GLM) (Lee and Nelder, 2006), GLMBoost generally uses a 264 

functional gradient descent method for optimizing the overall loss functions through implementing 265 

component-wise least squares while the variable selection can be carried out simultaneously 266 

(Bühlmann, 2006). GLMBoost (Hothorn and Bühlmann, 2006) represents an ensemble form of 267 

the GLM (McCullagh, 1984; McCullagh 2019), which transforms this ordinary linear regression 268 

into a model, suitable for high-dimensional data sets (Bühlmann and Yu, 2003; Bühlmann, 2006). 269 

Ensemble modeling is the strategy of simultaneously using a number of classifiers to improve the 270 

accuracy and quality of prediction models (Dietterich, 2000; Zhang and Ma, 2012; Buchen and 271 

Wohlrabe, 2011). One of the efficient ways of developing ensembles is the boosting technique 272 

which employs a gradient descent algorithm in function space (Breiman, 2004; Bühlmann and 273 

Hothorn, 2007; Freund and Schapire, 1995). GLMBoost is shown to be a very fast algorithm with 274 

exceptional computation characteristics of high efficiency (Dettling and Bühlmann, 2003; Hao et 275 

al., 2014; Cengiz Colak et al., 2017). Furthermore, it is easy to build and does not need to run the 276 

algorithm multiple times for cross-validation. Due to the various advantages of GLMBoost for 277 

modeling the high-dimensional phenomenon, it is expected to be a suitable candidate for flash-278 

flood susceptibility modeling. In this study, the GLMBoost model is run by the mboost R package 279 

(Hothorn et al., 2010), and its mstop parameter (i.e., number of Boosting iterations) was tuned by 280 

the tuning function of Caret R package (Kuhn, 2015).  281 

 282 

2.2.4.2. Bayesian Generalized Linear Model (BayesGLM) 283 

The GLM as a generalized and flexible linear regression (Lee and Nelder, 2006) has shown to 284 

highly benefit from the Bayesian techniques for efficient predicting the unknown parameters of 285 

the model (Antonio et al., 2005, Merl et al., 2008, Scollnik, 2005, Verrall, 2004). Modeling in a 286 
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Bayesian framework generally provides the opportunity of powerful yet low-cost computation 287 

which makes it suitable for high-dimensional data sets, e.g., hydrological data sets (Barbetta et al., 288 

2018, Bolle et al., 2018, Liu and Merwade, 2018, Sikorska and Seibert, 2018). The Bayesian 289 

statistical analysis of GLM, known as BayesGLM, have recently become popular in a range of 290 

applications and have been applied to complex prediction modeling problems, e.g. health 291 

informatics and applied statistics, with promising results (Suleiman et al., 2019, Gelman et al., 292 

2008, Ryu et al., 2018). In this study, the Bayesglm model was performed by the 'arm' package 293 

(Gelman and Hill, 2006) in the R software environment.  294 

 295 

2.2.4.3. Random Forest (RF) 296 

RF (Ho, 1995) is a popular ensemble machine learning method for mapping flood susceptibility 297 

(Lee et al., 2017; Rahmati and Pourghasemi, 2017). As a non-parametric and accurate 298 

classification and regression method, it has gained recognition in outperforming various machine 299 

learning methods in hydrological modeling and flood prediction systems (De Silva and 300 

Hornberger, 2019; Tyralis et al., 2019). For efficient regression and classification modeling, RF 301 

constructs a group of decision trees (DTs) in the framework of the random subspace method (Ho, 302 

1995). The DTs in RF benefit from the controlled variance, which improves the prediction quality 303 

and troubleshoots the overfitting issues (Ho, 1998). RF represents bagging, a set of random 304 

samples, and features selection approach to ensemble learning (Breiman, 2001). For the RF model 305 

building, often the two-thirds of the data set goes for building DTs, and one-thirds goes for 306 

performance evaluation. In the next step, the sum of the DTs performed, and the best performing 307 

model is identified according to the most votes of all trees. The model has two parameters, i.e., 308 

ntree which specifies the number of trees and mtry which indicates the number of predictors 309 
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randomly sampled for splitting at each tree node (Breiman, 2001). Furthermore, the out-of-bag 310 

(OOB) error rate is used to optimize parameters (Canion et al., 2019, Yang et al., 2019). In this 311 

study, the RF model was run using the randomForest package (Liaw and Wiener, 2002) in the R 312 

software environment, and their parameters were tuned by the tuning function of Caret R package 313 

(Kuhn, 2015).  314 

 315 

2.2.5. Validation of the results  316 

Evaluation of the modeling results was done using holdout data sets (which are not used in the 317 

calibration phase). Hit and miss analysis were used to assess the result of ML models. Metrics used 318 

in this study are including Accuracy (Acc, Eq. 1), Kappa (K, Eq. 2), success ratio (SR, Eq. 4), 319 

threat score (TS, Eq. 5) and, Heidke skill score (HSS, Eq. 6). Accuracy indicates what fraction of 320 

the modeled values are correct (Efron et al., 1986). Kappa is the degree of agreement between 321 

modeled and observed flood occurrences (Viera and Garrett, 2005). The success ratio indicates 322 

information about the likelihood of the modeled floods. Threat score indicates how were well 323 

modeled the observed flood occurrences (Stanski, 1989). HSS indicates the fraction of correct 324 

perditions after eliminating the random predictions (Heidke, 1926).  325 

 326 

Acc =
H+CN

H+CN+M+CN
                                  (1) 327 

K = 
Acc − Pe

1 − Pe
                                             (2) 328 

Pe = 
(H + FA)(H + M) + (M + CN)(FA + CN)

(H + FA + M + CN)
2            (3) 329 

SR =
H

H+FA
                                                         (4) 330 
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TS=
H

H+M+FA
                                                    (5) 331 

HSS=
2[(H×CN)-(FA×M)]

[(H+M)(M+CN)+(H+FA)(FA+CN)]
               (6) 332 

where H, FA, M, and CN are respectively number of hits, false alarms, misses, and correct 333 

negatives that are computed using a contingency table (Johnson and Olsen, 1998). Pe indicates 334 

expected agreement between modeled and observed values (Viera and Garrett, 2005). Acc, K, SR, 335 

and TS range between zero (no skill) and 1 (perfect), while HSS varies between -1 and 1 (perfect) 336 

(Choubin et al., 2019a).  337 

 338 

3. Results and discussion 339 

3.1. Simulated annealing (SA) results 340 

Using the SA method, the selected features were identified in each fold through the fitness values 341 

of Accuracy and Kappa. Table 1 indicates the optimum number of the features in each fold based 342 

on the Accuracy and Kappa metrics using the SA method. The minimum and the maximum number 343 

of the features identified by the SA method were equal to 6 (in Fold02) and 11 (Fold07) features, 344 

respectively. For example, Fold01 with a number of 7 features (including elevation, Dd, Dfr, land 345 

use, NDVI, precipitation, and TRI) had a higher modeling performance (respectively the Accuracy 346 

and Kappa values were equal to 0.90 and 0.80, Table 1) than using a less or greater number of the 347 

features. Therefore, the best number of selected features for flash-flood modeling can be between 348 

6 and 11 features. Since the average number of the features for all folds was greater than 8 (equal 349 

to 8.4) (Table 1), so nine first features were selected as key features based on their occurrence 350 

frequencies in 10 folds (with 100 iterations, totally 1000 runs) (Fig. 5). Hence, nine important 351 

selected features (which had at least 50% frequency of occurrence in the folds) in this study were 352 
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NDVI, distance from stream (Dfs), elevation, precipitation, drainage density, soil type, flow 353 

accumulation (FA), topographic wetness index (TWI), and land use respectively with occurrence 354 

frequency of 100%, 100%, 100%, 100%, 80%, 60%, 60%, 50%, and 50% in the all folds (Fig. 5). 355 

Furthermore, the physical mechanisms of various features involved in the formation of floods can 356 

be individually discussed. The NDVI, soil type, and land use are the most effective factors in the 357 

generation or infiltration of runoff (Csáfordi et al., 2012). On the other hand, the Dfs and elevation 358 

are among the essential factors in modeling, in which the probability of flood events in the areas 359 

with low elevations and also close to rivers or streams are naturally high (Botzen et al., 2012; 360 

Choubin et al., 2019b). Yet, the precipitation and TWI features are important in surface runoff 361 

generation (Nampak et al. 2014). The drainage density is associated with lithology and topographic 362 

factors (such as slope and elevation), which its higher values may demonstrate a high runoff and 363 

low infiltration rate (Prasad et al., 2008). And finally, the FA factor shows the areas with highly 364 

accumulated water (Kia et al., 2012).  365 

Table 1 SOMEWHERE HERE 366 

Fig. 5 SOMEWHERE HERE 367 

 368 

3.2. Model evaluation results 369 

Model evaluation was conducted using hit and miss analysis after calibrating using key features 370 

identified by the SA method. Table 2 shows the performance of the predictive models for the 371 

testing data set. The accuracy (Acc) was equal to 90 % for both GLMBoost and BayesGLM 372 

models, while Random Forest (RF) indicated a higher accuracy (Acc= 92 %). Kappa (K) indicated 373 

a good performance (0.55 <K< 0.85) for the models according to the Monserud and Leemans 374 

(1992) (Table 2).  375 
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Success ratio (SR) indicated that 94%, 95%, and 96% of the modeled flood occurrences were 376 

actually observed respectively for the BayesGLM, RF, and GLMBoost models. The threat score 377 

(TS) showed that the correct forecasted floods by the GLMBoost, BayesGLM, and RF models are 378 

quale to 81%, 80%, and 84%, respectively. Also, the Heidke skill score (HSS) results highlighted 379 

that after eliminating the random predictions, the correct predicated floods are equal to 80%, 79%, 380 

and 0.84% respectively for the GLMBoost, BayesGLM, and RF models (Table 2).  381 

Application of the GLMBoost and BayesGLM in flash-flood modeling was novel, and direct 382 

compassion with scholars was not possible. The BayesGLM model has never been used for flood 383 

susceptibility mapping or any other hydrological modeling up until now. But the popularity of 384 

boosting in the advancement of ensemble machine learning methods for hydrological modeling 385 

including the flood prediction has been fast-growing due to their accuracy (Antonetti et al., 2019; 386 

Berkhahn et al., 2019; Gomez et al., 2019; Lee et al., 2017; Peng et al., 2019; Tian et al., 2019). 387 

However, the promising results of GLMBoost in bioinformatics and biomedical applications have 388 

been confirmed to the artificial intelligence community (Hao et al., 2014; Dettling and Bühlmann, 389 

2003). Among the used models, the application of RF is well established for flood susceptibility 390 

hazard assessment, and the literature includes adequate RF models with high accuracy and 391 

promising results in this realm (Al-Abadi, 2018, Chapi et al., 2017; Zhao et al., 2018). The 392 

popularity of RF in modeling the flash-flood susceptibility has also been increased during the past 393 

few years due to its simplicity, robustness and capacity to deal with complex data structures 394 

(Laudan et al., 2017, Muñoz et al., 2018, Terti et al., 2019). Thus, choosing the RF as a benchmark 395 

method was highly beneficial in this study to better explore the potential of the new methods, i.e., 396 

GLMBoost and BayesGLM. Generally, the comparison of the applied models in this study 397 

revealed that a good and close performance of them to model flash-flood locations (Table 2). The 398 
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successful results of the RF model are in agreement with Wang et al. (2015), Lee et al. (2017), and 399 

Feng et al. (2015).  400 

Table 2 SOMEWHERE HERE 401 

 402 

3.3. Spatial assessment of flash-flood hazard 403 

After validating the predictive models, spatial probability maps (from 0 to 1) of flood occurrence 404 

were predicted using the calibrated models and predictive variables for the whole study area. Then 405 

the probability maps were converted into five classes (i.e., very low, low, medium, high, and very 406 

high) with equal interval scheme within the ArcGIS software, so flash-flood hazard maps with 30 407 

× 30 m cell size were produced (Fig. 6).  408 

According to the flash-flood hazard maps, the area with very low and low hazard classes covers 409 

about 82.7% (9332.6 km2), 83.4% (9414.3 km2), and 84.4% (9530.2 km2) of the total area by the 410 

BayesGLM, GLMBoost, and RF models. Moderate class predicted by the BayesGLM model is 411 

higher than the GLMBoost and RF models (respectively 8.9%, 5.7%, and 5.2% of the study area). 412 

Summation of the high and very high classes have respectively 10.9% (1230.0 km2), 10.3% 413 

(1167.5 km2), and 8.4% (950.8 km2) of the study area for the GLMBoost, RF, and BayesGLM 414 

models, which mostly are placed around the rivers in the down streams of the study area (Fig. 6).  415 

Fig. 6 SOMEWHERE HERE 416 

 417 

3.4. Contribution analysis of predictive variables 418 

The importance of the predictive variables based on the percent decrease in area under the curve 419 

(DAUC) of the receiver operating characteristics (ROC) was analyzed. Results highlighted that 420 

the most importance variables in the modeling process was Dfs (DAUC = 81.48%) and NDVI 421 
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(DAUC = 81.16%), while variables of Dd (DAUC = 75.84%), land use (DAUC = 73.62%), and 422 

elevation (DAUC = 73.33%) had a moderate importance (Fig. 7). Also, DAUC indicated that TWI, 423 

precipitation, FA, and soil type were in the next orders in view of DAUC (respectively equal to 424 

57.18%, 54.29%, 50.65%, and 50.16%) (Fig. 7). In this regard, Siahkamari et al. (2018) and 425 

Choubin et al. (2019b) indicated that Dfs was one of the most important variables in flood 426 

modeling.  427 

Probability curves based on the GLMBoost model for each variable are shown in Fig. 8. P (1) and 428 

P (0) respectively indicate the probability of flood occurrence and non-occurrence. Following the 429 

present results, with increasing elevation, the probability of flood occurrence increased (Fig. 8a). 430 

While flood decreased with increasing flow accumulation, TWI, drainage density, and 431 

precipitation (Fig. 8b to Fig. 8d, and Fig. 8f). On the contrary, when the distance from stream 432 

increased, the flood occurrence decreased (Fig. 8e). This is in accordance with the results of Hong 433 

et al. (2018) and Darabi et al. (2019). Furthermore, variations of NDVI indicated that with 434 

increasing it, the flood occurrence decreased (Fig. 8g). This is well-indicated with the role of 435 

vegetation in the control and infiltration of surface water (Islam and Sado, 2000).   436 

For categorical variables (i.e., soil type and land use), the probability values indicate mean 437 

probability in each class (Fig. 8h and Fig. 8i). Soil types of Salt Flats and Aridisols are shown a 438 

high probability of flood occurrence (Fig. 8h). As can be seen from the land use map, 439 

water/wetland, and residential areas had the most probability of flood occurrence, while forest 440 

indicated less probability (Fig. 8i).  441 

Fig. 6 SOMEWHERE HERE 442 

Fig. 8 SOMEWHERE HERE 443 

 444 



21 
 

4. Conclusion 445 

This study used three state-of-the-art machine learning models (i.e., GLMBoost, RF, and 446 

BayesGLM) for modeling flash-flood in an area that is strongly affected by the flood. The 447 

application of the GLMBoost and BayesGLM in this study was novel. Moreover, the simulated 448 

annealing (SA) method as a novel and successful method was used to eliminate redundant 449 

variables from the flood modeling process for the first time. Results of the flash-flood modeling 450 

revealed that the applied models had a good and close performance (e.g., Accuracy = 90% for both 451 

models). Variables of Dfs, NDVI, Dd, land use and elevation had more contribution, among others. 452 

Although results indicated a good performance of the modeling, lack of soil data such as infiltration 453 

and soil hydrological groups, which have effects on surface runoff, was one of the limitations of 454 

the study. Furthermore, due to the lack of recorded flood locations, this study tried to extract 455 

flooded areas from remotely sensed data for a short period (from March to April). Still, flooding 456 

is affected by various variables such as return period (RP), in future investigations, it might be 457 

possible to use a different RPs of recorded precipitation and flood occurrence locations for 458 

calibrating the models and extracting different hazardous area based on the RPs. Nevertheless, our 459 

findings can significantly facilitate understanding the hazardous area and help watershed managers 460 

to control and remediate induced damages of flood in a data-scarce region. 461 
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Tables: 869 

Table 1 Selected features in each fold using the SA method 870 

Fold 
Number of the 

selected features 
Selected features Accuracy Kappa 
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Fold01 7 
Elevation, Dd, Dfr, Landuse, 

NDVI, Precipitation, TRI 
0.90 0.80 

Fold02 6 
Aspect, Elevation, Dfr , NDVI, 

Precipitation, Soil type 
0.89 0.79 

Fold03 8 
FA, Elevation, Dd, Dfr, NDVI, 

Precipitation, TRI, Soil type 
0.81 0.61 

Fold04 9 

FA, Elevation, Dd, Soil depth, Dfr, 

Landuse, NDVI, Precipitation, 

TPI 

0.90 0.80 

Fold05 10 

FA, Elevation, Dd, Soil depth, Dfr, 

Lithology, NDVI, Precipitation, 

TRI, TWI 

0.84 0.68 

Fold06 7 
Elevation, Dd, Dfr, Landuse, 

NDVI, Precipitation, TWI 
0.93 0.86 

Fold07 11 

FA, Elevation, Dd, Soil depth, Dfr, 

Landuse, Lithology, NDVI, 

Precipitation, TRI, Soil type 

0.92 0.84 

Fold08 9 

Aspect, Elevation, Dd, Soil depth, 

Dfr, Landuse, NDVI, 

Precipitation, Soil type 

0.85 0.69 

Fold09 7 
FA, Elevation, Dfr, NDVI, 

Precipitation, Slope, Soil type 
0.95 0.91 

Fold10 10 

FA, Aspect, Elevation, Dd, Dfr, 

NDVI, Precipitation, TPI, TRI, 

Soil type 

0.87 0.74 

Average 8.4 − 0.89 0.77 

 871 

 872 

 873 

 874 
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Table 2 Performance of the predictive models for the test data set 875 

Statistic GLMBoost BayesGLM Random Forest 

Accuracy (Acc) 0.90 0.90 0.92 

Kappa (K) 0.80 0.79 0.84 

Success ratio (SR) 0.96 0.94 0.95 

Threat score (TS) 0.81 0.80 0.84 

Heidke skill score (HSS) 0.80 0.79 0.84 

 876 

Figures: 877 

 878 
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 879 

Fig. 1 Location of the Gorganroud River Basin 880 

 881 
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 882 

Fig. 2 Extracted inundated area by Sentinel-2 images during a period from 11 March 2019 to 10 883 

April 2019 (a) and location of the flooded and non-flooded points (b) 884 

 885 

 886 
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 887 

Fig. 3 Flooded area in the Aqqala city (Qomnews, 2019).  888 

 889 
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Fig. 4 Flash flood influencing factor: a) elevation, b) slope, c) aspect, d) topographic roughness 891 

index (TPI), e)  topographic position index (TPI), f) flow accumulation (FA), g) topographic 892 

wetness index (TWI), h) drainage density (Dd), i) distance from stream (Dfs), j) precipitation, k) 893 

normalized difference vegetation index (NDVI), l) soil depth, m) soil type, n) land use, and o) 894 

lithology. 895 

 896 

 897 

 898 

Fig. 5 The frequency (%) of selected features in all folds.  899 
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 901 

Fig. 6 Spatial prediction of flash flood hazard: (a) GLMBoost, (b) BayesGLM, and (c) Random 902 

forest 903 
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Fig. 7 Variable importance based on the BayesGLM model.  906 

 907 

 908 

Fig. 8 GLMBoost probability curves for each variable: (a) elevation, (b) flow accumulation, (c) 909 

topographic wetness index (TWI), (d) drainage density, (e) distance from stream, (f) precipitation, 910 

(g) NDVI, (h) soil type, and (i) landuse.  911 
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