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ABSTRACT: 30 

 31 

Wastewater-based epidemiology (WBE) is considered as a useful tool to monitor chemical 32 

consumption in the population. However, the lack of information on potential transformation of 33 

biomarkers in the sewer system can compromise the accuracy of the consumption estimation. The 34 

present study contributes to addressing this issue by investigating the in-sewer stability of 35 

biomarkers of a number of commonly used drugs using laboratory sewer reactors that can mimic 36 

different sewer conditions. A stable and an unstable chemical (carbamazepine and caffeine) were 37 

also used as benchmarking chemicals to reflect the chemical degradation potential of different 38 

sewer conditions. The results suggested that ketamine and norketamine were unstable in gravity 39 

and rising main sewer, ketamine was unstable in bulk liquid while norketamine was stable with 40 

less than 5% transformation in the control reactor. Similarly, mephedrone and methylone were 41 

unstable in sewer conditions with considerable deviation. Significant loss of buprenorphine, 42 

methadone, oxycodone and codeine was observed in rising main sewer. Morphine and codeine 43 

were found to be deconjugated from glucuronides quickly in the presence of biofilms. This study 44 

indicates that it is important to evaluate the stability of biomarkers in the sewer system before 45 

using them in WBE for estimating consumption/exposure to reduce uncertainties.  46 

 47 

Keywords: Benchmarking chemicals; Biofilm; In-sewer degradation; New Psychoactive 48 

Substances; Wastewater-based epidemiology; 49 

 50 

 51 

 52 

 53 

1.   INTRODUCTION 54 

According to the recent report of the United Nations Office on Drugs and Crime and other 55 

authorities on drug control, in addition to the abuse of traditional illicit drugs such as heroin, 56 

cocaine, and amphetamines, people also illegally consumed large amount of new psychoactive 57 

substances (NPS) and prescription drugs (Heikman et al., 2016; UNODC, 2015). Ketamine and 58 

phencyclidine-type substances, synthetic cathinones and synthetic cannabinoids are the 59 

predominant groups of NPS identified in the global market (UNODC, 2013). Designing adequate 60 

policy responses to drug problems would require better data on the prevalence of different types 61 

of illicit drug use (Degenhardt et al., 2011). However, obtaining the temporal and spatial 62 

consumption patterns of many illicit drugs remains challenging to authorities.  63 

 64 
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Wastewater-based epidemiology (WBE) is a potent complementary approach to estimate chemical 65 

consumption in the population (van Nuijs et al., 2015). A number of studies have utilized WBE to 66 

monitor the level of illicit drug consumption in the population (EMCDDA, 2016b; Lai et al., 2016; 67 

Li et al., 2014). WBE demonstrated some advantages such as the capability to provide quick and 68 

objective estimation of illicit drug consumption in different temporal and geographical scales 69 

(Castiglioni et al., 2015; Postigo et al., 2011; Thomas et al., 2012; Tscharke et al., 2015). Recently, 70 

research on WBE has been focused on the evaluation of uncertainties of the approach to  improve  71 

the accuracy of the consumption estimates (Castiglioni et al., 2013; EMCDDA, 2016a). Besides 72 

optimization of sampling protocols, refining chemical-specific excretion factors and improvement 73 

of the catchment population estimation (Gracia-Lor et al., 2016; Thai et al., 2016a), information 74 

about the fate of biomarkers during in-sewer transport is essential for providing more accurate 75 

consumption estimates of drugs in WBE applications (McCall et al., 2016b; Ramin et al., 2016; 76 

Thai et al., 2014a)  because the in-sewer loss of biomarkers could lead to considerable 77 

underestimation of drug consumption (Castiglioni et al., 2013; Senta et al., 2014).  78 

 79 

Initially, studies on the stability of drug biomarkers in sewers only included wastewater with or 80 

without suspended solids (Senta et al., 2014; van Nuijs et al., 2012). After sewer biofilms were 81 

demonstrated to have the important role in transforming biomarkers of major illicit drugs such as 82 

cocaine and 6-acetylmorphine (heroin metabolite) (Thai et al., 2014a), the review on in-sample 83 

and in-sewer stability of biomarkers of drugs of abuse by McCall et al. (2016a) has recommended 84 

further stability studies to include the biofilms in the experimental designs. Since then, there have 85 

been two studies that investigated the in-sewer transformation of biomarkers by biofilms (McCall 86 

et al., 2016b) and suspended solids (Ramin et al. 2016), which again indicated the importance of 87 

understanding the in-sewer interactions of biomarkers under different sewer conditions.  88 

 89 

Some chemicals can undergo intensive metabolism including glucuronidation in the human body 90 

before being excreted to the sewer system. The stability of glucuronide-conjugated compounds in 91 

sewer can also contribute to the uncertainty in WBE back-estimations because the deconjugation 92 

to their free forms (Hedgespeth et al., 2012; Langford and Thomas, 2009; Lishman et al., 2006). 93 

To what extent the human conjugates are converted to free biomarkers in the sewers is not well 94 

studied. Only two studies by Senta et al. (2014) and Ramin et al. (2016) have investigated the 95 

transformation of morphine glucuronide in wastewater and thus it is important to continue and 96 

expand the research in this aspect of WBE. 97 

 98 

In this study, we aim to evaluate the in-sewer transformation of biomarkers of a suite of 99 

pharmaceuticals, new psychoactive substances and prescription opioids that are prone to abuse as 100 
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well as two chemicals that we propose could be used as benchmarking chemicals in stability 101 

studies. Two glucuronide conjugated metabolites were also included.  102 

 103 

2.  MATERIALS AND METHODS 104 

The experimental approach employed in this study has been used previously for several 105 

conventional illicit drugs (Thai et al., 2014a). The illicit drugs investigated in this study include 106 

ketamine and its metabolite norketamine, methylone, mephedrone; the prescription opioids 107 

include methadone, codeine, oxycodone, buprenorphine, and two glucuronide conjugates, 108 

morphine-glucuronide and codeine-glucuronide. Two substances, carbamazepine and caffeine, 109 

were selected as benchmarking chemicals to reflect the activity of the sewer reactors regarding 110 

transformation of chemicals and to facilitate comparisons with other studies (McCall et al., 2016a; 111 

McLachlan et al., 2017).  112 

 113 

2.1 Chemicals and Reagents 114 

Deuterated labelled standards of ketamine, norketamine, methadone, codeine, buprenorphine, 115 

morphine-glucuronide and codeine-glucuronide were used in this experiment to enable the 116 

monitoring of the possible formation of degradation products as deuterated chemicals prevent the 117 

interference of the native drugs in the wastewater. Methylone, mephedrone and oxycodone were 118 

spiked as native compounds because their metabolites were not monitored. The properties of 119 

selected biomarkers are presented in Table S1. All the deuterated and native standards were 120 

purchased from Cerilliant (Texas, US). Spiking solutions of deuterated labelled and native 121 

standards were prepared in methanol and spiked to fresh wastewater as shown in Table S2. LCMS 122 

grade methanol was purchased from Merck, Germany. Deionized water was produced by a MilliQ 123 

system (Millipore, 0.22 μm filter, 18.2 mΩ●cm-1). 124 

 125 

2.2 Laboratory-scale sewer reactors 126 

The experiment was carried out with laboratory-scale sewer reactors, which have previously 127 

demonstrated the capability of mimicking typical sewer conditions (Jiang et al., 2011; Thai et al., 128 

2014a,b). Three reactors were employed, namely a rising main (RM), a gravity (GS) and a control 129 

(CR) sewer reactor. The reactors were made of PerspexTM with a volume of 750 mL (diameter of 130 

80 mm and a height of 149 mm) (Jiang et al., 2009). Plastic carriers (Anox Kaldnes, Norway) of 131 

1 cm diameter were clustered on four stainless-steel rods inside the reactor to provide additional 132 
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surfaces for biofilm growth and provide similar area/volume ratio as actual sewers in RM and GS. 133 

The total surface area on the reactor walls and carriers supporting biofilm growth is estimated to 134 

be 544 cm2 for the RM reactor. The GS reactor had the same dimensions but was only partially 135 

filled with wastewater, allowing a gas phase at the top of the reactor. The total surface area for 136 

biofilm growth is estimated to be 322 cm2 for the GS reactor. The gas phase had free air exchange 137 

to the atmosphere in the GS reactor. A mixture of aerobic and anaerobic biofilm had been 138 

previously developed in the GS reactor. The control reactor (CR) is a clean reactor identical to the 139 

GS and RM with no biofilm present on the reactor. Thus, CR reactor is essentially a container of 140 

wastewater similar to that used in other stability studies (Senta et al., 2014; van Nuijs et al., 2012) 141 

and is able to determine if a chemical is stable in-sample during and after collection. 142 

 143 

2.3 Batch tests for the transformation of biomarkers 144 

Three batch tests were conducted with the different reactors described above. Information about 145 

chemicals investigated in each batch test is presented in Table S2. Separate batches were used to 146 

avoid the interference of potential transformation between parent drug and its metabolite (e.g. 147 

ketamine and norketamine) to the stability evaluation.  148 

Three replicates were performed for each batch test.  Fresh wastewater was collected prior to each 149 

batch test and stored at 4 ℃.  Before each test, wastewater was warmed to 20 ℃ and spiked with 150 

biomarkers at relevant concentrations as shown in Table S2. Continuous mixing was maintained 151 

in each reactor with magnetic stirrers at 250 rpm (Heidolph MR3000) for the duration of the tests. 152 

Wastewater samples were taken at time 0, 0.25, 0.5, 1, 2, 3, 6, 9 and 12 hours after the experiment 153 

started. The experiment was terminated after 12 hours considering the majority of real sewer 154 

systems have retention times less than 12 hours. For each time point 1mL of wastewater was 155 

filtered into a vials using 0.45 mm syringe filter (Phenomenex, Australia) with 8 µl of 2 M HCl to 156 

adjust  each of the samples to pH 2. The acidified samples were then frozen at -20 ℃ until analysis.  157 

 158 

2.4 Chemical analysis 159 

The chemical analysis in this study was based on a previously developed analytical method (Lai 160 

et al., 2011; van Dyken et al., 2016). Additional compounds with optimised mass spectrometry 161 

parameters were also included (Table S3). Briefly, analysis was performed using liquid 162 

chromatography (Shimadzu Prominence) coupled with tandem mass spectrometer (AB-SCIEX 163 

5500® QTrap) with electrospray ionisation source in positive mode. Chemical separation was 164 

performed on a Luna C18 analytical column (Phenomenex, 150x2.1 mm, 3 µm) with the mobile 165 
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phase of (A) 1% acetonitrile and 99% Milli-Q water and (B) 95% acetonitrile and 5% Milli-Q 166 

water; both with 0.1% formic acid, at the gradient: 8% B, 0-1 min; 35% B at 3.5 min; 100% B at 167 

11 min for 4 min; 8% B at 15.1 min for 5 min. However, for morphine-3-β-D-glucuronide-D3 and 168 

codeine-6-β-D-glucuronide-D3, a Kinetex Biphenyl column (Phenomenex, 50x2.1 mm, 2.6 µm) 169 

was used for their retention and separation with the mobile phase of (A) 1% methanol and 99% 170 

Milli-Q water and (B) 95% methanol and 5% Milli-Q water; both with 0.1% acetic acid, at the 171 

gradient: 5% B, 0-1 min; 100% B at 7.5 min for 3 min; 5% B at 9.6 min for 3.4 min. The flow rate 172 

was set at 0.3 mL/min and the injection volume was 8 µL. The MS was operated in multiple 173 

reaction monitoring (MRM) mode for data acquisition. The MS parameters for each MRM 174 

transition of the target chemical were optimised (Table S3). Chemical concentrations in the 175 

samples were analysed and quantified together with a six point calibration standard. Three 176 

deuterated compounds including norfloxacin-D5, acetyl sulfamethoxazole-D4 and caffeine-3C13 177 

were spiked (10 ng each) to the samples to check the instrumental stability over the analysis. The 178 

intraday variation (CV% of chromatographic peak area; n=81) was 7.58% for norfloxacin-D5, 179 

7.11% for acetyl sulfamethoxazole-D4 and 6.94% for caffeine-D3. The interday variation (CV% 180 

of chromatographic peak area; across 3 days) was 10.6% for norfloxacin-D5, 8.73% for acetyl 181 

sulfamethoxazole-D4 and 8.97% for caffeine-D3. The instrumental variation was minimal for 182 

adequate sample analyses (as shown in Table S4). Similar methodology has been applied in our 183 

previous study (Thai et al. 2014a).   184 

For dissolved sulphide, samples were analysed within 24 h of sampling using an ion 185 

chromatograph with a UV and conductivity detector (Dionex ICS-2000). For methane analysis, 186 

BD vacuum tubes were allowed to reach gas/liquid equilibrium overnight. Methane in the gas 187 

phase was measured by gas chromatography (Shimadzu GC-9A) equipped with a flame ionization 188 

detector. Concentrations of methane in wastewater were calculated using mass balance and 189 

Henry’s law. 190 

 191 

2.5 Benchmarking chemicals  192 

In order to make inter-study and/or cross-catchment comparisons of biomarker degradation, it is 193 

favourable to have stable and unstable benchmarking chemicals that can reflect chemical 194 

degradation potential in different sewer conditions and catchment characteristics. Carbamazepine 195 

is reported stable in wastewater, surface water, and even different treatment process (Clara et al., 196 

2004; Weigel et al., 2002; Zhang et al., 2008; Zuccato et al., 2005) and thus was selected as a 197 

stable benchmarking chemical. Caffeine is reportedly unstable (Buerge et al., 2003; Thomas and 198 

Foster, 2005; O'Brien et al., 2017) in wastewater and was selected as an unstable benchmarking 199 

chemical.  200 

 201 
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2.6  Data processing 202 

Average concentration of chemicals at time 0, 0.25 and 0.5 hour is treated as initial concentration 203 

(100%) since we observed some fluctuation of concentrations in the first half an hour possibly due 204 

to mixing and sorption equilibrium. All the concentrations during the 12 hour test were normalised 205 

to a percentage relative to the initial concentrations. The production of transformation products 206 

was normalized to the molar percentage of the parent chemicals. Zero-order and first-order kinetic 207 

models were tested, and the model with higher correlation value was selected for the chemical 208 

under the tested sewer conditions. Half-life was calculated in pseudo first-order model (Prism 7, 209 

GraphPad software, Inc.). 210 

 211 

 212 

3.   RESULTS AND DISCUSSION 213 

3.1 Bioactivity in the sewer reactor 214 

Before the batch test, biofilms were cultivated in the RM and GS reactors with real wastewater 215 

pumping scheme of every 6 hours. Seven days before the experiment, the methane and sulfide 216 

production in each reactor was stable. In these batch tests, the methane and sulfide profile is 217 

comparable with a previous study by Thai et al (2014b). The RM reactor had much higher methane 218 

and sulfide production than the GS reactor during the 12 hours experiment while the CR reactor 219 

showed no significant biological activity as it did not contain sewer biofilms. Dissolved oxygen 220 

in the GS was below 0.33 mg/L despite continuous stirring and contact between the liquid phase 221 

and sewer atmosphere, which indicates rapid consumption of oxygen by aerobic activity in the 222 

reactor. It is also expected that anaerobic microbes could live in the deep biofilm where oxygen 223 

cannot reach. Activities of sulphate-reducing bacteria and methanogenic archaea in the RM reactor 224 

were measured at 5.59 ± 0.75 mg·S L-1 h-1 and 12.07 ± 0.39 mg·COD L-1 h-1 respectively which 225 

is similar to previously reported values for both real and laboratory-scale sewers (Guisasola et al., 226 

2008; Jiang et al., 2011; Thai et al., 2014a,b).   227 

 228 

3.2 Benchmarking chemicals under different sewer conditions 229 

In this study, carbamazepine was observed to be stable throughout 12 hours in all the sewer 230 

reactors as expected while caffeine was observed to have undergone higher degradation in RM 231 

and GS than in CR (Fig. 1). Faster degradation of caffeine was observed in RM with higher A/V 232 

ratio than GS. In GS, about 50% of caffeine was left after 12 hours while in RM less than 5% of 233 

the initial caffeine remained after 12 hours. This result confirmed that the sewer reactors with 234 

biofilms can greatly enhance the degradation of selected chemicals in wastewater as reported 235 
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previously (Thai et al., 2014b) but has no effect on persistent chemicals (Thai et al., 2014a). 236 
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 237 

Fig. 1 Stability of two benchmarking chemicals (stable and unstable) in the sewer reactors (error 238 

bars are the standard deviation of triplicates) 239 

 240 

3.3 Transformation of biomarkers of drugs of abuse 241 

3.3.1 Ketamine, norketamine  242 

Ketamine (in form of ketamine-D4) was relatively unstable in different sewer conditions with 243 

45±1%, 62±32% and 56±17% transformation in CR, GS and RM over 12 hours respectively (Fig. 244 

2). The transformation of ketamine in RM is significant higher than CR but no significant than GS 245 

(p=0.0391 and 0.0938, two tail t test). Computer modelling of ketamine degradation also suggests 246 

that ketamine could have some biodegradation (Reid et al., 2014). However, Castiglioni et al 247 

(2015) and Baker and Kasprzyk-Horden (2011) reported that ketamine was stable up to 72 hours 248 

in wastewater without biofilm. It indicated that both the biofilm and other sewer conditions could 249 

contribute to the transformation of ketamine. Norketamine-D4 was monitored in the same sample 250 

set and it was not detected in any samples. This indicates that ketamine is unlikely to be 251 

demethylated to norketamine in the sewer.  252 

 253 

Norketamine (in form of norketamine-D4) was stable in CR with less than 5% loss after 12 hours, 254 

similar to other studies conducted by Castiglioni et al. (2015) and McCall et al. (2016b) under 255 

similar conditions (Table 1). Twelve hours after spiking, about 20% norketamine was lost in GS 256 

reactor and more than 50% was lost in RM reactor. The transformation of norketamine in RM is 257 

significant higher than CR and GS (p=0.0195 and 0.0195, two tail t test). This could possibly be 258 

because the GS has lower A/V ratio and also less biofilm mass. Meanwhile, in the study of McCall 259 

et al. (2016b), norketamine was observed to be stable with less than 10% loss with suspended 260 

gravity biofilms. It suggests that under GS conditions, biomarker degradation could vary. It is also 261 

interesting to notice that the loss of norketamine in RM mostly happened in the first hour.  262 
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 Fig. 2 The transformation/formation of selected biomarkers in the sewer reactors (error bars are 268 

the standard deviation of triplicates) 269 

 270 

3.3.2 Methylone and Mephedrone 271 

The stability profiles of mephedrone and methylone are very similar (Fig. 2) probably because 272 

they are from the cathinone group and have similar molecular structures (Table S1). Both 273 

mephedrone and methylone had considerable in-sewer degradation in the RM and GS reactors 274 

(Table 1 & Fig 2). Mephedrone was observed 30±20%, up to 40% and 67±15% in CR, GS and 275 

RM respectively by 12 hours (Table 1). The transformation of mephedrone in RM is significant 276 

higher than CR and GS (p=0.0391 and 0.0195, two tail t test).  Mephedrone was reported to be 277 

stable for 48 hours in urine samples at room temperature (Johnson and Botch-Jones, 2013). Up to 278 

80% loss mephedrone was observed after 24 hours in the presence of resuspended gravity biofilms 279 

from McCall et al. (2016b). More than 70% loss of mephedrone within 24 hours was observed 280 

under aerobic condition and about 30% loss under anaerobic condition investigated by Ramin et 281 

al. (2016). In CR, 30±20% loss was observed for mephedrone, while Ostman et al. (2014) reported 282 

less than 5% transformation of mephedrone during 24 hours under room temperature without 283 

biofilms while Bade et al. (2017) reported approximately 50% loss in filtered wastewater under 284 

natural pH and 20 °C in 24 hours . This demonstrated that different wastewater composition could 285 

lead to different transformation rate of mephedrone.  286 

Only one study investigated the stability of methylone in filtered wastewater in natural pH 20 °C, 287 

by 24 hours, approximately 20% of methylone was lost. The results of this study indicate that 288 

methylone is unstable with up to 30%, 60% and 60% loss in CR, GS and RM respectively. The 289 

transformation of methylone in RM is significant higher than CR but no significant than GS 290 

(p=0.0391 and 0.4258, two tail t test). The instability of methylone has been demonstrated 291 

previously in urine samples (Concheiro et al., 2013). Therefore, care should be taken when 292 

interpret the data of methylone from WBE. 293 
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 294 

3.3.3 Buprenorphine, methadone, oxycodone and codeine 295 

Noticeable loss of buprenorphine, methadone, oxycodone and codeine was observed in RM and 296 

GS reactors (Table 1, Fig. 2). The highest loss of methadone was observed in RM followed by GS 297 

and CR. By 12 hours, 25±4%, 40±10% and 76±9% methadone was lost in RM, GS and CR 298 

respectively. Formation of 2-ethylidene-1,5-dimethyl-3,3-diphenylpyrrolidine (EDDP)  was not 299 

observed following the significant degradation of methadone in RM and GS, suggesting that 300 

unlike in-human metabolism, there are other transformation pathways for methadone in the sewer. 301 

Similarly, Ramin et al (2016) also observed independent transformation pathways for methadone 302 

do not include EDDP as a metabolite. However, Ramin et al observed significantly faster 303 

transformation of methadone under aerobic (gravity) conditions than anaerobic conditions (rising 304 

main). This discrepancy may be attributed to the different biomass/wastewater ratio, the anaerobic 305 

biomass is higher than aerobic biomass in the present study. Unlike van Nuijs et al (2012) and 306 

Castiglioni et al (2006), methadone in CR had about 20% loss in this study while the previous 307 

studies reported no loss or even some formation of methadone under similar conditions. The 308 

continuous stirring in the present study could have introduced air/oxygen to the wastewater and 309 

potentially enhanced the transformation of chemicals compared with previous studies.  310 

 311 

Twelve hours after spiking buprenorphine was observed 59±9% and 37±2% loss in GS and CR. 312 

While 71±11% was observed in RM. There is only one study investigated the stability of 313 

buprenorphine (Ostman et al., 2014), and less than 5% was observed under conditions similar to 314 

CR in the present study. This may be caused by the different wastewater composition and the 315 

microbes in the suspend solids. Oxycodone had the highest degradation in RM with 63±15% loss 316 

followed by 41±26% in GS during 12 hours, CR had minor loss of 2±1.5%. High stability of 317 

oxycodone in bulk liquid phase was also observed by two other studies under similar conditions 318 

as CR (Baker and Kasprzyk-Hordern, 2011; Ostman et al., 2014). 319 

 320 

Codeine had significant degradation in both RM and GS but was relatively stable in CR (up to 321 

25% transformation)(Fig. 2). It is noticeable that, in GS up to 50% of codeine was transformed to 322 

morphine within 12 hours while the overall loss was higher than 95%. While in RM, 30% of 323 

codeine transformed to morphine with more than 80% loss indicating multiple transformation 324 

pathways in GS and RM. This may be attributed to the transformation pathways of codeine 325 

differing in GS and RM due to their different microbial communities. It is also possible that 326 

morphine is not as stable in RM as in GS. Codeine was observed with high stability in bulk liquid 327 

or resuspended gravity biofilms (Baker and Kasprzyk-Hordern, 2011; Chen et al., 2013; McCall 328 

et al., 2016b), the discrepancy could be attributed to the microbe composition difference in 329 
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suspended solids and biofilms.  330 

 331 

3.3.4 Morphine-glucuronide and codeine-glucuronide 332 

Both morphine-glucuronide and codeine-glucuronide were not stable under GS and RM 333 

conditions. (Fig. 3). More than 80% of both compounds were degraded after 2 hours in RM and 334 

GS, and almost 100% were lost after 6 hours. The degradation rate was slower in the CR but by 335 

12 hours, more than 80% morphine-glucuronide and about 20% codeine-glucuronide have 336 

degraded in CR, respectively. In GS and CR reactors, approximately 25% and 40% of morphine-337 

glucuronide was transformed to morphine, while in the RM, the morphine from morphine-338 

glucuronide is about 15% after 12 hours, this indicates that there could be other morphine-339 

glucuronide transformation products in RM. Limited net formation of morphine from morphine-340 

glucuronide under both aerobic and anaerobic conditions was also observed by (Ramin et al., 2016) 341 

and the authors suspected that there are more transformation pathways for morphine-glucuronide. 342 

The different degradation rate of morphine (as transformation product of morphine-glucuronide) 343 

in the three reactors could also contribute to the observation. Morphine-glucuronide and codeine-344 

glucuronide was reported as stable (less than 10% loss) in human urine samples at 24 ℃ within 20 345 

hours (Murphy and Huestis, 2005). This result indicates that abiotic chemical degradation of these 346 

two glucuronides is limited. Also microbes in the sewer play an important role in the 347 

transformation. Similarly, morphine-glucuronide was also observed with low stability with more 348 

than 95% loss within 24 hours under conditions similar as CR (Baker and Kasprzyk-Hordern, 349 

2011; Ramin et al., 2016; Senta et al., 2014). 350 

  351 
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 353 

Fig. 3 In-sewer transformation of human glucuronides and the formation of free compounds (error 354 

bars are the standard deviation of triplicates) 355 

3.4 Transformation kinetics of biomarkers 356 

Linear regression (zero-order) and pseudo first-order regression was applied for the data acquired 357 

from the batch tests. As shown in Table 2, most of the R2 for both kinetic models is less than 0.95, 358 

we selected the model with better R2. It indicated that there are certain deviations of the observed 359 

degradation to the theoretical kinetic model. It may cause by the complexity of the bioactivity in 360 

the reactors.  In CR reactor, most of the biomarkers investigated fits better with zero-order kinetics. 361 

In the RM, all the biomarkers fit better with first-order except oxycodone and caffeine. Morphine 362 

release from morphine-3-β-D-glucuronide and codeine release from codeine-6-β-D-glucuronide 363 

had poor R2 and hence neither model was selected for these two transformation products. In GS, 364 

only codeine-6-β-D-glucuronide and codeine were suitable for first-order reaction with slightly 365 

better R2 values (0.85 vs 0.83 and 0.86 vs 0.80), all the other markers fit better in zero-order model 366 

except mephedrone, ketamine, codeine from codeine-6-β-D-glucuronide with poor R2.  367 

 368 

3.5 Implication of these results to other WBE studies 369 

Our study suggests that a stable and an unstable benchmarking chemical (carbamazepine and 370 

caffeine) could be used in biomarker stability studies. The benchmarking chemicals can reflect the 371 

chemical transformation potential under different sewer conditions and potentially can be used as 372 

a tool to normalise results from different studies. 373 

 374 

The half-life of morphine-glucuronide and codeine-glucuronide in the GS and RM are quite short, 375 

with less than one hour in RM, indicating the release of morphine and codeine from their 376 

glucuronides could be considerably quick in the sewer. This shows that the glucuronide 377 

conjugation is unlikely to have any impact on the back-calculation if the excretion factor used has 378 

considered the free form and conjugates.  379 
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 380 

 In the RM, the half-life of first-order chemicals (mephedrone, methylone, ketamine, norketamine, 381 

codeine, buprenorphine and methadone) were all less than 1.5 hours (as shown in Table 2). 382 

Considering the average retention time of sewage in the rising main pipes, caution should be taken 383 

to interpret data from catchments with considerable proportion of rising mains and with long 384 

hydraulic retention time. Alternatively, investigation could be done to identify more stable 385 

biomarkers for back-calculation.  386 

 387 

The present study provided objective evidence on the transformation of 11 biomarkers under 388 

different sewer conditions. It is evident that both gravity and rising main biofilms enhanced the 389 

transformation of unstable biomarkers. To evaluate substance consumption status in population 390 

through WBE and further investigate the temporal and geographical behaviour, caution should be 391 

taken to systematically evaluate the associated uncertainties and the possible bias. Detailed 392 

catchment investigation (population characteristics, sewer infrastructures and wastewater profile) 393 

should be carried out for better interpretation of the chemical consumption behaviour. The 394 

different transformation rate of some biomarkers in different studies highlighted the need to 395 

develop a systematic tool to evaluate the in sewer loss of biomarkers taking the chemical property, 396 

catchment infrastructure and sewer conditions into account to reflect the possible sorption and 397 

transformation of biomarkers.  398 

 399 

3.6 Limitations 400 

Although the laboratory scale sewer reactor can mimic the real sewer conditions with controllable 401 

parameters, real world sewer infrastructure is far more complex. The A/V ratio of RM and GS 402 

used in this study is estimated to be 72.5 and 50 m2/m3 that is the typical ratio of small diameter 403 

pipes, large diameter pipelines especially large diameter gravity sewers are not reflected in the 404 

study. In addition, we cannot quantitatively measure the total biofilm mass in GS and RM reactors, 405 

we cannot provide transformation rate relative to the biomass mass for the comparison of GS and 406 

RM. Furthermore, the real sewer could have more complex active biomass and enzymes, more 407 

fluctuated redox potentials and dynamic flow rate that the current study did not consider due to 408 

practical reasons. All these factors can potentially contribute to the transformation of biomarkers 409 

in the real sewer and need further investigation. 410 

 411 

Generally speaking, compounds with logKow values lower than 3.0 are not expected to be sorbed 412 

to the particles (Behera et al., 2011). Another study carried out by McCall et al (2016b) also 413 

pointed out that considering the real sewer A/V ratio, the sorption of biomarkers to suspended 414 
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solids and biofilm is negligible. Due to the low vapour pressure and hydrophilic property of 415 

selected biomarkers in the present study, the in sewer loss of these chemicals could be mostly due 416 

to chemical and biochemical transformation rather than volatilisation and adsorption (Baker et al., 417 

2012). However, opioids with relatively high logKow values could have considerable sorption to 418 

particular matter and biofilms (Baker et al., 2012; Subedi and Kannan, 2014). This study cannot 419 

differentiate sorption and degradation since it only monitored the aqueous biomarker 420 

concentrations. A well designed sorption study would provide more insight into the loss of 421 

biomarkers under different sewer conditions.  422 

 423 

4.  CONCLUSION 424 

In-sewer conditions can transform certain chemicals that were used as biomarkers in WBE. But 425 

the transformation of biomarkers is compound specific, and dependant on sewer conditions. 426 

Therefore, estimation of chemical consumption in the population by WBE should consider the 427 

possible in-sewer degradation of biomarkers to avoid underestimation or in some cases 428 

overestimation if the biomarkers were formed during the sewer transportation. Interpretation of 429 

geographical pattern of chemical consumption should take the catchment characteristics and the 430 

associated in-sewer transformation of biomarkers into account to achieve better understanding. 431 

Further study with  a mathematical modelling approach to evaluate the in-sewer loss of biomarkers 432 

could provide information for more accurate back-calculation. 433 

 434 
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