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Abstract 21 

Metacommunity ecology has broadened considerably with the recognition that measuring 22 

beta diversity beyond the purely taxonomic viewpoint may improve our understanding of the 23 

dispersal- and niche-based mechanisms across biological communities. In that perspective, we 24 

applied a novel multidimensional approach including taxonomic, functional and phylogenetic 25 

data to enhance our basic understanding of macrophyte metacommunity dynamics. For each 26 

beta diversity metric, we calculated the mean overall value and tested whether the mean 27 

value was different from that expected by chance using null models. We also employed 28 

evolutionary and spatially constrained models to first identify the degree to which the studied 29 

functional traits showed a phylogenetic signal, and then to estimate the relative importance of 30 

spatial and environmental effects on metacommunity structure. We first found that most 31 

individual ponds were inhabited by species that were merely random draws from the 32 

taxonomic and phylogenetic species pool available in the study region. Contrary to our 33 

expectations, not all measured traits were conserved along the phylogeny. We also showed 34 

that trait and phylogenetic dimensions strongly increased the amount of variation in beta 35 

diversity that can be explained by degree of environmental filtering and dispersal limitation. 36 

This suggests that accounting for functional traits and phylogeny in metacommunity ecology 37 

helps to explain idiosyncratic patterns of variation in macrophyte species distribution. 38 

Importantly, phylogenetic and functional analyses identified the influence of underlying 39 

mechanisms that would otherwise be missed in an analysis of taxonomic turnover. Together, 40 

these results let us conclude that macrophyte species have labile functional traits adapted to 41 

dispersal-based processes and some evolutionary trade-offs that drive community assembly 42 

via species sorting. Overall, our exploration of different facets of beta diversity showed how 43 

functional and phylogenetic information may be used with species-level data to test 44 

community assembly hypotheses that are more ecologically meaningful than assessments of 45 

environmental patterns based on the purely taxonomic viewpoint.  46 
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1. Introduction 67 

Traditionally, species-based metrics (i.e. taxonomic-centric approaches) have primarily been 68 

used to quantify the relative importance of species sorting and dispersal limitation on variation 69 

in species composition among habitat patches (i.e. beta diversity; see Logue et al., 2011; 70 

Swenson et al., 2012). An important source of criticism to this traditional approach is that it is 71 

silent on functional and phylogenetic differences among species (Devictor et al. 2010), 72 

compromising our ability to untangle the mechanistic basis linked to the spatial and temporal 73 

dynamics of biodiversity (McGill et al. 2006). Measuring phylogenetic diversity (i.e. mean 74 

length of evolutionary pathways that connect a given set of taxa) in species assemblages was 75 

then proposed as a promising way to explain the role of species interactions, historical 76 

imprints and evolutionary legacy in community structure (Webb et al. 2002). Meanwhile, 77 

functional diversity, reflecting the diversity of morphological, ecological and physiological traits 78 

in the multidimensional niche space (Petchey & Gaston 2006), was shown to better explain 79 

ecosystem functioning than other classical measures of diversity (sensu Devictor et al. 2010).  80 

In that perspective, adopting a multifaceted approach on beta diversity may provide a clearer 81 

picture of the selection pressures underlying different historical, ecological and evolutionary 82 

processes (Webb et al., 2002). For example, while the species composition of local 83 

communities (i.e. taxonomic facet) may sometimes fall short in providing information on how 84 

ecological communities are assembled, trait-based and phylogenetic approaches tell us more 85 

about the evolutionary constraints on community membership and how ecological processes 86 

may interact to shape patterns of niche divergence (Webb et al., 2002; Swenson et al., 2012).  87 

The extent to which taxonomic, functional and phylogenetic beta diversities are related to 88 

different drivers may help us to identify the mechanisms structuring metacommunities along 89 

environmental gradients (Cisneros et al., 2014). Also, provided that phylogenetic relatedness 90 

aligns with functional similarity (i.e. phylogenetic inertia; Faith, 2015), the former can be 91 
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considered a proxy for the latter, and thus a more phylogenetically diverse community will 92 

have a greater functional complementarity (Poff et al., 2006; Fig. 1a). However, when the 93 

measured traits are labile, functional and phylogenetic patterns can be decoupled and provide 94 

complementary insights into community assembly (Fig. 1b). How strongly their patterns 95 

overlap depends on the strength of phylogenetic signal in the functional characters, which in 96 

turn depends on the underlying processes of species diversification and niche evolution (Burns 97 

and Strauss, 2011). Such patterns would be highly complementary to traditional taxonomic-98 

based analyses by providing evidence of the impacts of past evolutionary history, specific 99 

phenotypic traits and current ecological processes on community assembly (Heino, 2011). 100 

However, the strength of phylogenetic signal in species traits is rarely examined in the 101 

metacommunity context (but see Pillar and Duarte, 2010). 102 

An increasing number of studies (e.g. Gianuca et al., 2018; Roa-Fuentes et al., 2019) have 103 

attempted to characterise patterns of functional and phylogenetic beta diversity, and with the 104 

increase in species-level trait and phylogenetic data this trend will continue. However, to our 105 

knowledge, no study to date has examined to what extent dispersal limitation and species 106 

sorting drive the structure of macrohyte metacommunities, while simultaneously taking into 107 

account multiple facets of beta diversity. To overcome this shortage, we analysed variation in 108 

taxonomic, functional and phylogenetic beta diversity of pond macrophyte communities in a 109 

Mediterranean drainage basin. Previous studies in this system based purely on taxonomic 110 

diversity measures have shown that macrophyte assemblages are mainly structured by the 111 

interaction between spatial and environmental gradients (e.g. García-Girón et al., 2019a, 112 

2019b).  113 

In this study, we used a novel combination of methods (including null models and phylogenetic 114 

signal evaluations) to assess whether the role of dispersal limitation, species sorting and 115 

combined effects was consistent for the three different beta diversity dimensions. We first 116 



6 
 

hypothesised that beta diversity patterns are non-random (Siefert et al., 2013), providing 117 

evidence that environmental and spatial processes induce ecological constraints on 118 

macrophyte community assembly patterns. Second, we expected that environmental change 119 

in this kind of highly fragmented ponds (see Fernández-Aláez et al., 2018) will lead to habitat 120 

filtering against specific functional characters, which may also lead to phylogenetic signal in 121 

species turnover. Third, based on previous findings (e.g. Gianuca et al., 2018), we hypothesised 122 

that functional and phylogenetic approaches should provide more explanatory power than the 123 

traditional taxonomic approach that treats all species as equally differentiated from each 124 

other. Fourth, we assumed that taxonomic and phylogenetic assemblages are controlled by 125 

both environmental filtering and dispersal limitation (see also García-Girón et al., 2019a, 126 

2019b), whereas functional community component is primarily structured by environmental 127 

filtering. This is because species identity and evolutionary kinship should be more influenced 128 

by dispersal limitation and evolutionary divergence (Mouquet et al., 2012; Cai et al., 2019), 129 

whereas functional diversity should be more directly related to environmental filtering due to 130 

species trait-environment association (Hoeinghaus et al., 2007; Heino et al., 2013). 131 

2. Material and methods 132 

2.1 Study area and macrophyte sampling 133 

We sampled 51 permanent ponds located within a heterogeneous and lowland area of 134 

approximately 94,000 km2 in north-western Spain (Supplementary Fig. A.1). All of the ponds 135 

belong to the same biogeographical region, where aquatic plants have a shared evolutionary 136 

history (Molina, 2017). The study area presents a relatively flat slope and plains of quaternary 137 

fluvial sedimentary nature. The climate is Mediterranean with a wide seasonal variation in 138 

temperature and precipitation, since summers are typically hot and dry (average summer 139 

temperature of 18 °C and mean summer precipitation of 84.5 mm) and winters are primarily 140 

cold and wet (average winter temperature of 3.2 °C and mean winter precipitation of 173 mm; 141 
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1976-2015, data provided by the Spanish Met Agency – AEMET; http://www.aemet.es). This 142 

region is immersed in an agricultural intensive landscape consisting mainly on cereal crops 143 

(~50%), pastures (~30%), scattered scrubs (~10%) and pine plantations (~10%). However, the 144 

landscape has been fragmented in recent times for the development of dry farming and 145 

cropland irrigation (García-Girón et al., 2018a). The majority of the ponds studied are fed 146 

mostly by groundwater and rainfall and experience a strong reduction in water volume during 147 

the summer, ranging between 0.1 and 23 ha in aerial extent and 0.2 and 6.3 in depth. The 148 

study ponds display considerable variability in environmental conditions, including 149 

morphometry, nutrient content and mineralisation (Supplementary Table A.1). 150 

Pond macrophytes (i.e. emergent, floating-leaved and submerged plants) were exhaustively 151 

surveyed using transects in June and July of either 2004 or 2005. Hence each pond was 152 

sampled once. Transects were distributed around each pond and quadrats (0.25 m2) were 153 

placed perpendicular to the shore-line at varying intervals of 0-5 m depending on the 154 

homogeneity of the aquatic flora. The number of transects and quadrats for each site was 155 

determined according to the pond area and shoreline complexity (Jensén, 1977), giving an 156 

accurate representation of local community composition and ranging between 1 and 3 and 5 157 

and 83, respectively. Percent coverage of each macrophyte species was estimated in each 158 

quadrat and the mean coverage of each taxon in a pond was determined as the sum of percent 159 

coverages of that species in all quadrats divided by the number of quadrats used in the pond. 160 

Nomenclature followed Flora Europaea (Tutin et al., 1980). 161 

Further details on study site selection and macrophyte data collection can be found in García-162 

Girón et al. (2019a, 2019b). 163 

2.2 Local-scale variables 164 

The explanatory data comprised of well-known environmental variables structuring 165 

Mediterranean pond macrophyte assemblages (e.g. Fernández-Aláez et al., 2018; García-Girón 166 
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et al., 2018b, 2019b): pond area (ha), mean depth (m), Secchi depth (m), turbidity (NTU), 167 

oxygen (mg l-1), pH, conductivity (µS cm-1), total suspended solids (TSS; mg l-1), volatile 168 

suspended solids (VSS; mg l-1) total nitrogen (TN; mg l-1), nitrate (NO3
--N; mg l-1), ammonium 169 

(NH4
+-N; mg l-1), total phosphorous (TP; µg l-1), soluble reactive phosphorous (PO4

3--P; µg l-1), 170 

dissolved organic carbon (DOC; mg l-1) and chlorophyll “a” (Chla; mg l-1).  171 

Pond area was measured using images available on SIGPAC (the Spanish Geographical 172 

Information System for Agricultural Parcels - http://www.sigpac.jcyl.es/visor/), whereas mean 173 

and Secchi depths were determined from point measurements at different sites along the 174 

same transect of which macrophytes were surveyed. Water chemistry measurements were 175 

based on a single water composite sample randomly collected at different depths along a 176 

shore-centre transect using a cylinder (diameter = 6 cm and length = 100 cm). The number of 177 

water samples ranged between 3 and 15, depending on pond area. Standard water 178 

characteristics (i.e. turbidity, oxygen, pH and conductivity) were measured in situ from the 179 

composite sample using WTW field probes (Model LF 323) and a portable turbidimeter (Model 180 

HACH 2100P). Then, the integrated water sample was immediately transported to the 181 

laboratory and preserved at 4 °C to determine TSS, VSS, TN, NO3
--N, NH4

+-N, TP, PO4
3--P, DOC 182 

and Chla following standard methods (APHA, 1989).  183 

We tested for an effect of sampling time (i.e. 2004 vs 2005) on pond environmental conditions 184 

and macrophyte species distribution, and the effect proved to be minimal and non-significant 185 

(see Fernández-Aláez et al., 2018).  186 

2.3 Spatial features: a proxy for dispersal processes 187 

We derived a set of spatial variables from the geographical coordinates (UTM) of the sites 188 

using Moran eigenvector maps (MEMs; Dray et al., 2006). This technique maps neighbourhood 189 

relationships onto orthogonal and linearly independent spatial variables over a wide range of 190 

spatial scales, and thus is more efficient in capturing complex community patterns of spatial 191 
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variation than geographic distances alone (Borcard et al., 2011). We obtained results for 192 

distance truncation thresholds of 50 values ranging from the minimum to the maximum 193 

Euclidean distance between sites, selecting the threshold with the highest number of positive 194 

and significant eigenvectors. The first MEMs generated in the analyses represent broader 195 

spatial structures, while the last ones cover finer spatial scales (see Borcard and Legendre, 196 

2002; Borcard et al. 2004 for details).  197 

2.4 Trait and phylogenetic distances 198 

We selected a number of key traits to provide information on functional characters that could 199 

potentially come under selection by environmental filters. We collected information from 200 

literature (Castroviejo, 1986-2012; Willby et al., 2000; Cirujano et al., 2014; Fu et al., 2014) and 201 

existing databases (TRY Plant Trait Database; Kattge et al., 2011) on twelve different traits for 202 

all 51 species and 19 families occurring in the metacommunity: dispersal vector, growth form, 203 

leaf dry mass (LDM), offspring size, plant longevity, plant phenology, reproduction mode, 204 

reproduction time, seed length, seed longevity, seed number and specific leaf area (SLA) 205 

(Supplementary Table A.2). Physiological traits (e.g. extent of bicarbonate use, leaf 206 

carbon/nitrogen content and photosynthetic mechanism) were excluded because of 207 

inadequate coverage or poorly differentiated data. However, the relatively high number of 208 

traits considered should be sufficient to give a broad characterization of the realized niche of a 209 

species (sensu Willby et al., 2000) without an a priori assumption that some traits were more 210 

important than others. Since the relative adaptive significance of each character was unknown, 211 

we applied the orthogonal rotation in PCAmix (de Leeuw and Van Rijckevorsel, 1980) to clarify 212 

the covariance structure of trait variables and assess the general pattern of relationships 213 

within the functional data. PCAmix is a method implemented in the R package PCAmixdata 214 

(Chavent et al., 2017) that provides insight into the underlying structure and interdependence 215 

of a set of continuous and categorical samples by using a combination of principal component 216 
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analysis and multiple correspondence analysis. Then, we used the mixed-variables coefficient 217 

of distance (i.e. a generalization of Gower´s distance; Borcard et al., 2011) to extract a 218 

functional distance matrix, which described the functional dissimilarity between all species 219 

pairs based on a suite of characters with the largest squared loadings on the first two PCAmix 220 

axes. The functional dissimilarity matrix was obtained using the vegan package (Oksanen et al., 221 

2016) in R 3.4.4 (R Core Team, 2018).  222 

Owing to lack of true phylogeny comprising all macrophyte species, we calculated (cophenetic) 223 

phylogenetic distances among all families present in our metacommunity using the package 224 

picante (Kembel et al., 2010). To do this, we used a recently released compilation of 225 

angiosperm phylogeny (sensu R20160415.new) based on APG IV (2016) [for details on family 226 

tree reconstruction, see Gastauer and Meira-Neto (2017) and supplementary information 227 

therein]. We acknowledge that this supertree is not ideal for answering strict evolutionary 228 

questions, but we believe that the phylogenetic information used here is valid for large-scale 229 

metacommunity studies requiring such information (but see Mueller et al., 2013). 230 

2.5 Data analysis 231 

2.5.1 Phylogenetic signal in functional characters 232 

The degree to which the studied traits showed a phylogenetic signal was assessed by means of 233 

a two-step approach consisting of a standard Mantel test followed by a test based on the 234 

Brownian evolutionary model (i.e. EM-Mantel; Debastini and Duarte, 2017). This new 235 

analytical procedure, which has appropriate Type I error and acceptable power, is a good 236 

alternative for measuring phylogenetic signal in continuous and categorical traits (Debastini 237 

and Duarte, 2017). While the conventional Mantel test examines whether more closely related 238 

families have more similar character states, the EM-Mantel test further contrasts the empirical 239 

phylogenetic signal to that simulated from a neutral (i.e. null) evolutionary model (for more 240 

details, please see Debastini and Duarte, 2017). Here we used the Brownian motion 241 
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evolutionary model, which assumes that differentiation in functional characters is proportional 242 

to evolutionary time among families. We ran the evolutionary model 999 times with the 243 

original R code provided by Debastini and Duarte (2017) to obtain the null distributions of the 244 

Mantel coefficient for the conventional Mantel and EM-Mantel tests, respectively. Similarly, 245 

we calculated the K-statistic of Blomberg et al. (2003) to estimate the strength of phylogenetic 246 

niche conservatism for different traits using the `multiPhylosignal´ function in R package 247 

picante. The statistical significance of phylogenetic signal for each trait is determined by 248 

comparing observed patterns of the variance of independent contrasts of the functional 249 

character to a Brownian motion model of shuffling family labels across the tips of the 250 

phylogeny (Blomberg et al., 2003).  251 

2.5.2 Quantifying taxonomic, functional and phylogenetic beta diversity 252 

We estimated pairwise taxonomic beta diversity for abundance data (i.e. Bray-Curtis 253 

dissimilarities) following Baselga (2013) with the function `beta.pair.abund´ from the package 254 

betapart (Baselga et al., 2018). Phylogenetic beta diversity was calculated based on the 255 

phylogenetic distance matrix using mean pairwise phylogenetic dissimilarity (Swenson, 2014) 256 

with the function `COMDIST´ in R library picante. We also used `COMDIST´ to estimate 257 

functional beta diversity based on the Gower´s multi-trait distance matrix (see Gianuca et al., 258 

2018). Abundance values of taxa were used when calculating both phylogenetic and functional 259 

beta diversity metrics. Then, the pairwise output values obtained from Bray-Curtis and 260 

COMDIST were synthesized into principal coordinate analysis (PCO) using the Lingoes 261 

correction (Borcard et al., 2011) with the function `dudi.pco´ from R package ade4 (Dray et al., 262 

2018). The final product is a matrix of orthogonal PCO eigenvectors, each of them describing 263 

taxonomic, trait and phylogenetic dissimilarity patterns, which may be used as response 264 

variables in direct gradient analyses (Duarte et al., 2012). In principle, all PCO eigenvectors may 265 

be used as descriptors of beta diversity patterns in constrained ordinations. However, using all 266 



12 
 

of them might introduce confounding effects in posterior analyses (see Anderson and Willis, 267 

2003). We therefore made a selection of a subset of orthogonal eigenvectors that maximised 268 

the association between beta diversity patterns (taxonomic or functional-phylogenetic) and 269 

the set of explanatory variables. To select how many orthogonal eigenvectors should be used 270 

in successive analyses, we applied a procedure that is suitable for direct multiple regression 271 

analyses (sensu Anderson and Willis, 2003). We retained as many eigenvectors as required to 272 

maximise total adjR2
(Y│X), which is the exact number that optimises the fit between explanatory 273 

and response matrices (see also Duarte et al. 2012). For more details on this selection 274 

procedure check Anderson and Willis (2003) and Duarte et al. (2012). 275 

For each beta diversity facet, we calculated their mean overall value using the extension of the 276 

alpha diversity metric, i.e. mean pairwise distance (MPD), to beta diversity (i.e. βMPD; Webb 277 

et al., 2008) and tested whether the mean value was different from that expected by chance. 278 

Since we were using abundance data, we performed randomisations that fixed the entire 279 

community data matrix while randomising the functional and phylogenetic information for 280 

performing null models (Swenson, 2014). We randomised the identities of families and species 281 

1,000 times in the phylogenetic tree and the Gower´s multi-trait distance matrix, respectively. 282 

With this randomisation procedure, the species alpha and beta diversities and the abundance 283 

of species within and across communities are all fixed, while the observed dispersal limitation 284 

of species is conserved (see Swenson et al., 2012; Swenson, 2014). After each randomisation, 285 

the phylogenetic and functional beta diversities were calculated and these values were used to 286 

compute the null distribution. Using these metrics, we obtained the standardised effect size 287 

(SES) as: 288 

𝑆𝐸𝑆 =
𝑚𝑝𝑑. 𝑜𝑏𝑠 − 𝑚𝑝𝑑. 𝑟𝑛𝑑.𝑚𝑒𝑎𝑛

𝑚𝑝𝑑. 𝑟𝑛𝑑. 𝑠𝑑
 289 

where mpd.obs is the observed beta diversity, mpd.rnd.mean the mean of the null distribution 290 

and mpd.rnd.sd the standard deviation of the null model. 291 
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Negative SES values indicate phylogenetic and functional beta diversity lower than expected by 292 

null models, meaning that the assemblages comprised functionally similar species or closely 293 

related families. Conversely, positive SES values suggest that phylogenetic and functional beta 294 

diversities are higher than expected by chance, meaning that different communities generally 295 

contain distantly related plant families and/or functionally dissimilar species (Swenson et al., 296 

2012; Swenson, 2014). To test whether the mean overall value of each βMPD metric was 297 

different from the expected value of zero for random data, we performed a series of two-298 

tailed t tests. Null models were prepared according to Swenson (2014) and both procedures 299 

were conducted using R statistical software.   300 

2.5.3 Quantifying the effects of environmental and spatial factors on beta diversity patterns 301 

The methods of direct gradient analysis and variation partitioning (hereafter referred as VP; 302 

Borcard et al., 1992) are the most widely used quantitative frameworks to evaluate the 303 

contributions of species sorting (i.e. environmental fraction) and dispersal limitation (i.e. 304 

spatial component) to metacommunity structure. Such a traditional approach can in principle 305 

only estimate the role of species sorting by analysing its non-spatialized environmental 306 

contribution (Smith and Lundholm, 2010). However, spatial autocorrelation can occur 307 

independently in both the environment [ES] and species distribution. In these cases, the classic 308 

VP framework may present high Type I error and inflated estimates of the importance of 309 

environmental determinism (sensu Clappe et al., 2018). To deal with these limitations, Clappe 310 

et al. (2018) proposed a new VP procedure using Moran Spectral Randomisation (MSR; 311 

Wagner and Dray, 2015) as a spatially constrained null model. This novel MSR-based spatially 312 

constrained VP allows estimating the statistical distribution of adjR2 values under pure spurious 313 

species-environment relationships [SP] for a given species data matrix. Hence, the MSR-based 314 

VP adjusts for this spurious contribution in the total environmental fraction by reducing 315 

fraction [SP] to the contribution of the spatially structured environment [ES]. The significance 316 
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of each fraction (non-spatialized environment [E], dispersal limitation [D] and both in 317 

combination [ED]) is then estimated by a randomisation test where the sites of the predictors 318 

are permuted and appropriate F-statistics related to each fraction are calculated. 319 

To identify significant metacommunity processes structuring variation in species composition, 320 

macrophyte lineages and functional traits, we first employed the forward selection procedure 321 

of Blanchet et al. (2008). This method is based on two criteria: (i) the adjR2 of the global model; 322 

and (ii) the significance alpha level of 0.05. We selected the most parsimonious subset of 323 

environmental and spatial variables for each biodiversity dimension separately (i.e. taxonomic, 324 

functional and phylogenetic). This allowed us to minimise Type I error while maximising the fit 325 

between response and explanatory data matrices (Blanchet et al., 2008). Based on the 326 

resulting subset of explanatory variables, we performed MSR-based VP using as response 327 

matrices: (i) the PCO eigenvectors describing Bray-Curtis dissimilarities in species composition; 328 

(ii) the Hellinger-transformed species abundance per site; (iii) the PCO eigenvectors describing 329 

patterns of functional beta diversity; and (iv) the PCO eigenvectors describing phylogenetic 330 

beta diversity. The first two response matrices are two alternative but complementary 331 

approaches for the taxonomic analysis of metacommunity dynamics. The Hellinger-332 

transformed species abundance data is the standard strategy for investigating community 333 

assembly processes. We run the additional approach based on PCO eigenvectors describing 334 

dissimilarities in species composition to check whether differences in the amount of explained 335 

variation between taxonomic and functional/phylogenetic procedures were not due to the 336 

number of dependent variables included in the spatially constrained randomisation model (see 337 

Gianuca et al., 2018). Metacommunity patterns of the two taxonomic approaches were very 338 

similar, thus we report only the results obtained through the Hellinger-transformed procedure 339 

in the main text (see Supplementary Fig. B.1 for the results of the Bray-Curtis approach). All 340 

analyses were run with packages ade4 and adespatial (Dray et al., 2018) in the R environment. 341 

See Fig. 2 for the main steps of our statistical approach.  342 
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3. Results 343 

A total of 51 macrophyte species from 19 different families were identified. A complete list of 344 

species and families is provided in Supplementary Table A.3. Eleocharis palustris was the most 345 

frequent plant species, occurring in 35 ponds (~70%). The second and third most frequent 346 

species were Schoenoplectus lacustris and Potamogeton trichoides, occurring in 32 (~60 %) and 347 

25 (~50 %) ponds, respectively. The trait-based analysis (Supplementary Tables A.4 and A.5) 348 

indicated that the majority of macrophyte species in the study sites were submerged leaved 349 

(87.9 %), anemochorous (70.1 %) and seed-producing (100%).  350 

3.1 Phylogenetic signal in functional characters 351 

Factorial analysis of mixed data (PCAmix) clarified the covariance structure of trait variables 352 

(Supplementary Fig. A.2), suggesting that all functional characters were likely to influence how 353 

plant species might respond to environmental and spatial constraints. The standard Mantel 354 

test revealed a significantly positive correlation between trait and phylogenetic distances 355 

among macrophyte families (R = 0.15; p < 0.05). Surprisingly, the Brownian motion 356 

evolutionary model did not showed any significant signal of phylogenetic conservatism (Null K 357 

= 1; p > 0.05), suggesting labile trait evolution in aquatic plant families. When using the 358 

angiosperm supertree, with a complete coverage of species but only family-level resolution, 359 

significant phylogenetic signal was only detected for dispersal vector and reproduction mode 360 

(Table 1). 361 

3.2 Metacommunity analyses 362 

The mean values for taxonomic and phylogenetic beta diversities were not different from the 363 

expected value of zero, suggesting that taxonomic-based community assembly dynamics (p = 364 

0.27) and lineage composition (p = 0.33) were likely to be random. By contrast, functional beta 365 

diversity was different from that expected by chance, suggesting that community assembly 366 
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processes underlying selection for particular traits in functional niche space were dominated 367 

by deterministic processes (p < 0.05; Fig. 3).  368 

Only the first PCO eigenvector was selected as response variable for the taxonomic, functional 369 

and phylogenetic facets of beta diversity. Combining spatial and environmental drivers of 370 

metacommunity assembly revealed that total explained variation (i.e. total adjR2; Fig. 4) 371 

obtained through MSR-based VP was highest for the phylogenetic approach (adjR2 = 0.49), 372 

followed by the multi-trait (adjR2 = 0.36) and the classic taxonomic approaches (adjR2 = 0.19). 373 

Furthermore, functional and phylogenetic metrics significantly explained variation in the 374 

residuals of the best performing spatially constrained model on species composition (i.e. 375 

Hellinger-transformed species abundance data; Supplementary Fig. B.2). This finding suggests 376 

that accounting for plant lineages and species-specific functional characters improved 377 

predictions on the role of dispersal limitation and species sorting on community assembly.  378 

MSR-based spatially constrained VP models revealed some differences in the relative 379 

contribution of species sorting and dispersal limitation to variation in each facet of beta 380 

diversity. Pure spatial effects (i.e. dispersal limitation) better explained taxonomic and multi-381 

trait beta diversity dimensions than the pure effect of the non-spatialized environment. Spatial 382 

variables with small eigenvalues (e.g. MEM2; Table 2), indicating broad-scale variation in 383 

geographical structure, were the most influential for both species composition and community 384 

trait structure. By contrast, the pure effect of species sorting explained a significant proportion 385 

of phylogenetic variation (Fig. 4 and Table 2). Clearly, the greatest amount of explained 386 

variation (adjR2 = 0.11 - 0.18) in all beta diversity facets was seen for the shared effects between 387 

environmental and spatial processes. The explained variation of shared effects was, however, 388 

not statistically significant for the multi-trait and phylogenetic beta diversity facets (Fig. 4 and 389 

Table 2).  390 
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Despite the differences in the amount of explanatory power, there was a relatively good 391 

agreement among the environmental and spatial variables selected as important predictors of 392 

each beta diversity dimension (Table 2). For example, the spatially constrained models 393 

revealed that both species and lineage composition varied mainly as a function of pH and 394 

nutrient concentration. Emergent macrophytes were likely to be positively associated to high 395 

productivity levels (here measured as nutrient concentration and pH), and the opposite 396 

pattern was observed for the floating- and submerged-leaved plant species, which lean 397 

towards the centre and the beginning of the productivity gradient, respectively (Fig. 5). 398 

Similarly, the MSR-based VP procedure associated variation in macrophyte trait structure and 399 

species composition at the extent of approximately 300 km (Supplementary Fig. A.3).  400 

4. Discussion 401 

In this study, we applied a multidimensional approach including taxonomic, functional and 402 

phylogenetic data to enhance our basic understanding of macrophyte metacommunity 403 

dynamics. Importantly, our study is unique in bridging together different facets of beta 404 

diversity that have traditionally been used separately to infer macrophyte community 405 

assembly scenarios. By using them systematically on the same data set together with null 406 

models, we were able to show their complementarity in explaining variation in spatial and 407 

environmental components of macrophytes. Our findings suggest that species inhabiting most 408 

ponds were merely random draws from the taxonomic and phylogenetic species pool available 409 

in the study region. In addition, we evidenced lack of phylogenetic conservatism across all the 410 

studied species traits based on Brownian motion evolutionary model, and only dispersal vector 411 

and reproduction mode of all species traits showed phylogenetic signal when individual 412 

species traits were considered separately using the angiosperm supertree. Our results also 413 

revealed that although the environmental and spatial variables together contributed to 414 

variation in taxonomic, functional and phylogenetic macrophyte communities, dispersal 415 
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limitation drove more than environmental filtering for taxonomic and functional dimensions, 416 

and pattern was opposite for phylogenetic community component.  417 

4.1 Null models: disentangling the role of stochastic and deterministic processes in 418 

community assembly 419 

We found that functional beta diversity was different from that expected by chance, 420 

suggesting the prevalence of deterministic processes in structuring variation of trait 421 

composition. This finding partially supported our first hypothesis that some facets of beta 422 

diversity are non-random. Nevertheless, the taxonomic and phylogenetic beta diversity 423 

dimensions showed signs of stochasticity, indicating that processes explaining taxonomic 424 

variation and lineage composition were mostly shaped by random draws from the regional 425 

species spool (Hawkins et al., 2015). This type of randomness may also stem from the 426 

combined effects of different habitat affinities and dispersal dynamics across phylogenetic 427 

lineages (Roa-Fuentes et al., 2019).  428 

More strikingly, the observed multi-trait beta diversity was consistently low relative to random 429 

expectations, suggesting that the trait composition of the studied ponds was very similar 430 

(Chalmandrier et al., 2017). We interpreted this pattern as a consequence of low functional 431 

complementarity between ponds (Heino and Tolonen, 2017). For example, most emergent 432 

macrophytes are functionally very different from many groups of aquatic hydrophytes by 433 

having different growth forms, life history strategies, phenology, SLA and dispersal vectors 434 

(e.g. Willby et al., 2000). Accordingly, if there is at least one helophyte and one hydrophyte in 435 

each site, the multi-trait differences among ponds appear to be relatively small. Most of the 436 

study ponds harboured at least one species from different major macrophyte functional 437 

groups (i.e. emergent, floating-leaved and submerged plants). Hence, as these groups are 438 

functionally distantly related and at least one representative of them occurred in most sites, 439 
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among-pond variation in functional community composition was low in comparison to that 440 

expected from a null distribution (see Heino and Tolonen, 2017).  441 

4.2 Phylogenetic signal in traits 442 

Contrary to our expectations (hypothesis 2), not all measured traits were conserved along the 443 

phylogeny. This mismatch stemmed in the moderately low phylogenetic signal of the 444 

functional characters both taken individually and together (Table 1). As a consequence, 445 

functional trait and phylogenetic patterns appeared quite decoupled in the studied regional 446 

metacommunity. The relatively large number of macrophyte families that have repeatedly 447 

adapted to diverse freshwater habitats in a relatively short period of time (Barret et al., 1993) 448 

might explain the seemingly labile trait evolution pattern. Although weak genetic constraints 449 

can also lead to low levels of phylogenetic signal, this is less likely to be the reason since 450 

aquatic plants might have experienced frequent convergence and local adaptation (see Barret 451 

et al., 1993). These findings suggest that phylogenetic lineages of aquatic macrophytes may 452 

not be used as proxies for functional dissimilarity due to weak phylogenetic signal exhibited in 453 

species traits. However, these results are extremely dependent on the considered functional 454 

characters (Corbelli et al., 2015); thus, the inclusion of alternative or additional traits could 455 

even reverse our findings if there is a phylogenetic signal in them. This point certainly requires 456 

further attention and would need to be complemented with similar analyses in order to clarify 457 

the debate over phylogenetic conservatism in aquatic plant lineages. 458 

4.3 Drivers of taxonomic, functional and phylogenetic beta diversity patterns 459 

As expected from our third hypothesis, we observed that the explanatory power of the 460 

analyses increased from taxonomic to multi-trait and phylogenetic metrics. This was also 461 

supported by our residual analysis (Supplementary Fig. B.2), although the explanatory powers 462 

were generally relatively low. High residual variation is typical for metacommunity studies 463 

based on survey data (Cottenie, 2005; Heino et al., 2015) due to site-specific context 464 
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dependency, priority effects, historical legacies and stochastic species distribution (e.g. Capers 465 

et al., 2010; Alahuhta and Heino, 2013; Heino et al., 2013). Presumably, this unexplained 466 

variability in our data again emphasises the importance of stochastic events to the assembly of 467 

pond macrophyte metacommunities. Such stochasticity is probably related to small-scale 468 

disturbances and chance colonisation, establishment and extinction, which are often related to 469 

connectivity between ponds (Capers et al., 2010). It may thus be that apparently idiosyncratic 470 

species responses to multivariate gradients are in fact largely trait and phylogenetically 471 

mediated in our study (but see Gianuca et al., 2018).  472 

The MSR-based VP models pointed to a strong role of both environmental filtering and spatial 473 

processes on macrophyte community assembly patterns. This finding only partly supported 474 

our fourth hypothesis, because functional community assemblage should primarily have been 475 

driven by environmental filtering (Hoeinghaus et al. 2007, Heino et al. 2013; Cai et al., 2019). 476 

Our results suggest that there should be no strong dichotomy between dispersal limitation and 477 

species sorting – both community assembly scenarios are extremes along a continuum of 478 

processes underlying observed biogeographical patterns (Heino et al., 2015).  479 

Taxonomic and functional beta diversity patterns appeared to be partially spatially controlled, 480 

suggesting effective dispersal limitation at the regional extent. Specifically, dispersal limitation 481 

interfered with species sorting in determining taxonomic and trait composition by hindering 482 

species´ tracking of local environmental conditions. After correction for the spatially structured 483 

environment, functional data were relatively straightforward in reflecting distributional 484 

patterns that are generated by pure spatial effects and dispersal limitation. The lack of spatial 485 

signal on phylogenetic patterns suggests that dispersal limitation is probably mediated by the 486 

measured functional traits, such as dispersal vector, growth form and seed number (García-487 

Girón et al., 2019a). These findings agree with Capers et al. (2010), O´Hare et al. (2012) and 488 



21 
 

García-Girón et al. (2019a), suggesting that dispersal limitation can hinder the ability of plant 489 

species to reach suitable habitat patches and thereby weaken the strength of species sorting.  490 

Where we did find evidence for dispersal limitation, our results showed that species sorting 491 

overrode the effects of spatial factors in explaining phylogenetic beta diversity at the 492 

metacommunity scale. This indicates that some of the macrophyte families can occur in a 493 

certain limited part of the environment (e.g. Alahuhta and Heino, 2013; Fu et al., 2019). It is 494 

hence possible that, as individualistic as the species responses may be, there must be some 495 

evolutionary or physiological trade-offs associated with important environmental thresholds 496 

(Meynard et al., 2013), which will translate into similar macrophyte lineages occurring and 497 

disappearing at the same ponds along the environmental gradient. 498 

Nutrient concentration and pH were the most important environmental drivers in our studied 499 

regional metacommunity (Table 2). The importance of pH and nutrient content is related to 500 

the use of different forms of carbon (Madsen & Sand-Jensen, 1991) and the chain of effects 501 

generally hypothesised in eutrophication processes (Penning et al., 2008), respectively. The 502 

influence of both environmental drivers has been well documented in northern Europe (e.g. 503 

Elo et al., 2018), North America (e.g. Capers et al., 2010) and elsewhere (e.g. Fernández-Aláez 504 

et al., 2018). Overall, despite confounding factors, our results support the idea that 505 

productivity is an important driver of both taxonomic and phylogenetic beta diversity patterns.  506 

Conclusions 507 

Historically, taxonomic-based analyses of community assembly have been the most common 508 

approach used to characterise regional biodiversity and biogeographical processes (Heino et 509 

al., 2015). However, recent efforts to incorporate functional and phylogenetic dimensions into 510 

the metacommunity framework have provided further insights into niche- and dispersal-based 511 

processes (e.g. Mouquet et al., 2012; Gianuca et al., 2018; Roa-Fuentes et al., 2019). We 512 

continued in this path by exploring different beta diversity facets of macrophyte 513 
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metacommunities. We used a novel multidimensional approach (including null models and 514 

phylogenetic signal evaluations) to examine metacommunity structuring and showed that each 515 

dimension of beta diversity responded slightly differently to the underlying spatial and 516 

environmental gradients, suggesting distinct community assembly scenarios. Importantly, our 517 

analyses based on functional and phylogenetic data identified the influence of underlying 518 

mechanisms that would otherwise be missed in an analysis of taxonomic turnover. For 519 

instance, these results let us conclude that macrophyte species have labile functional traits 520 

adapted to dispersal-based processes and some evolutionary trade-offs that drive community 521 

assembly via species sorting. However, the interpretation of results is not straightforward, 522 

emphasising the need to go beyond the predominant thinking of considering dispersal 523 

limitation and species sorting as two alternative and mutually exclusive scenarios of 524 

community assembly (see also Heino et al., 2015; Brown et al., 2017). Our multidimensional 525 

study approach may also have repercussions for conservation biology and environmental 526 

management, raising the dilemma of which and how diversity facet should be favoured in 527 

conservation strategies. We suggest that implementing and assessing conservation strategies 528 

using a given diversity dimension as a cure-all should be avoided (Devictor et al. 2010). Instead, 529 

conservation biology and environmental management should benefit from pluralistic 530 

approaches connecting taxonomic, functional and phylogenetic data. We strongly believe that 531 

bridging biogeography, functional and evolutionary ecology holds the key for advancing our 532 

discipline and encourage similar analyses for other areas across the globe, which we hope will 533 

be found equally beneficial.  534 

 535 

 536 

 537 

 538 
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Figure captions 561 

Fig. 1 Hypothetical scheme depicting scenarios of taxonomic, phylogenetic and multi-trait 562 

(functional) beta diversity patterns along a multivariate (e.g. environmental or spatial) 563 

gradient. In both cases (a, b), rectangles represent local macrophyte communities (A, B, C). (a) 564 

Scenario where biogeography acts as a filter for particular functional characters (e.g. growth 565 

form, represented by geometric sizes and shapes), resulting in a strong pattern of trait and 566 

phylogenetic turnover (i.e. measured traits are conserved along the phylogeny). (b) Scenario 567 

where the measured functional characters are labile (e.g. growth form varies randomly along 568 

the phylogeny), whereas macrophyte lineages are more informative because they represent 569 

unmeasured traits that respond uniformly along the multivariate gradient (represented by 570 

matching branch colours along the gradient).  571 

Fig. 2 Flow chart of the statistical analyses used. Check the main text for details. s: species; p: 572 

ponds; t: traits; PCAmix: factorial analysis of mixed data; COMDIST: `COMDIST´ function in R 573 

package picante; PCO: Principal Coordinate Analysis; SES: Standardised Effect Size; mpd.obs: 574 

observed beta diversity; mpd.rnd.mean: mean of the null distribution; mpd.rnd.sd: standard 575 

deviation of the null model; e: environmental features; MEM: Moran Eigenvector Maps; MSR: 576 

Moran Spectral Randomisation; and VP: Variation Partitioning. 577 

Fig. 3 Standardised effect size values for each beta diversity dimension: species composition 578 

(mean overall value - βMPD; Taxo), functional structure (Trait) and phylogeny (Phylo). 579 

Differences from the expected value of zero for random data were assessed through a series of 580 

two-tailed t tests. Note that only multi-trait beta diversity was different from that expected by 581 

chance (p < 0.05). Boxplot bold lines = median; box = interquartile range (IQR); whiskers = 582 

maximum and minimum up to 1.5 × IQR. 583 

Fig. 4 Results of MSR-based spatially constrained VP depicting the relative contribution (%adjR2) 584 

of local environmental features (green), MEM eigenvectors (yellow) and shared effects 585 
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(orange) to variation in different dimensions of beta diversity: species composition (Taxo), 586 

functional structure (Trait) and phylogeny (Phylo). Asterisks indicate significant results (*p < 587 

0.05; **p < 0.01). 588 

Fig. 5 Evolutionary-traitgram showing patterns of phylogenetic and trait (i.e. growth form) 589 

clustering along a gradient of increasing degree of productivity (here measured as nutrient 590 

concentration and pH; see O´Hare et al. 2012). The evolutionary-traitgram posits the tips of 591 

the phylogeny according to a trait axis (here growth forms; emergent, floating-leaved and 592 

submerged), while keeping the internal nodes proportional to evolutionary time (i.e. genetic 593 

distance in this example). Each column of the heat-map represents one of the 51 sampled 594 

ponds and the colour of each of the circles indicates the relative abundance at the family level 595 

in each pond. For more details on the evolutionary-traitgram see Cadotte et al. (2013). 596 
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