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e Hyperspectral data were used to detect Chromium(Cr) pollution.
e A data enhancement method combined with a deep learning method showed the optimal accuracy.

e Our method is expected to provide large-scale accurate, real-time monitoring and guidance in soil pollution.
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ARTICLE INFO ABSTRACT

Keywords: In China, over 10% of cultivated land is polluted by heavy metals, which can affect crop growth,
soil hyperspectrum food safety and human health. Therefore, how to effectively and quickly detect soil heavy metal
soil heavy metal pollution pollution has become a critical issue. This study provides a novel data preprocessing method that
data enhancement (DA) can extract vital information from soil hyperspectra and uses different classification algorithms to
support vector machine (SVM) detect levels of heavy metal contamination in soil. In this experiment, 160 soil samples from the
k-nearest neighbour (KNN) Eastern Junggar Coalfield in Xinjiang were employed for verification, including 143 noncontam-
deep neural network (DNN) inated samples and 17 contaminated soil samples. Because the concentration of chromium in the

soil exists in trace amounts, combined with the fact that spectral characteristics are easily influ-
enced by other types of impurity in the soil, the evaluation of chromium concentrations in the soil
through hyperspectral analysis is not satisfactory. To avoid this phenomenon, the pretreatment
method of this experiment includes a combination of second derivative and data enhancement
(DA) approaches. Then, support vector machine (SVM), k-nearest neighbour (KNN) and deep
neural network (DNN) algorithms are used to create the discriminant models. The accuracies of
the DA-SVM, DA-KNN and DA-DNN models were 95.61%, 95.62% and 96.25%, respectively.
The results of this experiment demonstrate that soil hyperspectral technology combined with
deep learning can be used to instantly monitor soil chromium pollution levels on a large scale.
This research can be used for the management of polluted areas and agricultural insurance ap-
plications.

1. Introduction

With the development of global industrialization, the amount of waste gas, wastewater and residue discharged from
industrial production are increasing, which has resulted in increasingly serious heavy metal contamination in soil. Once
the concentration of heavy metals in the ground is exceeded, it will have a severe negative impact on the growth of local
crops and indirectly cause irreversible damage to human health [18]. Chromium is a heavy metal element responsible
for environmental pollution. There are two stable states in the soil: chromium (III) and chromium (VI). Chromium
(III) has few side effects on plants. In contrast, chromium (VI) is a carcinogen that is corrosive and carcinogenic. The
pollution of chromium (VI) mainly comes from two aspects: 1) chromite ore mining and 2) industrial processing, such
as leather processing. Therefore, the rapid and accurate detection of industrial chromium pollution in soil, aimed at
achieving effective monitoring, has become a concern of environmental scientists worldwide.

Miiller defined seven Geoaccumulation Index (Igeo) classes to determine whether heavy metal contamination exists
[10]. According to Igeo values, pollution is divided into seven levels. When Igeo is less than 0, the pollution level is
0, indicating that there is no pollution; when Igeo ranges from 0 to 7 (not including the specific cost 7), the pollution
level is between 1 and 6, implying that there is pollution. The hyperspectral remote sensing technology developed
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in the 1980s can predict the concentration of heavy metals in soil through its high spectral resolution and continuous
spectral bands to achieve rapid noncontact measurements. The principle is to use the fact that soil organic matter, clay
minerals, iron and manganese oxides and other main components adsorb heavy metals reflected on the spectral curve
to invert the concentration of different heavy metals in the soil. Hang Cheng studied the relationship between spectral
information and soil concentration and used the Partial least squares regression model to predict the concentration of Cr,
As and Cd with good results, but did not achieve a good result when predicting the concentration of Pb, Cu and Zn; this
research further found that the concentration of Cr has a great correlation with SOM, while Cr has a greater relationship
with As, Fe, Pb, Cu, and Zn has weak relationship with SOM and Fe, so the prediction of Zn concentration was not
good.The prediction of Cr concentrations had good results in this experiment, but its accuracy was still poor compared
with the prediction of organic matter, which is a nontrace element [5]. Yongsheng Zhang had a more comprehensive
approach to the prediction of heavy metal concentrations. He used spectral information, auxiliary spectral information
(SOM, Fe, pH) and combined two kinds of information to predict the concentration of Cd. This demonstrated that the
effect of using two types of spectral information is better than using any known information alone to make predictions.
Although the strategy of using such information can improve the prediction of heavy metal concentrations, there are
many factors that affect heavy metal spectral information, and it is necessary to find a comprehensive collection of
information that can effectively improve the forecasting of heavy metal concentrations [13]. Weihong Zhou did not
directly measure heavy metal concentrations by using the hyperspectra of soil but rather used rice leaf hyperspectra to
estimate CaCl2-extractable concentrations of heavy metals. The study found that the 480 nm band in the original band
has a high correlation with Cd, with a correlation coefficient of 0.761, but the correlation accuracy is not ideal when
using the Partial least squares regression model model to estimate the Cd concentration through rice leaf hyperspectra
[38]. As the composition of soil is very complex, many factors will interfere with the spectral characteristics of the
Earth’s surface [31].Therefore, the accuracy of directly analysing the concentration of heavy metals in the soil using
spectral analysis methods is not satisfactory [1]. For example, the value of R2 associated with the Partial least squares
regression model method is not sufficient when scholars attempt to describe the relationship between the concentration
of chromium and its spectroscopic characteristics [33, 34]. However, deep learning can accurately extract nonlinear
information and perform well in one-dimensional speech signals and two-dimensional image signals, which makes it
possible to accurately identify one-dimensional hyperspectral and one-dimensional information to reach the application
level. In addition, due to the advantages of rapid, nondestructive, and large-area detection of hyperspectral signals,
they have a wide range of application prospects in soil pollution monitoring.

Compared with traditional methods to evaluate the concentration of heavy metals in soils, deep learning is an
algorithm-based processing technique that uses artificial neural networks as an architecture with which perform repre-
sentation learning on data. Deep learning is taken into consideration to address heavy metal pollution because it has
been shown to be an excellent method in many fields. In 2006, Geoffrey Hinton proposed a solution to the problem of
gradient disappearance in deep network training and thus contributed to the prosperity of deep learning in academia
and industry applications [12]. In 2012, DNN technology achieved outstanding results in the field of image recogni-
tion, reducing the error rate from 26% to 15% in ImageNet evaluations [11]. Since the spectrum can be regarded as a
one-dimensional signal and the picture can be recognized as a two-dimensional signal, the task of knowing the extent
of heavy metal pollution can be addressed with deep learning. Meanwhile, DNN was also applied to the DrugeActivity
prediction problem of pharmaceutical companies and achieved optimal results. To date, there have been several deep
learning frameworks, such as deep neural networks, convolutional neural networks, deep belief networks, and recurrent
neural networks, which have been used in computer visioning [9], natural language processing [23], and bioinformat-
ics [19] and have achieved impressive results. Ting Liu proposed a deep autoencoder to assess its performance in
near-infrared spectroscopy acquired from different categories of cigarettes. The results of experiments showed that the
deep autoencoder model can sufficiently sort through different categories of cigarettes [20]. In addition, Xiaolei Zhang
found that convolutional neural network model-based grapevine classification analyses for near infrared spectral data
achieve a higher classification accuracy than partial least squares regression—linear discriminant analysis and principal
component analysis-logistic regression model methods [36]. Deep convolutional neural networks not only perform
well on near infrared spectroscopy but also works well when applied to Raman spectroscopy when facing classifica-
tion problems. Deep convolutional neural networks using spectral and spatial information to classify bacterial colony
species have a better effect than spatial bagging and conventional morphology methods [16]. Furthermore, Alberto
Signoroni trained a convolutional neural network to identify bacterial species in hyperspectral images and indicated
that deep learning models can be applied to deal with several types of spectral data effectively [30]. As numerous
data types are exposed to increasingly better deep learning models with advisable effects, they lay a solid foundation
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for future links between the detection of heavy metal concentrations in soil and deep learning. Data enhancement
technologies that include a series of techniques used to generate new training samples is an effective means to improve
deep learning models. These techniques are implemented by applying random jitter and disturbance methods to the
original data without changing the class labels [29]. At present, data enhancement technology has been successfully
applied in computer visioning, speech recognising, natural language processing and other fields. It is reasonable to
use the data enhancement method for soil hyperspectral applications to solve sample limitation problems, which can
trigger insensible results.

In this study, we use soil hyperspectra with machine learning methods to monitor whether the Cr concentration
in the soil exceeds the standard. First, the second-order differential of the data set is used for preliminary feature
extraction. Then, the dataset is expanded using data enhancement techniques to enhance the generalization ability
and robustness of the model. Then, the deep neural network (DNN), support vector machine (SVM), and k-nearest
neighbour (KNN) methods are used to perform discriminant analysis on the critical features of spectral data extraction.

The purpose of this study is (1) to explore the feasibility of employing a combination of soil hyperspectral and
machine learning methods to detect Cr concentrations in the soil; (2) monitor situations in which Cr exceeds a large
area accurately and quickly; and (3) provide a new technology for real-time monitoring and a sufficient basis for
governance methods and processes. To the best of our knowledge, this is the first time that spectral data augmentation
technologies and neural networks have been integrated to classify heavy metal pollution. Once the soil spectral library
is created, the proposed method can provide reliable and immediate information on targeted soils, which is applied to
agricultural insurance and environmental protection applications. In our experiment, aimed at addressing the ecological
pollution caused by the development and utilization of coal resources, we choose the Eastern Junggar Coalfield as the
research area to reveal the trends of soil chromium and decay in mining areas and discuss the feasibility of realizing
the quantitative estimation of soil chromium concentrations using hyperspectral remote sensing technology in mining
areas.

2. Materials and methods

2.1. Study area and data collection

The Eastern Junggar Coalfield is located in the northern foothills of the Tianshan Mountains and southeast of the
Junggar Basin between 88°45’ ~ 90°20'E, 44°30" ~ 45°00’N (Fig. 1) [37]. This area is located in the hinterland of
Eurasia and has a typical extreme arid continental climate. Xinjiang’s coal forecast resources account for more than
40% of the country’s total forecast resources, which rank first in the country. The coal reserves in the Eastern Junggar
region reach 390 billion tons, accounting for 17.8% of the total reserves of Xinjiang. Most of its areas are located
in the Gobi Desert and surrounding deserts, which have no good ecological foundation. Furthermore, as the mining
years continue to increase, soil heavy metal pollution tends to be more serious, resulting in irreversible damage to the
ecosystem. Therefore, heavy metal pollution monitoring needs to be rapid and accurate.

Before the soil samples were brought back to the lab, soil sampling occurred from June 22 to July 1, 2014. Ac-
cording to the characteristics of the Eastern Junggar open-pit coal mine, the soil surrounding pits, power plants, ore
dressing plants and their surroundings were collected, and GPS was used to coordinate the location of the soil collection
points. Five samples were collected in mining areas, reclamation areas, deserts, etc. Using a five-point mixed sampling
method to collect soil samples, each sample point was divided into three layers of a collection set with depths of 0-10
cm, 10-20 cm, 20-30 cm; a total of 168 samples were collected, mixed evenly and brought back to the laboratory with
sample packages.

The soil samples brought back to the laboratory were air-dried, ground, passed through a 0.2 nm pore size sieve,
sealed and stored. After processing, the soil samples were divided into three parts, which were used to determine the
soil chromium concentration, organic matter concentration, and reflectance of each band of the soil hyperspectrum.
The concentration of Cr was determined by the Physical and Chemical Testing Center of Xinjiang University. The
samples were dissolved in hydrochloric acid, nitric acid and hydrofluoric acid. After steaming to near dryness, they
were dissolved by heating with 5% hydrochloric acid and then high-purity water was added until the samples reached
20 ml. Flame atomic absorption spectrometry was used for detection. The organic matter concentration was measured
by a Hitachi Z-2000 atomic absorption spectrophotometer [35].
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Figure 1: Study areas and location of sampling points.

2.2. Spectral measurement and pretreatment

In this study, the instrument used for obtaining soil sample spectral measurements was an ASD FildSpec3 Spec-
trometer (Analytical Spectral Devices, Inc., Boulder, CO, USA), and measurements of the soil spectrum were carried
out in a dark room. The halogen light source used was 50 W, and it was kept 0.5 m away from the sample at a 30°
incident angle; the distance between the probe perpendicular to the soil sample and the sample surface was 10 cm.
A whiteboard was used as the standard reference board for diffuse reflection, which was used for calibration in time
during measurement. Each sample was measured ten times, and the arithmetic average of 10 spectral values was taken
as the actual spectral reflectance of the soil samples.

Due to the correct evaluation of the experimental results of spectral noise, edge bands with low signal-to-noise ratios
were removed; the two removed bands were 350-400 nm and 2401-2500 nm. Finally, the reflection spectrum data of the
401-2400 nm bands were used for spectral analysis and research. All the spectral curves were smoothed and denoised
using Origin8.0 software to reduce the error of the spectral data during the acquisition process. The convolution
smoothing (Savitzky-Golay) method was used in this study [25]. Subsequently, second-derivative pretreatment was
employed to extract practical information [15]. The spectra were finally used for resampling, and the resampling
interval was 1 nm. In this study, a personal computer with a 2.8 GHz Intel Core i7-4900 MQ, 32 GB RAM, and
a Windows 10 operating system was used to conduct the pretreatment. We spent less than 20 minutes finishing the
pretreatment, which saves more time than traditional methods.

2.3. Data enhancement

Deep learning can learn more fine-grained knowledge from complex data and effectively filter and combine features
with different importance levels, which can yield better performance in the classifier. A spectrum can be viewed as a
one-dimensional image, and deep neural networks have been used to classify pharmaceutical tablets and Raman spectra.
Image data can be expanded by rotation and other methods [29]. In this experiment, the spectrum enhancement method
is primarily used. Compared to the measured value of the simulated spectrum under different illuminations, the model
introduces more noise data, discards less valid features, and extracts useful features to increase robustness.

Because traditional models exhibit certain shortcomings in detecting trace elements of heavy metals, this study uses
a combination of data augmentation and deep neural network models to achieve more accurate results. There are three
ways to enhance data: increase the offset; multiplication; and random changes in slope. In this study, the spectrum of
the measured data set is randomly and uniformly multiplied by 0.999-1.001 [3]. This operation is completed ten times
to enhance different illumination levels and disturb the data to yield more robust model training.

2.4. Correction strategy
Via multiple divisions, cross-validation significantly reduces the contingency result caused by a random division.
Concurrently, via various divisions and many trainings, the model can also encounter a variety of data, thereby im-
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proving its generalizability. In the k-fold cross-validation method, it is common to set k to 5 or 10. In the experiment,
the entire extended data set (1680) is randomly divided into a training set and a verification set at a ratio of 8:2, and is
continuously used for model training; this process is referred to as the fivefold cross-validation method. Based on the
criteria of Igeo, the parameter is greater than 73 for pollution and below or equal to 73 for nonpollution. A support
vector machine (SVM) or k-nearest neighbour (KNN) method is commonly used for classification due to their mature
theories and high accuracies. Deep learning has excellent performance in managing complex problems; thus, this
experiment uses SVM, KNN and deep learning for classification.

In this study, SVM is modelled in Python 3.7.4 with Scikit-learn modules, KNN is modelled in Python 3.7.4 with
Scikit-learn modules, DNN is modelled in Python 3.7.4 with TensorFlow, Keras, Scikit-learn, and NumPy third-party
modules.

24.1. SVM

SVM is a supervised, kernel-based nonlinear learning method [32] that uses nuclear techniques to manage complex
nonlinear problems with good performance. Using kernel functions, SVM maps a data set to a higher-dimensional
feature space than the original space, making the samples linearly separable in the new feature space. The final decision
function of SVM is only determined by a few support vectors. The complexity of the calculation depends on the number
of support vectors. SVM can extract key sample information and remove many redundant samples; thus, the algorithm
is simple and efficient.

2.4.2. KNN

KNN is a supervised learning algorithm that can describe the nonlinear relationship between metal concentrations
and spectral data, and it is widely used to solve classification problems [8]. KNNs work as follows: (1) given test
samples, a specific distance evaluation method is used to determine the k samples closest to them; and (2) perform
prediction classifications based on these k samples. The KNN results strongly depend on the choice of k.

2.4.3. DNN

Deep neural networks (DNNs) are discriminant models. A neural network with at least one hidden layer can
be trained using a back-propagation algorithm. A weight update can be solved using the following gradient descent
method. By training multilayer neural networks, high-dimensional data can be converted into low-dimensional codes to
solve nonlinear problems. The traditional neural network learning algorithm exhibits shortcomings such as overfitting
and falling into local optima, which makes the accuracy of classification and regression tasks unsatisfactory. Hinton
proposed the "dropout" algorithm, which can randomly ignore half of the feature detectors during training and can
prevent overfitting caused by a small training set. In handwriting font recognition, speech recognition and other data
sets, DNNs achieve better performance than other methods [11]. Alex used deep convolutional neural networks in
2012 and won the ILSVRC-2012 competition. Since then, deep learning has become a popular research technology in
various fields of academia.

2.5. Prediction accuracy

In the classification experiment in this study, the related measures of accuracy, sensitivity, and specificity are used
to evaluate the results. In all samples, they are divided into positive examples and negative examples. Among the
positive examples, correct predictions are referred to as true positives (TPs), and incorrect predictions are referred
to as false negatives (FNs). In the negative examples, when the prediction is incorrect, the results are referred to as
false positives (FPs), and correct predictions are referred to as true negatives (TNs). The accuracy rate is defined as the
number of divided samples divided by the number of all samples. We also use sensitivity and specificity to measure and
analyse the spectrum, respectively. The formulations of accuracy, sensitivity and specificity are described as follows:

ACC = (TP + TN)//(TP + FP + FN + TN) 1)
Sensitivity = TP/(TP + FN) 2)
Specificity = TN//(TN + FP) 3)
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3. Results

3.1. Soil spectral analysis

The soil spectrum with Cr concentrations in the range of 401 nm to 2400 nm was compared between soil samples
with and without standard concentrations. It is clearly shown that the two sets of original spectra are difficult to
distinguish by their shape and intensity (Fig. 2). Therefore, a powerful preprocessing method and a data analysis
algorithm are necessary to extract key information and distinguish between polluted and nonpolluted soil spectra.
After smoothing and second derivative treatment, apparent peak changes were observed at 562-575 nm, 969-1008 nm,
1402-1512 nm, 1751-1769 nm, and 2252-2391 nm. However, it is not easy to distinguish differences from other bands.
Due to the complex spectral features mentioned above, we propose a deep learning model that can detect vital features
and other insignificant features from multiple layers.
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Figure 2: Comparison of the normalized mean spectra between polluted soil samples and unpolluted soil samples (The
shaded areas represent the standard deviations of the means).
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Figure 3: Comparison of the normalized mean spectra that are preprocessing between polluted soil samples and unpolluted
soil samples (The shaded areas represent the standard deviations of the means).

3.2. Model evaluation

In the SVM model, the linear kernel, polykernel, and rbf kernel were selected to compare the classification results.
For the experiment, experimental parameters and results are shown in Tables 1 and 2, respectively. The judgement
accuracy of the SVM model varies with the kernel function; the product of the linear kernel is the worst, and that of
the polykernel is the best. The linear kernel makes the characteristics of the map too simple to express the complex
spectral shape; thus, the classification result is the worst. Additionally, extreme cases showed that the prediction result
of the positive example is 1, and the negative example result is 0, which shows that linear classification is not applicable
to the spectral classification of trace elements in complex situations. The development of the rbf function provides an
adequate level of sorting, the value of sensitivity is low (47.05%), and the value of specificity (83.44%) is high. The
correct rate of pollutants is low; however, the incorrect rate of pollutants is high. These results are caused by the
operational nature of the Gaussian kernel, which can map the low-dimensional input space onto the high-dimensional
feature space, thus making it easy to learn redundant information when there are fewer pollutant samples and more
features. The performance of the polykernel in the experiment is the best, indicating that spectral classification is more
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Table 1
Parameter initialization setting.

SVM parameter setting

C 40
gamma 20
class_weight balanced
max_iter 2000
verbose True
Table 2

Comparison of performance for linear kernel,rbf kernel,poly kernel.

Kernel Sensitivity(%) Specificity(%) Accuracy(%)
linear 1.00 0.00 10.62
rbf 47.05 83.44 79.37
poly 82.35 97.20 95.61

suitable for polynomial fitting and will produce good results. The polynomial kernel increases the feature dimension
to a more moderate dimension, which can effectively identify and mitigate information explosion, and can use curves
to divide trace elements accurately. When the training data are linearly inseparable, a nonlinear SVM is learned using
kernel techniques and soft interval maximization. When the input space is the Hilbert space, the kernel function
represents the inner product between the feature vectors obtained by mapping the input data from the input space to the
feature space. Using the kernel function, nonlinear SVMs can be learned, which is equivalent to implicitly learning
linear SVMs in a high-dimensional feature space. The definition of the kernel function is expressed as equations (4)
and (5) [4, 17].
Let y be the input space and H be the feature space if there is a mapping from y to H :

O(x): y—-> H “)

Therefore, for all x, z € X, the function K (x, z) satisfies the condition:

K(x,z) = ®(x) - D(2) (5)

Then, K(x, z) is the kernel function, where @(x) in equation (4) is the mapping function, and - indicates the inner
product multiplication.

Solving the optimization problem with SVMs is equivalent to identifying the maximum separation hyperplane. To
obtain an optimal solution, the dual problem can be solved using Lagrangian duality and thus the solution’s linearly
separable support vector. The optimal solution of the machine is equivalent to solving the objective function of equation
(6). When solving the optimal problem of an SVM including a kernel function, the dual objective function to be solved
is described by equation (7):

N

N

. 1

min 3 Zaiajyiyj(xi-xj)—Zai
1:1]:1 i=1

N (6)
st. Yay;=0
i=1
0<ag;<C, i=12,---,N
AR N
W(a):EZZaiajyiyjK(xi,xj)—Zai @)
i=1 j=1 i=1
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In equations (6) and (7), a, a;, and a; are Lagrangian multiplier vectors; and (x;, y;) belongs to the training data set
T ={(x, 1) (x2,¥9) ..., (x, ¥,)}, where x; € R, y; € {-1,+1},i=1,2,...,N.

In the experiment, a polynomial kernel is used, and the input space corresponds to a feature space via nonlinear
transformation so that the hypersurface model in the input space corresponds to the hyperplane model in the feature
space H. We extend the original hyperspectral features to higher dimensions using the polynomial kernel function to
learn more abundant Cr features. Concurrently, to avoid using the kernel function to expand to infinite dimensions, the
highest order term of the polynomial kernel function is set equal to 3 in this experiment to avoid learning redundant
Cr features. In the real operation in Python, the inner product x; - x; of the input space is transformed into the inner
product ®(x;) - P(x;) in the feature space, and P(x;) - @(x;) is calculated to obtain K(x;, x;), which is more complex;
thus, the toolkit in the software can be directly applied to the matrix to calculate K (x;, x;). Nonlinear Cr features can
be learned quickly and easily, and the discriminant function can be used to accurately judge whether Cr exceeds the
standard.

Next, KNN considers all selected spectra to identify the most distinctive variables and perform classification [8].
In this study, the Euclidean distance is used as a distance measurement, and the model is evaluated by adjusting k in the
model. Typically, it is assumed that a large k selects neighbouring points; thus, training examples that are far away from
the input instance and are not similar will also contribute to the prediction, making predictions incorrect. However,
if k is small, the prediction will be more sensitive to nearby examples, which will lead to noise and prediction errors.
The best k is determined using the fivefold cross-validation method. Based on Figure 4, when k was set to 16, the
best result was produced, and the accuracy, sensitivity and specificity were 95.62%, 70.58% and 98.60%, respectively
(Table 3).

Table 3
Comparison of performance for different k values.
K value Sensitivity(%) Specificity(%) Accuracy(%)
12 47.05 97.20 91.87
14 70.58 98.60 95.62
16 35.29 97.90 91.25
18 35.29 97.20 90.62
20 5.88 1.00 89.99
100.0
o5l | k=14, Accuracy=9562%
96.0 -
S
3 925
g
3
& 900+
87.5
85.0 T T T T T
12 14 16 18 20
K

Figure 4: Accuracy of KNN algorithms under different k values.

To evaluate the performance of the deep learning model, we compared its use with three deep neural network
models (Figures 5-7). The primary difference between these three models is the model depth. The first DA-DNN model
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Figure 7: Network structure diagrams of five-layer model (model 3).

(Model 1) is the shallowest model with three hidden layers. Every hidden layer is equipped with a "relu" activation
function and "dropout" regularization terms to optimize the network structure, in which the activation function can
learn the nonlinear characteristics of the spectrum. The role of dropout is to prevent overfitting. The number of
neurons in the first model’s three hidden layers is 8, 16, and 32. There is also an input layer (F1) and an output layer
in the model. The second DNN model (Model 2) includes three hidden layers, an input layer and an output layer.
Compared to the first model, a hidden layer with 16 neurons is added, and a "relu" activation function and a dropout
regularization term are also present to learn various features of the data by deepening the neural network. The third
DNN model (Model 3) includes five hidden layers, an input layer and an output layer. Apart from the structure of the
first model, a hidden layer with 16 neurons and a hidden layer with eight neurons are added, and each hidden layer
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is followed by a "relu" activation function and a dropout regularization term. The accuracy of the three-layer neural
network is found to be the highest of the tested models. As the number of network layers increases, the accuracy rate
decreases and becomes stable, demonstrating that a deeper network makes the model tend towards overfitting because
the deeper network has learned too much useless information (Table 4), thus decreasing the accuracy rate.

Table 4

Comparison of performance for DNN models with different layers.

DNN model Sensitivity(%) Specificity(%) Accuracy(%)
Model 1 88.23 97.20 96.25

Model 2 0.00 1.00 89.37

Model 3 0.00 1.00 89.37

4. Discussion

In this paper, we study the preprocessing and statistical learning methods of analysing soil hyperspectra combined
with second-order differential and data enhancement and a deep learning method for the screening of excessive Cr
concentrations. Through the second derivative processing and analysis of hyperspectral characteristics in the polluted
and nonpolluted groups, we found that the soil hyperspectra between the two groups had different specificities. Due to
the differences in Cr concentrations, the absorption peak position and peak intensity of the two groups of soil spectra
change. These changes indicate that individual components in contaminated and noncontaminated soil change with
varied Cr concentrations. Based on the situation, using near-infrared spectroscopy coupled with deep learning methods
and statistical methods may be able to determine whether the Cr concentration in the soil exceeds the standard.

From the literature, it is known that near-infrared spectroscopy can reflect many vibration modes of considerable
substances, such as iron oxides, clay minerals and organic matter components, and their composition or quantity may
be related to the concentration of Cr. Iron oxides have a relatively large influence on the concentration of Cr [39]. Fur-
thermore, the corresponding prominent bands are shown in Table 5. In addition, clay minerals and organic matter also
have varying degrees of influence on heavy metals. Table 5 shows the corresponding bands of the primary substance.

Due to the high dimensionality of hyperspectral data, processing hyperspectral data will cause problems, such as
requiring a large number of calculations and producing results with low accuracy. Traditional spectroscopy studies need
to exclude useless variables to prevent collinearity in data processing from affecting the final prediction results. Some
studies use PCA to extract the most useful hyperspectral information. This method shows good results in situations with
fewer impurities. However, there will be many impurities that affect the results of trace elements in soil hyperspectra,
which produce undesirable effects. Choosing appropriate bands from all available bands to obtain useful information
requires expert knowledge and rich practical experience, and it is not easy to achieve automated and rapid detection.
SVM and KNN are often used for quantitative analysis of spectra, but SVM easily learns too many features when
processing hyperspectral data, which leads to the occurrence of overfitting. KNN is computationally expensive, and
when the sample size is small, the classification accuracy is not very high.

Deep learning is a powerful data analysis algorithm that is driven by big data. The primary learning method of
deep learning is to establish a connection between the input, hidden and output layers through a neural network and
select an activation function for each hidden layer to simulate a complex nonlinear process. Because deep learning has
been applied to a variety of complex data structures, such as image signals and voice signals, the experiment in this
study attempts to process multidimensional soil hyperspectra with deep learning. Because the number of experimental
hyperspectral data is insufficient, a deep neural network model with more parameters will not have good generalizability
or robustness. To overcome this problem, this experiment uses data enhancement technology that is commonly used in
deep learning. Based on its spectral characteristics, the spectrum is appropriately disturbed to expand the dataset. With
data enhancement technology and deep learning, hyperspectral data can yield good results with regard to predicting
whether the heavy metal Cr concentration exceeds the standard. Combined with data enhancement, SVM and KNN
achieve satisfactory performance when detecting excessive Cr in soil.

This experiment also shows that when the same hyperspectral data undergoes preprocessing, deep learning achieves
the highest accuracy when monitoring hyperspectral heavy-metal pollution in soil due to its strong fit. In the proposed
experiment, three marked absorption zones (1413, 1922, and 2200 nm) were found in the spectrum. Wavelengths of
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Table 5
Soil absorbance in the visible-near-infrared regions
Soil constituent Wavelength Reference
Fe oxides
goethite 420 Sherman and Waite(1985) [27]

427 Scheinost et al(1998) [26]

434 Rossel et al(2010) [24]

480 Sherman and Waite(1985) [27]

650 Rossel et al(2010) [24]

920 Sherman and Waite(1985) [27]
haematite 404 Rossel et al(2010) [24]

444 Rossel et al(2010) [24]

529 Rossel et al(2010) [24]

650 Rossel et al(2010) [24]

884 Rossel et al(2010) [24]

510 Sherman and Waite(1985) [27]

531 Scheinost et al(1998) [26]
water 940 Hunt(1977) [14]

1135 Hunt(1977) [14]

1380 Hunt(1977) [14]

1455 Hunt(1977) [14]

1915 Rossel et al(2010) [24]
hydroxyl 700 Rossel et al(2010) [24]

930 Rossel et al(2010) [24]

1400 Hunt(1977) [14]

1929 Ben-Dor et al(1997) [2]

1932 Ben-Dor et al(1997) [2]

2200 Clark et al.(1990) [7],Post and Noble(1993) [22]
Clay minerals
Kaolin doublet 1395 Oinuma and Hayashi(1965) [21]
smectite 2206 Oinuma and Hayashi(1965) [21]
illite 2340 Post and Noble(1993) [22]
carbonate 2336 Rossel et al(2010) [24]
organics
aromatics 1650 Clark et al(1990) [7], Clark(1999) [6]
amine 1000 Clark et al(1990)[7],Clark(1999) [6]

2060 Hunt(1977) [14]
Alkyl asymmetric-symmetric doublet 853 Clark et al(1990) [7],Clark(1999) [6]
amides 2033 Clark et al(1990)[7],Clark(1999) [6]
methyls 2310 Shonk et al(1991) [28]

1400 and 1900 nm were primarily water absorption bands, which belong to the first-order frequency doubling zone.
The O-H lattice structure water of clay minerals and soil-adsorbed water has a greater impact at 1400 and 1900 nm.
There are certain wave bands that have a strong correlation with Cr. For example, the high-signal vibration at 432
nm corresponding to goethite (a-FeOOH) shows that the Cr concentration in the soil has a strong correlation with the
increase in the a-FeOOH concentration. Absorptions near 1004, 853, 2035 and 2310 nm in the spectra are related to
the vibration of organic matter. Goethite in nature must contain organic matter such as amides, and these substances
cause the redox reaction of Cr in the soil. For example, Cr3* can be oxidized on the surface of true iron ore; NO;

has a reducing effect and can oxidize Cr3* to Cr®* on the surface of goethite. In deep learning, neural networks can
extract more abstract and deeper information in hyperspectra to improve data mining. In the heavy metal pollution and
non-pollution of the soil, each hidden layer can extract different degrees of information to make different combinations:
a hidden layer extracts the smaller wavelength range from 401 to 2400 nm for identification, such as the influence of
1004, 853 and 2035 nm on Cr concentration; another hidden layer is analysed for a broader range of wavelengths,
such as features around three pronounced absorption peaks at 1413, 1922, and 2200 nm; and the third hidden layer
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can be combined with the results of the first and second layers for waveband discrimination. Because heavy-metal
elements in the soil spectra are strongly affected by other substances, a dropout layer is added after each layer of the
neural network in this experiment, and certain information is randomly discarded to prevent the model from overfitting.
In this experiment, more preprocessing methods have not been tried to affect the deep learning model, and the deep
learning model has not designed a more complex network structure to compare model performance. The next step will
explore how different preprocessing methods and different complexities of the model influence deep learning effects.

5. Result

In this study, we proved that soil near-infrared spectroscopy combined with deep learning methods or statistical
learning methods is used for screening Cr pollution. Due to the low concentration of Cr in the soil, the amount of
useful information in the band after the second derivative treatment increased. In contrast, a small number of bands
and the Cr concentration show strong correlations. The experiment proves that Fe oxides and organic matter have a
significant effect on the concentration of Cr in some specific wavebands, and the features of each level can be abstractly
extracted through deep learning to achieve valid recognition. The high classification accuracy of DA-SVM, DA-DNN
and DA-KNN illustrates the potential advantages of using near-infrared hyperspectral spectroscopy to identify heavy
metal pollution.

The main goal of Cr concentration detection is to identify pollution in a timely manner to avoid heavy metal
pollution in the environment and prevent irreversible harm to the human body caused by Cr absorption through soil
and water. High Cr concentrations in different areas should mandate different pollution control strategies, which can be
achieved by the detection and treatment of high Cr pollution areas based on different spectral characteristics. In recent
years, with the launch of hyperspectral satellites and development of portable hyperspectral instruments equipped with
unmanned aerial vehicles, this research is expected to provide large-scale accurate, real-time monitoring and guidance
for areas with heavy metals exceeding the standard.
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