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 25 
Abstract 26 

Fog is an important component of the water cycle in northern coastal regions of Iran. Having 27 

accurate tools for mapping the precise spatial distribution of fog is vital for water harvesting within 28 

integrated water resources management in this semi-humid region. In this study, environmental 29 

variables were considered in prediction mapping of areas with high concentrations of fog in the 30 

Vazroud watershed, Iran. Fog probability maps were derived from four artificial intelligence 31 

algorithms (Generalized Linear Model, Generalized Additive Model, Generalized Boosted Model, 32 

and Generalized Dissimilarity Model). Models accuracy were assessed using Receiver Operating 33 

characteristic Curve (ROC). Three social variables were also selected according to their relevance 34 

for fog suitability mapping. Finally, Fog-water harvesting Capability Index (FCI) maps were 35 
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produced by multiplying fog probability by fog suitability maps. The results showed high accuracy 36 

in fog probability mapping for the study area, with all models proving capable of identifying areas 37 

with high fog concentrations in the south and southeast. For all models, the highest values of 38 

importance were obtained for sky view factor and the lowest for slope curvature. Analytic 39 

Hierarchy Process results showed the relative importance of social conditioning factors in fog 40 

suitability mapping, with the highest weight given to distance to residential area, followed by 41 

distance to livestock buildings and distance to road. Based on the fog suitability map, southeast 42 

and southern parts of the study area are most suitable for fog water harvesting. The fog spatial 43 

distribution maps obtained can increase fog water harvesting efficiency. They also indicate areas 44 

for future study with regions where fog is a critical component in the water cycle.  45 

Keywords: Fog probability and suitability maps; GIS; fog-water harvesting Capability Index (FCI).  46 

 47 

1. Introduction 48 

Water is one of the most abundant natural resources on Earth, but only 3% of free water is potable 49 

(Olivier, 2004). In some parts of the world, potable water shortage is a serious problem and many 50 

people have no access to potable water, which is one of the most serious problems worldwide 51 

(Sharma et al., 2016; Harb et al., 2016). With increasing global population and climate change, 52 

lack of drinking water in both arid and humid climates will be a growing problem for modern 53 

civilization (Rajaram et al., 2016; Al-Jawad et al., 2019). To tackle these problems, there is a need 54 

for implementation of integrated water resources management (IWRM) applying robust methods 55 

on basin system scale (Maier et al., 2014; Barbosa et al., 2016; Al-Saidi, 2017). In IWRM, water 56 

supply managers are obliged to plan for the use of all available water resources, taking into account 57 

economic, social, cultural, health, and environmental issues (Barbosa et al., 2017; Mapani et al., 58 
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2017; Sadegh et al., 2018). Optimal use of available water resources and identifying ways to access 59 

new water resources are possible solutions to the global water challenges. One potential option is 60 

to use humidity in the air as a source of water supply (Klemm et al., 2012). Fog is a source of 61 

potable water and collection of fog water using innovative methods could be a sustainable strategy 62 

to obtain drinking water for human and animal consumption in foggy areas (Fessehaye et al., 2014; 63 

Dodson and Bargach, 2015; Gürsoy et al., 2017). An important feature, especially in coastal or 64 

mountainous areas (that are difficult to access and utilize by local people), is that even in the 65 

absence of vegetation mountain fog can be captured as a source of water (Khosravi et al., 2015; 66 

Olivier, 2004; Sharma et al., 2016; Harb et al., 2016). Countries such as Chile, Peru, Ecuador, 67 

Canada, Namibia, and Nepal have already implemented fog water harvesting, with large amounts 68 

of fog water harvested in some cases. For example, in one village in Chile with a fog water 69 

extraction system, on average 11,000 liters of water are extracted daily from this source (Cereceda 70 

et al., 1992; Imteaz et al., 2011; Fessehaye et al., 2014; Sharma et al., 2016; Rajaram et al., 2016). 71 

Various techniques for fog water harvesting are applied around the world, depending on the 72 

region’s conditions. These include dew ponds, air wells, fog fences, and fog harvesting from a 73 

variety of fog moisture collection systems.  74 

Fog water harvesting for the purpose of the freshwater consumption has been suggested in recent 75 

decades for sites where it is economically justifiable (Klemm et al., 2012; Mahmoud, 2013; 76 

Batisha, 2015). Precise knowledge about potential sources for fog water extraction is critical in 77 

cost/benefit analysis, as careful site selection can reduce the costs and achieve better results 78 

(Choudhury et al., 2007; Hiatt et al., 2012; Kutty et al., 2018). It is particularly important to prepare 79 

fog water capability maps based on socio-environmental conditioning factors. The aim of the 80 

present study is to develop fog water capability maps for IWRM, using Generalized Linear Model 81 
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(GLM), Generalized Additive Model (GAM), Generalized Boosted Model (GBM), and 82 

Generalized Dissimilarity Model (GDM), and combining these with background information on 83 

natural conditions for fog and environmental variables that affect the fog formation (Domen et al., 84 

2014; Elhag and Bahrawi, 2014; Haghighi et al., 2016; Mustonen et al., 2016). Environmental 85 

variables refer to the climate, topographical, and hydrological conditions that govern fog 86 

formation. Here, remote sensing data were used to estimate some of these environmental variables. 87 

The specific objective of the work is developing a new computational framework by preparing 88 

fog-water harvesting suitability maps based on the selected environmental variables. The novelty 89 

and main contribution of the work lies in developing a Fog-water harvesting Capability Index 90 

(FCI) based on the socio-environmental variables and artificial intelligence algorithms to select 91 

the best sites for implementation of fog water harvesting technology.   92 

2. Material and methods 93 

2.1. Study area  94 

The site selected for the study was the Vazroud watershed (36°14′26′′-36°25′54′′N, 52°01′46′′-95 

52°52′30′′ East), which extends across 1400 km2 in northern Iran (Fig. 1). Based on aridity index 96 

of 0.67 (Sahin, 2012: Darabi et al., 2019), mean annual rainfall of 672 mm, and potential 97 

evapotranspiration of 1005 mm (in the period 2001-2018), climate type in the Vazroud watershed 98 

is semi-humid. The watershed is characterized by mountainous terrain and rugged topography 99 

(elevation from 278 to 3577 meter above sea level) (Fig. 1). This is accompanied by frequent 100 

intense foggy and cloudy weather, especially in headwater areas. At the same time, there is a severe 101 

shortage of fresh water for households and livestock elsewhere in the watershed. Based on these 102 

characteristics, fog water harvesting in the Vazroud watershed should be explored. 103 

 104 
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 105 
Fig. 1. SOMEWHERE HERE 106 

 107 

 108 

2.2. Methods  109 

2.2.1. Artificial intelligence models 110 

A number of artificial intelligence models have been developed in recent years, including those 111 

tested here (GLM, GAM, GBM, and GDM) (Guisan et al., 2002).  112 

Generalized Linear Model (GLM) 113 

Generalized linear models are extensions of linear models that are widely used in regression 114 

analysis and represent an important class of statistical models that allow for non-linearity and non-115 

constant variance structures in the data (Nelder and Wedderburn, 1972; Guisan et al., 2002; Yeo, 116 

2007). They are based on the relationship between the response variable and linear combination 117 

of the independent variables. Thus, GLMs are flexible and well suited for analyzing environmental 118 

interactions, which can be weakly described by classical Gaussian distributions (Austin, 1987). 119 

Generalized Additive Model (GAM) 120 

Generalized additive models were first developed by Hastie and Tibshiran (1987). The methods 121 

available in GAM are techniques developed to combine characteristics of GLMs with additive 122 

properties, in which the predictor depends linearly on unexplored functions of predictor variables 123 

and focuses on reasoning about these functions. GAMs also provide an effective framework for 124 

mapping point-based data (Hastie and Tibshirani, 1987; Webster et al., 2006).  125 

Generalized Boosted Model (GBM)  126 

Generalized Boosted Models are a combination of two techniques, decision tree and boosting 127 

algorithms, and are robust to missing values and outliers. GBMs fit many decision trees repeatedly 128 

to achieve results with high accuracy. In each model, the input data for a new tree are weighted 129 
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data that were weakly modelled by older trees. The model attempts to improve its accuracy by 130 

taking into account the fit of previous trees. This continuous method is only used for the boosting 131 

approach (Elith et al., 2008; Franklin, 2010; Sánchez-Mercado et al., 2010).   132 

Generalized Dissimilarity Models (GDM) 133 

Generalized dissimilarity models were developed by Ferrier et al. (2007) for modeling the spatial 134 

distribution of environmental variables. GDMs are an extension of matrix regression, which can 135 

be applied in environmental studies (Ferrier et al., 2007). GDMs require point data from a range 136 

of locations over the study area (as dependent variables) to fit a model which predicts the merger 137 

dissimilarity between pairs of points as a nonlinear multivariate function of the environmental 138 

factors (independent variables) of these locations (Koubbi et al., 2011). 139 

 140 

2.2.2. Fog sampling (field measurements) 141 

Data on foggy zones in the study area were collected based on field surveys and Global Positioning 142 

System (GPS; Garmin 76cx). The input data included an inventory showing areas under fog during 143 

foggy weather in 2018. Consequently, a fog inventory with a point base map as dependent variable 144 

was considered in the analysis, where each point referring to an actual foggy area in the Vazroud 145 

watershed. In preparation of the fog potential map, 100 fog-prone points (assigned a value of 1) 146 

which were divided into two groups: model training data (70% of the inventory data, n=70) and 147 

model validation data (30% of the inventory data, n=30) and 90 non-fog-prone points (assigned a 148 

value of 0) were chosen randomly (Darabi et al., 2019). To better evaluate site selection for fog 149 

water harvesting, field observations were used in verification of the model outputs.  150 

 151 

2.2.3. Environmental predictor variables for the fog probability map 152 
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Fourteen environmental predictor variables were selected based on their relevance for fog 153 

formation and categorized into three groups: hydro-climatic predictor variables (precipitation, 154 

temperature, leeward effect, windward effect, topographic wetness index, and diurnal anisotropy 155 

heating); topographical predictor variables (elevation, slope aspect, slope variability, slope 156 

curvature, sky view factor, and terrain ruggedness index); and remote sensing predictor variables 157 

(land use/land cover and land surface temperature) (Casu et al., 2017). All these variables are 158 

explained below.  159 

2.2.3.1. Hydro-climatic predictor variables: In many environments, hydro-climatic variables 160 

show high spatial changes, often occurring within short distances of less than a kilometer. 161 

Understanding the spatial variability in hydro-climatic conditions is essential for effective IWRM 162 

(Dietrich and Böhner, 2008; Yang et al., 2015; Zhu et al., 2018). The six hydro-climatic variables 163 

used here as predictor variables in fog potential mapping are described below. 164 

Precipitation: Daily precipitation data for 2001-2018 were obtained from the Iranian 165 

Meteorological Organization (IRIMO) and used to produce a precipitation map for the study area 166 

by applying the inverse-distance weighting (IDW) interpolation method in ArcGIS GIS 10.4. The 167 

recorded annual precipitation amount ranges from 832 mm in the east of the study area to 349 mm 168 

in the west (Fig. 2a). Mean annual precipitation in the Vazroud watershed is 672 mm.  169 

Temperature: Daily temperature data for 2001-2018 obtained from IRIMO were used to produce 170 

a temperature distribution map by applying IDW in ArcGIS GIS 10.4. The recorded temperature 171 

ranges from 11.59°C mm in the southwest of the study area to 15.41°C mm in the north (Fig. 2a). 172 

Mean annual temperature in the Vazroud watershed is 13.13°C. 173 

Leeward effect (LE): The leeward side is the downwind (downslope) side of a mountain facing 174 

away from the wind at the point of reference (Fig. 1). It is protected from the moist prevailing wind 175 
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and is typically drier with lower barometric pressure (Scholl et al., 2007; Vikram and 176 

Chandradhara, 2016).  177 

Windward effect (WE): The windward side is the upwind (upslope) side of a mountain facing the 178 

wind at the point of reference (Fig. 1). It generally has higher barometric pressure and is wetter 179 

than the leeward side (Scholl et al., 2007; Vikram and Chandradhara, 2016).   180 

Topographic wetness index (TWI): Among the many hydrological variables available, TWI was 181 

used here as it can quantify the local topographic conditions in hydrological processes and express 182 

the surface saturation and spatial variability of soil moisture. The relevance of TWI can be 183 

described by the following equation (Pei et al., 2010; Zhu et al., 2018):  184 

              TWI = ln (
𝛼

𝑡𝑎𝑛 𝛽
)                   (1) 185 

where 𝛼 is the specific catchment area (SCA) and tan 𝛽 is the local slope (Pei et al., 2010). The 186 

TWI for the study area was calculated using SAGA GIS algorithms based on a digital elevation 187 

map (DEM, 12.5 m spatial resolution).  188 

Diurnal anisotropy heating (DAH): DAH was calculated as (Böhner and Antonić, 2009): 189 

         𝐻𝛼 = cos(𝛼𝑚𝑎𝑥 − 𝛼) × 𝑎𝑟𝑐𝑡𝑎𝑛(𝛽)                                    (2)  190 

where 𝛼𝑚𝑎𝑥 describes the aspect with the maximum total heat surplus, α is the aspect of the slope 191 

and β is the slope gradient. Fig. 2 shows the DAH for the study area, which was calculated using 192 

the SAGA GIS program.  193 

2.2.3.2. Topographic predictor variables: The spatial distribution of most environmental variables 194 

is controlled by topographic characteristics, such as elevation, slope variability, slope aspect, and 195 

slope curvature, and topographic parameters such as sky view factor (SVF) and terrain ruggedness 196 

index (TRI).     197 
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Elevation: A medium-resolution Advanced Land Observation Satellite-Phased Array type L-band 198 

Synthetic Aperture Radar (ALOS PALSAR) derived DEM with 12.5-m spatial resolution (Fig. 2c) 199 

was obtained from the Alaska satellite facility (https://vertex.daac.asf.alaska.edu/). The elevation 200 

of the Vazroud watershed ranges from 278 to 3577 masl.    201 

Slope aspect: A slope angle map was derived from the 12.5-m DEM and expressed as a percentage 202 

using the “slope tool, Spatial Analyst” in ArcGIS GIS 10.4. The slope in the Vazroud watershed 203 

area varies from 0 to more than 78.76% (Fig. 2d).  204 

Slope variability (SV): SV, a measure of the relief of slope, refers to the difference between the 205 

minimum and maximum slope angle within a certain area (i.e., SV = slopemax – slopemin). SV was 206 

calculated based on the slope roughness variation method (Ruszkiczay-Rudiger et al., 2009) in 207 

ArcGIS GIS 10.4 from the 12.5-m DEM. 208 

Slope curvature: Slope curvature is another conditioning factor in foggy areas. In this study, slope 209 

curvature was derived from the DEM and allocated to one of three classes: concave (<-0.05), flat 210 

(-0.05 to 0.05), and convex (> 0.05) (Fig. 3c). A positive value represents an upwardly convex 211 

surface, whereas a negative value indicates an upwardly concave surface, at a given pixel location 212 

(Mandal and Mandal, 2018: Tehrany et al., 2019; Das, 2019).  213 

Sky view factor (SVF): SVF is defined the ratio at a point in space between the visible sky and a 214 

hemisphere centered visible from the ground over the analyzed location (Zakšek et al., 2011: 215 

Bernard et al., 2018). It varies significantly in regions with different topography and is an 216 

adjustment factor used to account for obstruction of the overlying sky hemisphere by surrounding 217 

land surface, with areas with higher visibility less related to fog abandonment (Olcinal, 2013). It 218 

is calculated as:  219 

     SVF =  
1

𝑁
× ∑[cos 𝛽 × 𝑐𝑜𝑠2𝛽𝜑𝑖 +  𝑠𝑖𝑛 𝛽 × cos (∅𝑖 − 𝛼) × (90 − 𝜑𝑖 − 𝑠𝑖𝑛𝜑𝑖 × 𝑐𝑜𝑠𝜑𝑖)]

𝑁

𝑖=1

    (3) 220 

https://vertex.daac.asf.alaska.edu/
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where N is the number of directions used to represent the full unit circle, 𝜑𝑖 and ∅ are horizon 221 

angle and azimuth directions the ith direction, respectively, around each point in a DEM, and α 222 

and β are the slope aspect and angle, respectively. In this study, the SVF was calculated using 223 

SAGA GIS software and it varies from 1 for completely horizontal surface or peaks and ridges to 224 

0 for completely obstructed land surface (Böhner and Antonić, 2009). Fig. 2 shows the spatial 225 

distribution of SVF for the Vazroud watershed. 226 

Terrain ruggedness index (TRI): TRI is a metric developed by Riley et al. (1999) to express the 227 

elevation difference between a cell and the mean of an eight-cell matrix of surrounding cells. It 228 

can also quantify surface roughness through consideration of absolute elevations in the 229 

surroundings of a given raster cell for DEM (Riley et al., 1999; Zhu et al., 2018). TRI was 230 

calculated using SAGA GIS software and it varies from 771.22 m (highly rugged) to 0 m 231 

(completely level surface) in the Vazroud watershed (Fig. 2).  232 

2.2.3.3. Remote sensing predictor variables: Remote sensing data can be used within 233 

environmental science for hydrological impact assessment and water resources management, and 234 

it is generating a huge interest within the geoscience community (Casu et al., 2017; Xu et al., 235 

2019).  236 

Land use/land cover (LULC): A LULC map was prepared using Landsat 8 Operational Land 237 

Imager images or OLI (Path/Row: 164/035) acquired on 11 June 2016 (from the USGS dataset). 238 

In image pre-processing, atmospheric correction of Landsat 8 images was carried out using QUick 239 

Atmospheric Correction (QUAC) in ENVI 5.3, followed by image classification using the 240 

supervised classification and maximum likelihood method in ENVI 5.3 (Liang et al., 2001; Darabi 241 

et al., 2014; Pullanikkatil et al., 2016, Haghighi et al., 2019). There are five land use types in the 242 

Vazroud watershed: dense forest, low-dense forest, rangeland, farmland, and residential zone, 243 
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occupying an area of 80.21 km2 (57.19%), 14.22 km2 (10.10%), 38.34 km2 (27.24%), 4.87 km2 244 

(3.46%), and 2.84 km2 (2.01%), respectively. The overall accuracy and Kappa coefficient of 245 

classification have been determined to be 95 and 0.93, respectively (Pullanikkatil et al., 2016). 246 

Based on the Landsat images, land use maps were generated for 2016 as illustrated in Fig. 2. 247 

Land surface temperature (LST): LST plays an important role in surface energy processes and 248 

water balance at local and global scales (Sobrino et al., 2004; Liang et al., 2013). Landsat satellite 249 

data were used in emissivity estimation for atmospheric impacts using the Fast Line-of-sight 250 

Atmospheric Analysis of Spectral Hypercube (FLAASH) algorithm in the ENVI 5.3 software 251 

(Vlassova et al., 2014). The LST was prepared from the thermal bands; the digital numbers were 252 

converted into radiance and then to at-sensor brightness temperature, which was converted to LST. 253 

The LST map for the study areas was produced based on 20 Landsat-TIRS images from 2013-254 

2017 (21.10.3013; 07.02.2014; 12.04.2014; 28.04.2014; 06.11.2014; 25.01.2015; 14.03.2015; 255 

15.04.2015; 01.05.2015; 11.12.2015; 12.01.2016; 13.02.2016; 03.03.2016; 10.10.2016; 256 

27.11.2016; 30.01.2017; 15.02.2017; 20.0402017; 06.05.2017, and 22.05.2017). The mean all 257 

these LSTs was used as the final LST map (Huang et al., 2016).  258 

 259 
 260 

Fig. 2. SOMEWHERE HERE 261 
 262 

 263 
Fig. 3. SOMEWHERE HERE 264 

 265 

 266 
Fig. 4. SOMEWHERE HERE 267 

 268 

 269 

 270 
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 271 

 272 

2.2.4. Social variables for the fog potential map 273 

In this study, three social variables (as maps) were selected according to their relevance to the fog 274 

suitability map for the Vazroud watershed. These were: distance to residential area, distance to 275 

livestock buildings, and distance to road.  276 

Distance to residential area: Distance from villages and residential areas is an important criterion 277 

in a suitability map for fog water harvesting, because the greater the distance between human 278 

settlements and areas where conditions are suitable for fog harvesting, the more difficult and costly 279 

it is to transport the water harvested. Hence, in the present study, regions closer to residential areas 280 

were given higher priority. According to a field survey and local authorities, most villages in the 281 

study area, but not all, are affected by a lack of potable water. The distance to the villages was 282 

derived using the distance module in GIS 10.4 (Fig. 5a).  283 

Distance to livestock buildings: Distance to livestock also plays in important role in a suitability 284 

map for fog water harvesting. As with distance to residential areas, shorter distance between fog 285 

harvesting areas and buildings used for domestic animal rearing was prioritized in this study. The 286 

distance to livestock buildings was derived using the distance module in GIS 10.4 for each raster 287 

cell (Fig. 5b).  288 

Distance to road: Distance to road is an important factor in a suitability map for fog water 289 

harvesting. The distance to road in the study area was derived using the distance module in GIS 290 

10.4 for each raster cell (Fig. 5c). 291 

 292 

 293 
Fig. 5. SOMEWHERE HERE 294 

 295 
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 296 

 297 

2.2.5. Fog-water harvesting Capability Index (FCI) map 298 

Fog-water harvesting Capability Index (FCI) maps were produced by multiplying fog probability 299 

by the fog suitability map (Hiatt et al., 2012; Darabi et al., 2019):   300 

              𝐹𝐶𝐼 = 𝐹𝑜𝑔 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 × 𝑓𝑜𝑔 𝑠𝑢𝑖𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦                                                             (4) 301 

where the probability map was determined from the 14 conditioning factors (precipitation??, 302 

temperature??, leeward effect, windward effect, diurnal anisotropy heating, topographic wetness 303 

index, elevation, slope variability, slope aspect, slope curvature, sky view factor, and terrain 304 

ruggedness index, land use, and land surface temperature), using the GAM, GBM, GDM and GLM 305 

models; and the suitability map was based on the social factors (distance to residential areas, 306 

livestock buildings, and road).  307 

 308 

3. Result 309 

3.1 Performance of artificial intelligence algorithms 310 

The accuracy of the GAM, GBM, GDM, and GLM models was assessed using Area Under the 311 

Receiver Operating characteristic Curve ROC-AUC (Table 1). The highest AUC values during 312 

training were obtained for GAM (0.958) and GDM (0.925), followed by GBM (0.885) and GLM 313 

(0.876) (Table 1). The highest AUC values during testing performance were obtained for GDM 314 

(0.892), followed by GBM (0.775), GLM (0.764), and GAM (0.759) (Table 1; Fig. 6).   315 

 316 
 317 

Table 1. SOMEWHERE HERE 318 
 319 
 320 

Fig. 6. SOMEWHERE HERE 321 
 322 
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 323 
 324 
 325 

 326 

3.2. Fog probability maps 327 

The fog probability maps derived using the GAM, GBM, GDM, and GLM models, indicating 328 

regions with high and low concentrations of fog, are shown in Figures 7a-7d. All models showed 329 

areas with a high concentration of fog in the south and southeast of the study area, with light fog 330 

mostly located in the north. Zones with the highest (0.99) and lowest (0.00) concentration of fog 331 

were successfully recognized by the GBM and GDM model, respectively. 332 

 333 

 334 
Fig. 7. SOMEWHERE HERE 335 

 336 

Importance variables were determined based on model functions and the impact of the variables 337 

from the field survey data. For all models, maximum values of importance were obtained for SVF 338 

and minimum values for slope curvature. The highest and lowest values obtained were, 339 

respectively, 0.78 and 0.32 for GAM, 0.74 and 0.38 for GBM, 0.79 and 0.40 for GDM, and 0.77 340 

and 0.35 for GLM (Table 2).  341 

 342 

Table 2. SOMEWHERE HERE 343 

 344 

3.2. Fog suitability map 345 

Weight and rank values of the conditioning factors and their classes were assigned according to 346 

their importance in the case study. Based on expert knowledge and using AHP results to evaluate 347 

the relative importance of fog suitability variables, the social factor with the greatest weight was 348 
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distance to residential area (0.45), followed by distance to livestock buildings (0.32) and distance 349 

to road (0.23) (Table 3). 350 

Table 3. SOMEWHERE HERE 351 

By using the weighted factors, total scores were applied and then each pixel of the output fog 352 

suitability map was assigned a value reflecting its factor (Fig. 8). Based on the results, southeastern 353 

and southern areas of the Vazroud watershed have the highest suitability for fog water harvesting.  354 

 355 

 356 
Fig. 8. SOMEWHERE HERE 357 

  358 
 359 

 360 
3.3. Fog-water harvesting Capability Index (FCI) 361 

The FCI values obtained for different parts of the study area by multiplying probability by fog 362 

suitability maps areas is shown in Fig. 9a-9d, where areas with high and low FCI have high and 363 

low capability for fog water harvesting, respectively. The results confirmed that southeastern and 364 

southern areas of the Vazroud watershed have the highest capability for fog water harvesting.  365 

 366 
 367 

Fig 9. SOMEWHERE HERE 368 
 369 

4. Discussion 370 

Prevailing hydro-climate conditions result in fog formation in the north of Iran. With increasing 371 

population and growing demand for potable water, harvesting fog water as a drinking water supply 372 

for rural communities can play an important role in IWRM in this region. The suitability of a 373 

watershed in the region for fog water harvesting was examined in this study through a field survey 374 

and calculations considering socio-environmental variables performed with artificial intelligence 375 

algorithms. Proper prediction of the spatial distribution of fog is vital to reduce socioeconomic 376 
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losses in IWRM. The present study attempted to identify areas with high concentrations of fogs in 377 

areas most suitable for fog water harvesting in the study watershed by considering 14 378 

environmental variables (precipitation, temperature, leeward effect, windward effect, diurnal 379 

anisotropy heating, topographic wetness index, elevation, slope variability, slope aspect, slope 380 

curvature, sky view factor, terrain ruggedness index, land use/land cover, and land surface 381 

temperature). Fog probability maps were derived using four artificial intelligent algorithms (GAM, 382 

GBM, GDM and GLM) and model accuracy was assessed using ROC-AUC. Three social variables 383 

(distance to residential area, distance to livestock buildings, and distance to road) were also 384 

selected according to their relevance to fog suitability maps. Fog-water harvesting Capability 385 

Index (FCI) maps were then produced by multiplying fog probability by the fog suitability maps. 386 

Fog water harvesting has been studied previously by many researchers using hydrological 387 

variables to simulate the physical processes of fog water conditions, but this approach requires 388 

sophisticated datasets and abundant computations. Thus in this study, artificial intelligence 389 

algorithms were used in socio-environmental modeling to identify foggy areas in the Vazroud 390 

watershed, in which mapping-based models are important. Models have been used for mapping to 391 

support water sustainability strategies by other researchers, but not in fog probability mapping. 392 

Artificial intelligence algorithms have now become more popular in the field of spatial distribution 393 

analysis modeling, especially in IWRM. A key advantage of these models is that limited 394 

knowledge is required. Moreover, the approach is parsimonious, since in areas where climate and 395 

hydrological data are lacking, some predictive variables, namely hydrological, topographical, or 396 

land use properties, can be used in artificial intelligence algorithms.  397 

5. Conclusions 398 
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Fog water harvesting can be an important component of IWRM in water-scarce regions with 399 

intensive and prolonged fog events. Preparing a distributed map that reflects both the extent and 400 

suitability of different areas for fog water harvesting is essential for success. This study examined 401 

a mapping approach based on 14 relevant environmental conditioning factors for identifying areas 402 

with a high concentration of fog in the Vazroud watershed, Iran. To overcome input data 403 

limitations, four artificial intelligence algorithms (GLM, GAM, GBM, and GDM) were used in 404 

mapping. All four achieved good accuracy of mapping, with order of accuracy GAM > GDM > 405 

GBM > GLM for the training data and GDM > GBM > GLM > GAM for the testing data. The 406 

novel value of the work was in developing a Fog-water harvesting Capability Index (FCI) based 407 

on socio-environmental variables in the four artificial intelligence algorithms. The FCI can be used 408 

to improve the quality of decision making and the efficiency of harvesting fog water resources. 409 

Overall, our approach gave high accuracy in FCI mapping for the study area, but the accuracy 410 

could be improved with better data on inter-annual or even intra-annual distribution of fog 411 

occurrences. This information was not available to us, but is likely to be in future with advances 412 

in IWRM in the Vazroud watershed. 413 
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