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Abstract
Prior studies of mRNA expression, protein expression, and pathway metabolite levels have
implicated dysregulation of the kynurenine pathway in the etiology of schizophrenia and bipolar
disorder. Here we investigate whether genes involved in kynurenine pathway regulation might
interact with genes that respond to kynurenine metabolites, to enhance risk for these psychiatric
phenotypes. Candidate genes were selected from prior studies of genetic association, gene
expression profiling and animal models. A single nucleotide polymorphism (SNP) in each of six
genes, TDO2, HM74, HM74A, MCHR1, MCHR2 and MC5R, was tested for association with
phenotype (475 Caucasians, 88 African Americans with schizophrenia; 97 Caucasians, 3 African
Americans with bipolar disorder; 191 Caucasian, 49 African American controls). An A allele in
HM74 was significantly associated with schizophrenia and with schizophrenia plus bipolar
disorder combined, odds ratios (OR) of 1.48, p = 0.011 and 1.50, p= 0.007, respectively.
Augmentation of disease risk was found for the complex genotype HM74[A,any] +
MCHR1[T,any] + MCHR2[C,any] which conferred an OR maximal for the combined diagnostic
category of schizophrenia plus bipolar disorder (1.70, p= 0.003), carried by 30% of the cases.
TDO2[CC] + MC5R[G,any] + MCHR2[GC] conferred an OR maximal for schizophrenia alone
(4.84, p= 0.005), carried by 8% of schizophrenia cases. The combined risk posed by these related,
complex genotypes is greater than any identified single locus and may derive from co-regulation
of the kynurenine pathway by interacting genes, a lack of adequate melantropin-controlled
sequestration of the kynurenine-derived pigments, or the production of melanotropin receptor
ligands through kynurenine metabolism.
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1. Introduction
The heritability of schizophrenia and bipolar disorder is generally accepted to be complex in
nature, a characterization resulting from the observed non-Mendelian modes of inheritance,
incomplete penetrance of genetic risk, polygenetic pattern of inheritance (Gottesman and
Shields, 1967) and apparent heterogeneity of genetic causation (Allen et al., 2008). Evidence
for shared susceptibility loci in schizophrenia and bipolar disorder has been found in several
genome-wide association studies (Berrettini, 2000). The incomplete genetic penetrance
observed for both phenotypes results from modulatory genetic background effects and from
environmental influences that alter the neuro-developmental course (Dean and Murray,
2005).

Here we present genetic association data concerning a model for schizophrenia and bipolar
disorder that incorporates most of these features, specifically, polygenic contribution,
heterogeneity of genetic cause coupled with modulatory genetic background effects and a
well-defined role for environmental interaction. The focal point of this model is the
kynurenine pathway, the genes that influence its regulation and those that respond to its
products (Figure 1). Changes in this pathway in schizophrenia and bipolar disorder have
been identified at the mRNA expression, protein, and metabolite level in this laboratory and
several others around the world (Schwarcz et al., 2001;Erhardt et al., 2003;Miller et al.,
2004,2006,2008;Myint et al., 2007;Barry et al., 2008).Whether these changes represent
biomarkers of disease or whether they represent disease causation is the question raised by
observations that psychoses of several different etiologies involve activation of this pathway
(Miller et al., 2004). To begin to address this issue, we asked whether kynurenine pathway-
related genes (Figure 1) that have demonstrated expression differences between cases and
show association with schizophrenia and/or bipolar disorder at the gene sequence level,
specifically, tryptophan dioxygenase (TDO2) and the duplicated niacin receptor genes
(HM74 and HM74A). TDO2 was shown to be elevated at the mRNA and protein levels in
the postmortem frontal and anterior cingulate cortex of schizophrenia cases as compared to
controls (Miller et al., 2004;Miller et al., 2006) and at the protein level in the anterior
cingulate cortex of bipolar cases as compared to controls (Miller et al., 2006). The mRNA
for the niacin receptors HM74 and HM74A (Figure 1) was found to be increased in the
anterior cingulate cortex of schizophrenia and bipolar cases as compared to controls, but this
increase in mRNA did not correspond to an increase in protein; rather, the protein for HM74
was unchanged and the protein for HM74A was decreased in schizophrenia cases as
compared to controls (Miller and Dulay, 2008).

Potential modifying genes selected for study were those for a class of melanotropin
receptors with relevant effects (Miller et al., 1993) in an animal model of an auditory gating
endophenotype common in individuals with schizophrenia (Nagamoto et al., 1991). Within
this class of receptors, three (MCHR1, MCHR2, MC5R) reside in chromosomal regions
showing association with schizophrenia and/or bipolar disorder in genome-wide association
studies (Schwab et al., 1998; Levinson et al., 2000; Dick et al., 2003; Lambert et al., 2005;
Lin et al., 2005) and in association studies of MCHR1, specifically (Severinsen et al., 2006).

Hypothetical points of interaction between the melanotropin receptors and the kynurenine
pathway are highlighted in Figure 1. The first involves co-stimulation of the kynurenine
pathway via MC5R inhibition (Taylor and Namba, 2001) of interferon-gamma expression
(IFNγ, Model 1 in Figure 1). Decreased signaling through the MC5R receptor would lead to
activation of the pathway. A second point of interaction relates to the sequestration of the
potentially toxic pigment molecules generated by the pathway (Model 2 in Figure 1). The
effect of peptide agonists for the MCHR1 receptor is to decrease melanosome formation and
decrease the dispersion of pigment in melanosome vesicles (Baker and Ball, 1975). In this
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model, the capacity of pigment sequestration and dispersion would be adversely affected by
a hyper-functional MCHR1 receptor. Alternatively, the pathway produces at least one key
precursor for ligands of the melanotropin receptors, picolinic acid (Model 3, Figure 1),
which in its reduced form (pipecolic acid) is the core residue in the most potent peptide
ligands reported for MC5R (Bednarek et al., 2007).

Thus, the six candidate genes analyzed for association with schizophrenia and bipolar
disorder were: TDO2 (4q31.2), HM74A (12q24.3), HM74(12q24.3), MCHR1 (22q13.1),
MCHR2 (6q16.3) and MC5R (18p11.21). One single nucleotide polymorphism (SNP) per
gene was selected, by taking advantage of two prior genetic association studies, one yielding
positive results for HM74 (Shink et al., 2005) and the other for MCHR1 (Severinsen et al.,
2006), while for untested genes, SNPs were selected that showed maximal differences in
frequency between racial groups (Figure 2). A difference between ethnic populations in
disease expression and severity has been noted by many researchers studying schizophrenia
(Saha et al., 2006).

2. Materials and Methods
2.1 Patient population and sample acquisition

The samples as acquired were coded so as to blind the investigator to the diagnostic category
and the code was broken after data submission to a 3rd party (first phase of the study) and to
a co-author (SL) for the second phase of the study. The internal review boards of the
University of Colorado and Johns Hopkins University approved this study. The age range of
the controls at the time of evaluation was 22–96 yrs. The age distribution was such that
approximately 1/4 of the study controls were less than 30 yrs of age. The sample set
consisted of cases and controls of both genders, obtained from two sources: a) 323 DNA
samples isolated from postmortem brain tissue obtained from the Stanley Brain Bank
collection (Stanley Medical Research Institute (SMRI), Chevy Chase, MD) including 311
Caucasian individuals, 125 with schizophrenia, 97 with bipolar disorder and 89 normal
controls; 12 African American individuals, 8 with schizophrenia, 3 with bipolar disorder and
1 normal control; b) 580 DNA samples isolated from immortalized lymphoblastoid cells
from the University of Colorado Schizophrenia Center (Dr. Sherry Leonard), including 350
Caucasian individuals with schizophrenia, 80 African American individuals with
schizophrenia, 102 Caucasian normal controls, and 48 African American normal controls.
The methods for postmortem diagnosis employed by SMRI involved DSM-IV criteria
employed by at least two independent psychiatrists reviewing the records, as described by
Torrey et al. (2000). The diagnostic methods employed by the University of Colorado
Schizophrenia Center utilized a Structured Clinical Interview for DSM-IV Axis I Disorder
(Stephens et al., in press). A number of related individuals representing 39 Caucasian
families with more than one member diagnosed with schizophrenia, composing 20% of the
total schizophrenia Caucasian case population were present in the Colorado sample
collection. In addition, 9 African American families with more than one member diagnosed
with schizophrenia, were part of this collection, composing 21.5% of the African American
case population. The analysis was therefore adjusted for the common genetic background
shared by the related individuals, and differences in ethnic background and collection sites
(see subsequent statistical analyses section).

Methods employed by the SMRI Brain Bank collection are described online:
(http://www.stanleyresearch.org/programs/documents/bc_statement.pdf). The SMRI
collection includes adult individuals autopsied in coroner’s offices located in Maine,
Minneapolis, Seattle, and San Diego. The SMRI DNA was isolated from archived, frozen
postmortem tissue.
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The University of Colorado collection is described in more detail elsewhere (Stephens et al.,
in press).

2.2 Analyses for genetic polymorphisms in candidate genes
All experimental work and determination of allele identity (Table 1) was carried by an
investigator blind to the diagnostic category of each sample. The assays were carried out by
TaqMan® PCR to distinguish alleles, using kits provided by Applied Biosystems (Foster
City, CA), on the Applied Biosystems 7900HT-Fast Real-time PCR System: 95 °C 10 min,
[92 °C 15 sec, 60 °C 60 sec] × 47 cycles. The percent call rate was 99.86% for HM74,
HM74A, and MC5R; 100% for MCHR1 and MCHR2; and 99.78% for TDO2. Samples
were selected randomly for replication (approximately 4% of the sample set). The
correspondence between the repeated assays and the original assays was 100%.

2.3 Statistical analyses
Separate analyses were carried out comparing schizophrenic to unaffected individuals, and
comparing schizophrenic plus bipolar subjects to unaffected (the number of bipolar patients
was too small to be analyzed as a separate category). Various genetic models (additive,
dominant, recessive, heterosis) were investigated to assess the marginal associations of six
candidate SNPs to the outcome, using a logistic link function and adjusting for potential
differences in ethnic groups. Generalized estimation equations (GEE; Zeger and Liang,
1986) were applied to account for relatedness of a proportion of schizophrenia cases in the
University of Colorado sample collection. We also investigated potential SNP-SNP
interactions in addition to the marginal SNP effects, using GEE and logic regression, an
adaptive regression methodology developed specifically for this purpose (Ruczinski et al.,
2003). Model selection was carried out via permutation tests and cross-validation, which
addresses the multiple comparisons problem (Ruczinski et al., 2003).

All p values are reported as uncorrected p values, with the threshold for Bonferroni
correction made clear. For any particular single gene model assumed (dominant, recessive,
etc), we carried out six hypothesis tests. An upper bound on the family wise error rate
(FWER, i.e. the probability of at least one false rejection) can be obtained by a Bonferroni
correction. Statistical significance for any of the six SNPs tested was declared if a p-value of
0.05/6 = 0.0083 or less was achieved in the final, combined data set. We did not attempt to
achieve a FWER of 5% across all genetic models, since in our assessment this was not
particular meaningful (we were testing the same SNPs under different assumptions for the
underlying genetic model).

The distributions of the homozygotes and heterozygotes for the 6 SNPs analyzed in this
work were tested for Hardy-Weinberg Equilibrium in the controls of this sample set (Table
2).

Population stratification was previously tested and ruled out for the Colorado DNA
collection (Stephens et al., in press) by studying a series of 176 SNPs regarded as being
informative for ancestry (Enoch et al., 2006). Stratification data was not available for the
SMRI DNA collection.

3. Results
3.1 Association between disease and genotype at a single locus

We observed a significant association of HM74 with schizophrenia as well as schizophrenia
and bipolar disease combined, after adjusting for differences in study sites and ethnic
differences (Table 3). Testing a heterosis model (H), we observed a strong association of
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HM74 heterozygotes with schizophrenia (OR 1.50, p = 0.006; Table 3), which surpassed the
Bonferroni threshold for significance of p= 0.0083 for the 6 comparisons carried out under
this particular genetic model. The locus also fit a dominant (D) genetic model
(HM74[A,any]). The genotype for the HM74 dominant risk locus [A] was carried by 63% of
the cases with schizophrenia, 70% of the patients with bipolar disorder and 54% of controls.

TDO2 showed a trend for association with disease, but the p value did not reach the
threshold required for multiple comparisons. None of the single melanotropin loci showed a
trend for risk of disease. Table 4 illustrates the data from the two sample populations
(Stanley Medical Research Institute (SMRI) DNA collection and the University of Colorado
DNA collection) shown separately to illustrate the significance level reached in each study.

3.2 Candidate interactions tested between kynurenine pathway and melanotropin genes
TDO2 was found to interact significantly with the melanotropin receptor polymorphisms.
The interaction was suggested by the data for individuals with the TDO2[CC] genotype,
where an OR 4.30, p 0.016 for schizophrenia was conveyed by MC5R[G,any] plus
MCHR2[GC] versus those without this melanotropin genotype (data line 3, Table 4). Across
the study population, TDO2[CC] plus MC5R[G,any] plus MCHR2[GC] yielded an OR of
4.84, p= 0.005,when comparing schizophrenia patients to controls (data line 1, Table 4).
This genotype is carried by 8% of the patients with schizophrenia, 4% of the patients with
bipolar disorder and 1.6% of controls.

In addition, an interaction was present between HM74 and melanotropin receptors. In
individuals with the HM74 risk genotype [A,any], the melanotropin genotypes
MCHR1[T,any] plus MCHR2[C,any] conveyed an OR of 1.52 for schizophrenia, p = 0.049,
and an OR of 1.52 for the combined diagnostic group, p = 0.044 (data line 4, Table 4).
Across the study population, the HM74[A,any] plus MCHR1[T,any] plus MCHR2[C,any]
genotype yielded an OR of 1.69, p= 0.004 when comparing the schizophrenia group to
controls and an OR of 1.70, p= 0.003, for the combined diagnostic category of schizophrenia
plus bipolar disorder (data line 2, Table 4). This genotype is carried by 29% of the patients
with schizophrenia, 35% of the patients with bipolar disorder and 19% of controls.

A combination of both complex risk genotypes i.e., (HM74[A,any] plus MCHR1[T,any]
plus MCHR2[GC] plus MC5R[G,any] plus TDO2[CC], was present in 16 individuals with
schizophrenia, 1 individual with bipolar disorder and no controls.

3.3 Logic regression analysis
The logic regression method identified an interaction between diagnosis and the TDO2 and
HM74 loci, adjusting simultaneously for potential differences in race and study site. The
employed model selection methods addressed the multiple comparisons problem. As seen
for the marginal analyses (Table 3), subjects who had two C alleles in TDO2 or at least one
A allele in HM74 were at a higher risk for disease (Table 5). In addition, comparing subjects
with and without genotype for TDO2 CC among those with genotype GG for HM74 (i.e. not
dominant) from the same race and the same study site, the odds for the subject with
TDO2[CC] are 2.93 times higher to have schizophrenia. The results for the schizophrenia
plus bipolar analysis were in essence the same, except all parameter estimates achieved a
higher statistical significance (Table 5).
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4. Discussion
4.1 Genotypes associated with phenotype

The risk conveyed by two complex genotypes for schizophrenia and bipolar disorder
exceeded that of the single loci, suggesting that the gene-gene interactions augment the
probability of disease (Table 4). The TDO2/MC5R/MCHR2 genotype was associated with
an OR of 4.8 for the diagnosis of schizophrenia and the HM74/MCHR1/MCHR2 risk
genotype was associated with an OR of 1.7 for the combined diagnostic category, together
pertaining to approximately 40% of the patient population.

Of note, the risk alleles in HM74 and MCHR1 match those previously identified by others,
i.e. the A allele in rs2454727 of HM74 (Shink et al, 2005) and the T allele in rs133073 of
MCHR1 (Severinsen et al., 2006). Furthermore, the complex genotype results for the other
loci are consistent with chromosomal markers previously identified as associated with
schizophrenia and/or bipolar disorder in genome-wide linkage and association studies. To
summarize the prior reports, significant outcomes were obtained for: a) markers within 1cM
of MCHR2 (bipolar disorder, p≤ 0.05, Dick et al., 2003; Lambert et al., 2005; and
schizophrenia, unweighted MLS p<0.01, Levinson et al., 2000); b) markers within 1MB of
MC5R (bipolar disorder, p<0.001, Lin et al., 2005; schizophrenia, p= 0.02, Schwab et al.,
1998); and c) for a broad region on chromosome 4q (133MB-187MB) spanning the location
of TDO2 (schizophrenia, p<0.004; Vawter et al., 2006) and for a marker within 1.5 MB of
TDO2 (schizophrenia, p= 0.01, Hovatta et al., 1999).

4.2 Interpreting the genotype risks
4.2.1 Kynurenic acid as a mediator of pathophysiology—The psychotomimetic
effects potentially mediated by kynurenine pathway intermediates, include antagonism of
the NMDA receptor by kynurenic acid as proposed by Schwarcz (2001) and reviewed by
Coyle (2006). In addition, Hilmas et al. (2001) have demonstrated kynurenic acid inhibition
of the α-7 nicotinic receptor. Antagonism of this receptor in the rat (Shepard et al., 2003)
elicits the auditory gating endophenotype associated with schizophrenia (Freedman et al.,
2003). Activators of the pathway would be expected to elevate kynurenic acid levels and this
may underlie the gene-gene interaction found for TDO2 and MC5R (Model 1, Figure 1).

4.2.2 Neurotoxicity of pathway intermediates and pigment products—
Neurotoxic intermediates are also of interest, as the known neurotoxins produced by
kynurenine pathway activation include quinolinic acid and 3-hydroxykynurenine (Guidetti
and Schwarcz, 1999). Again, these products will be generated by activation of the pathway
and would potentially relate to the gene-gene interaction of two co-activators of the pathway
(TDO2 and MC5R, Model 1, Figure 1). To the list of neurotoxic products should be added
the pigment products of 3-hydroxykynurenine and 3-hydroxyanthranilic acid as the
elevation in pathway intermediates extends through to 3-hydroxyanthranilic acid in
schizophrenia (Miller et al., 2008). This interpretation of the pathophysiology relates to the
gene-gene interaction of HM74A and MCHR1 (Model 2 in Figure 1, wherein the pigment
products may not be adequately sequestered when the risk genotype for MCHR1 is present
combined with the risk genotype for HM74A, as the ligand for HM74A (niacin) controls
levels of kynurenine pathway products in human subjects (Hankes et al., 1971). The types of
kynurenine pathway pigments range from the xanthomattins, a form that predominates in the
eye and thought to be involved in cataract formation (Vazquez et al., 2000) to the melanin
family of pigments (Vogliardi et al.,2004), to the antibiotic, cinnabarinic acid (Vazquez et
al., 2000). As a general class, the toxicity of pigment molecules and their reactive precursors
has been well recognized, including the well-known kernicterus induced by bilirubin
pigment and the toxicity of neuromelanin when it is not adequately sequestered (Offen et al.,
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1997). In-vitro, the type of melanin formed can be strongly affected by the presence of the
kynurenine metabolite 3-hydroxyanthranilic acid (Figure 1), which shifts the production of
the classic polymerized black eumelanin to the formation of a reddish-brown pigment that is
less-completely polymerized and potentially more soluble (Soddu et al., 2004). As described
for heme (Slater et al., 1991), polymerization affords protection from dispersion of the toxic
component of pigment, whereas enhanced solubility increases the distance across which the
toxic component can act through the cytoplasm or the intercellular milieu.

None of the proposed models explain the gene-gene interactions found for the melanotropin
receptor MCHR2. Functional MCHR2 is expressed in humans and primates, but not rodents
(Tan et al., 2002), a fact that has hindered understanding of its physiological role. In this
study, genotyping of MCHR2 was undertaken solely due to its chromosomal location being
associated with disease phenotype in genome-wide association studies as discussed in
Section 4.1 above.

4.4 Limitations of the study
As with many genetic association and linkage studies for schizophrenia and bipolar disorder,
some of the controls fall within the age range of peak onset. Here, ¼ of the controls were
less than 30 years of age at the time of diagnosis, and thus, it is certainly possible that an
unknown percentage have gone on to develop a psychiatric diagnosis. However, none of the
controls reported first degree relatives with schizophrenia or bipolar disorder, and thus, if
some were to have been subsequently received a psychiatric diagnosis of relevance, it is
likely that fewer of those cases would be genetic in origin than are cases with a family
history of disease.

The actual mechanisms for the gene-gene interactions reported here cannot be ascertained
from the results we present or from prior data. Therefore, three hypothetical models have
been presented for the gene-gene interactions based on the known function of the genes
involved, but those models are solely for the purposes of stimulating further research and do
not represent established theory.

5. Conclusion
The associations and interactions we have identified in this preliminary genetic study
provide the basis for a novel direction in schizophrenia and bipolar genetic research, one that
is relevant to a substantial percentage of the patient population. Maximal risk for
schizophrenia and bipolar disorder was found to be conveyed by a complex genotype of
TDO2/MCHR2/MC5R, and, although relevant to a larger percent of the patient population,
lesser risk was conveyed by a complex genotype of HM74/MCHR1/MCHR2. Obtaining the
haplotype for the associated alleles will be the crucial next step for ascertaining the
causative sequence and will allow a more accurate determination of risk. Follow-up studies
in animal models will be necessary to decipher the mechanism of interaction between the
genes for melanotropin receptors and kynurenine pathway regulators, to provide a
framework for investigating interactions with other related genes, and to reveal the optimal
therapeutic targets.
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Figure 1.
Schematic of the kynurenine pathway with relevant regulatory components, summarizing
gene expression and metabolite changes previously identified for schizophrenia in the
frontal and anterior cingulate cortex. The significant changes that had been identified for
bipolar disorder (not shown) were limited to increased kynurenine and increased mRNA for
the HM74 receptor (Miller et al., 2006; Miller and Dulay, 2008). TDO2, HM74A and HM74
had been analyzed in previous studies for mRNA (RT-PCR [Miller et al., 2004&2006;
Miller and Dulay, 2008] and protein (via quantitative Western blots or semi-quantitative
immunohistochemistry (Miller et al., 2004,2006; Miller and Dulay, 2008) and several of the
remaining enzymes had been analyzed for mRNA expression only (RT-PCR, Miller et al.,
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2004). The metabolites had been quantified by HPLC (Miller et al., 2006, 2008). Enzymes
are presented in boxes and denoted with their HUGO identifier. Not all steps are depicted,
e.g. the signaling cascades for the receptors. The models (see Discussion) for the relevant
points of potential interaction between the melanotropin receptors and the kynurenine
pathway genes, gene products or metabolites are denoted models 1, 2, and 3. Note that the
regulatory role of the niacin receptor genes for the kynurenine pathway can only be inferred
from the fact that administration of niacin does not allosterically inhibit TDO2 to any
significant extent, but by some other means, leads to remission of the kynurenine-mediated
de-novo synthesis of NAD from tryptophan in pellagra patients (Hankes et al., 1971). Niacin
treatment of schizophrenia patients has been reported to result in remission of psychosis
(Hoffer et al., 1957).
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Figure 2.
Variation of SNP minor allele frequencies as reported in the Hapmap database
(http;//www.hapmap.org) for genes under study. The frequency class of allele (minor or
major) was specified based on the Caucasian frequency. The minor allele for the selected
SNP (marked by arrows) is noted for each gene. The circles represent minor allele
frequencies for Caucasians (CEU) reported in Hapmap, and the triangles represent minor
allele frequencies for Sub-Saharan Africans (YRI) reported in Hapmap. Not shown are the
minor allele frequency distributions for HM74 and HM74A, since much of the data that has
been collected for these genes are potentially confounded by the duplicated nature of the
relevant sequences. The report for the HM74 SNP, denoted rs2454727 in the database, links
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to NCBI: http://www.ncbi.nlm.nih.gov/SNP/snp_ref.cgi?rs=rs2454727) which specifies a
minor allele frequency (A) of 34% for the CEU population, and 24% for the YRI population.
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Table 1

SNP characteristics

A. The database identifiers, target sequence, and related information for each SNP
analyzed in this study.

Gene SNP rs
designation

Target sequence*, type of polymorphism, any
change in translation product, and ancestral allele.

HM74A N/A CAGAGGAAGAT[G/A]ACAGGTG;
nonsynonymous in sole exon; A= isoleucine
instead of methionine; ancestral is likely G.

HM74 rs2454727 CAGAGGAAGAT[G/A]ACAGGTG;
nonsynonymous in sole exon; A= isoleucine
instead of methionine; ancestral is likely G.

MCHR1 rs133073 CCTCGCTGCTGCCCACTGGTCCCAA[C/T]
G CCAGCAACACCTCTGATGGCCCCG; a
synonymous polymorphism in exon 1: transition
substitution in exon 1; ancestral is C.

MCHR2 rs9376618 TGCTAATGGAAAACCACTGAAGACA[C/G]
TTCAATAGCCACAATGTGCAAAATA; in
intron 5 of full-length mRNA; transversion
substitution; ancestral is G.

MC5R rs2236700 TGGTGTCTCTGTACATACACATGTT[C/G]C
TCCTGGCGCGGACTCACGTCAAGC;
nonsynonymous in sole exon; G = leucine instead
of phenylalanine; ancestral is G.

TDO2 rs2271537 TTTACTTCTGCTATGCTTCTATATA[A/C]TT
TTCTATTGTCAAAGAAAGAAAAA; intron 4;
transversion substitution; ancestral is A.

B. Sequence of gene-specific outer primers and common inner primers (custom
synthesis) used in nested PCR to distinguish the polymorphism common to both HM74A
and HM74.

Niacin-
receptor
duplicated
gene ID

Gene-specific
forward primer for
outer PCR

Gene specific
reverse primer*
for outer PCR

Common
forward primer
for inner PCR

Common
reverse primer
for inner PCR

HM74A GCCATCATCTCT
TGCCTTCT

TGGCATGGT
TATTTAAGG
AGAGGT

TCCCAACTT
CTTCTCCAC
TTTGATC

CTCGTGCTG
CGGTTATTA
TCTG

HM74 GCCTAACAGTC
CACCTCCTG

CTTCTTGGA
ATGGTTATTT
GAGGT

TCCCAACTT
CTTCTCCAC
TTTGATC

CTCGTGCTG
CGGTTATTA
TCTG

*
Only the target sequences, not the primer sequences for Applied Biosystems inventoried TaqMan® SNP products are released by the company.

*
Note that the reverse primer sequences for these genes target 4 bp of insertion/deletion that distinguishes HM74A from HM74 (Miller and Dulay,

2008).
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Table 3

Odds ratios, 95% confidence intervals, and p-values from GEE models for the associations of the six candidate
SNPs to the outcome using a logistic link function and adjusting for differences in sites and race. Results are
shown for schizophrenia (Scz) and for the combined diagnostic category of schizophrenia and bipolar disorder
(Scz+Bipolar), using additive, dominant, recessive, and heterosis models (ad, D, R, and H, respectively1).

Scz OR
(95% CI) P*

Scz+Bipolar OR
(95%CI) P*

HM74A, ad 0.94 (0.74–1.19) 0.574 0.92 (0.73–1.15) 0.459

HM74, ad 1.23 (0.97–1.55) 0.093 1.26 (1.01–1.59) 0.044

MCHR1, ad 1.00 (0.80–1.25) 0.994 0.98 (0.80–1.21) 0.875

MCHR2, ad 1.02 (0.83–1.27) 0.823 1.00 (0.81–1.25) 0.964

MC5R, ad 1.18 (0.90–1.54) 0.232 1.11 (0.85–1.44) 0.446

TDO2, ad 1.14 (0.91–1.41) 0.252 1.16 (0.94;1.43) 0.174

HM74A, D 1.05 (0.78–1.43) 0.742 1.00 (0.75–1.35) 0.973

HM74, D 1.48 (1.10–2.00) 0.011 1.50 (1.12–2.00) 0.007

MCHR1, D 1.08 (0.79–1.49) 0.613 1.00 (0.73–1.36) 0.992

MCHR2, D 1.00 (0.73–1.36) 0.990 1.03 (0.76–1.39) 0.843

MC5R, D 1.29 (0.94–1.76) 0.113 1.19 (0.88–1.61) 0.255

TDO2, D 1.01 (0.70–1.45 0.968 1.04 (0.73–1.49) 0.811

HM74A, R 0.69 (0.44–1.06) 0.093 0.70 (0.46–1.08) 0.110

HM74, R 0.93 (0.60–1.45) 0.749 1.04 (0.68–1.59) 0.845

MCHR1, R 0.88 (0.60–1.28) 0.488 0.95 (0.65–1.37) 0.773

MCHR2, R 1.11 (0.72–1.72) 0.631 0.95 (0.62–1.47) 0.834

MC5R, R 0.92 (0.46–1.83) 0.819 0.86 (0.43–1.69) 0.659

TDO2, R 1.40 (0.97–2.01) 0.069 1.42 (1.00–2.02) 0.050

HM74A, H 1.25 (0.93–1.69) 0.145 1.18 (0.88–1.58) 0.260

HM74, H 1.50 (1.12–1.99) 0.006 1.44 (1.09–1.90) 0.011

MCHR1, H 1.16 (0.87–1.54) 0.321 1.03 (0.78–1.36) 0.839

MCHR2, H 0.95 (0.70–1.29) 0.742 1.05 (0.78–1.42) 0.739

MC5R, H 1.33 (0.96–1.84) 0.082 1.25 (0.91–1.71) 0.168

TDO2, H 0.79 (0.58–1.07) 0.128 0.80 (0.60–1.07 0.138

1
HM74A, D= [A,any]; HM74, D= [A,any]; MCHR1, D= [C,any]; MCHR2, D= [C,any]; MC5R, D= [G,any]; TDO2, D=[C,any]. The recessive

model (R) for each involves the homozygote of the allele specified.

*
A p value of 0.0083 is the threshold required for Bonferonni significance, given 6 SNP comparisons.
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Table 5

Odds ratios, confidence intervals, and p-values for the significant variables identified by logic regression. We
compared schizophrenic subjects only to controls (columns 1–2), and schizophrenic plus bipolar subjects to
controls (columns 3–4), using generalized estimation equations to account for family structure. Adjusting for
potential differences in race and study sites, we fitted a main effects models (lines 1–2), a model with main
effects and an interaction (lines 3–5), and a model with the Boolean term derived from logic regression (line
6).

Scz OR
(95% CI) P**

Scz+Bipolar
OR (95%CI) P**

TDO2[CC] 1.4 (0.97–2.02) 0.07363 1.43(1.00–2.04) 0.05174

HM74[A,any] 1.48 (1.09–2.00) 0.01080 1.50(1.12–2.01) 0.00651

TDO2[CC] 2.93 (1.60–5.39) 0.00053 3.00(1.65–5.46) 0.00034

HM74[A,any] 1.91 (1.35–2.69) 0.00024 1.94(1.39–2.72) 0.00010

TDO2[CC] plus
HM74[A,any] 0.31* (0.15–0.64) 0.00143 0.31(0.15–0.62) 0.00110

TDO2[CC] or HM74[A,any] 1.96 (1.42–2.71) 0.00004 2.00(1.46–2.74) 0.00001

*
The OR for the interaction being less than 1 means the effects of HM74[A,any] and TDO2[CC] are not additive, i.e. that adding the individual

effects would significantly overestimate the odds of disease when both HM74[A,any] and TDO2[CC] are true.

**
Note that permutation testing with cross-validation is not confounded by multiple comparisons. It establishes the presence or absence of signal in

the data, and assesses the correct model size. The p-values are informative for quantifying the effect size relative to standard error.
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