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Highlights 

 Social cognition includes understanding others’ emotions from facial expressions 

 Adults with previous ADHD exhibit overactive face network properties 

 Differences were found in brain regions linked to recognizing facial expressions  

 Differences were found in brain regions linked to attention 
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Abstract  

The symptoms of ADHD tend to have continuity to adulthood even though the diagnostic criteria were no 

longer fulfilled. The aim of our study was to find out possible differences in BOLD signal in the face-

processing network between adults with previous ADHD (pADHD, n=23) and controls (n=29) from the 

same birth cohort when viewing dynamic facial expressions. The brain imaging was performed using a 

General Electric Signa 1.5 Tesla HDX. Dynamic facial expression stimuli included happy and fearful 

expressions. The pADHD group demonstrated elevated activity in the left parietal area during fearful 

facial expression. The Network Based Statistics including multiple areas demonstrated higher functional 

connectivity in attention related network during visual exposure to happy faces in the pADHD group.  

Conclusions: We found differences in brain responses to facial emotional expressions in individuals with 

previous ADHD compared to control group in a number of brain regions including areas linked to 

processing of facial emotional expressions and attention. This might indicate that although these 

individuals no longer fulfill the ADHD diagnosis, they exhibit overactive network properties affecting 

facial processing.  

Keywords: ADHD; facial expressions; emotion recognition; fMRI 
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1. Introduction 

Symptoms of excessive inattention, hyperactivity and impulsivity are characteristic to attention deficit 

hyperactivity disorder (ADHD), but the disorder has also been connected to a variety of other symptoms 

including deficits in social cognition and functioning (Nijmeijer et al., 2008; Kofler et al., 2018). Social 

cognition includes understanding others’ feelings and emotions and recognising them from facial 

expressions and body postures. In addition, empathy, humour, and understanding of social contexts 

belong to social abilities (Uekermann et al., 2010). Understanding other people's emotions is crucial to 

successful navigation in social interactions.   

The processing of human faces is uniquely distinct from the processing given to other types of objects 

(Haxby et al., 2000). The recognition of emotional facial expressions involves visual cortex and limbic 

areas as well as associative cortical regions (Winston et al., 2003; Vuilleumier and Pourtois, 2007; 

Tahmasebi et al., 2012). Facial emotional recognition in individuals with ADHD has been of interest in a 

variety of behavioural studies (Borhani and Nejati, 2018), but studies using functional magnetic 

resonance imaging (fMRI) are still sparse.  

However, there are a few fMRI studies that have examined functional brain network activation and 

connectivity in children and adolescents with ADHD in response to viewing facial emotional expressions. 

In a study by Brotman et al. (2010), ADHD patients (mean age 14) showed hyperactivity in left amygdala 

while rating subjective fear of neutral faces when compared to children with bipolar disease and healthy 

controls. Marsh et al. (2008) showed that ADHD patients (age 10-17) viewing angry faces expressed 

hyperactivity in frontal and posterior cingulate cortex when compared to controls. In a study by Malisza 

et al. (2011), ADHD patients (mean age 12) showed reduced activity compared to healthy controls in 
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putamen, insula, inferior frontal gyrus, occipital gyrus, anterior cingulate gyrus and fusiform gyrus when 

they were shown pictures of happy or angry faces and were asked if they saw happy faces. Passarotti et al. 

(2010) found in their study that ADHD patients (mean age 13.4) viewing angry faces had reduced 

activation compared to healthy controls in ventral and medial prefrontal cortex, pregenual anterior 

cingulate cortex, striatum and temporoparietal regions and increased activation in right dorsolateral 

prefrontal cortex. When viewing happy faces, ADHD patients showed increased activation in the same 

regions. The fMRI studies have shown activation differences between ADHD patients and healthy 

controls in various brain areas connected to facial emotion processing supporting thus the results of 

behavioral studies indicating the difficulties of ADHD patients in facial emotional recognition (Borhani 

and Nejati, 2018). 

Face processing has been shown to be partially modulated also by attention to the presented stimulus 

(Vuilleumier and Pourtois, 2007). The attention network comprises both dorsal and ventral attention 

networks that work in synergy with other networks such as default mode network (DMN) (Kim et al., 

2014). Dorsal frontoparietal network includes frontal eye field (FEF), intraparietal sulcus and implements 

orienting of attention via top-down signaling to subsequent networks (Corbetta et al., 2002). Ventral 

frontoparietal network comprises temporoparietal cortex and inferior frontal cortex and is involved in 

detecting salient changes in the environment (Corbetta et al., 2002). Deficits in sustained attention and 

inhibition have been suggested to have significant influence on emotion recognition in children with 

ADHD (Sinzig et al., 2008). From this perspective, the attention networks are worth including in fMRI 

studies of neural responses to facial expressions. 

The core symptoms of ADHD tend to have continuity to adulthood even though the diagnostic criteria are 

no longer fulfilled. Up to 65% of children with ADHD have been indicated to have some ADHD 
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symptoms as adults while only 15% still meet full diagnostic criteria (Faraone et al., 2006). In a review 

article by Borhani and Nejati (2018), they suggested that facial emotion recognition in ADHD does not 

alleviate across development and is partially distinct from core symptoms of ADHD. Across the reviewed 

literature, the most deficient facial expression to be recognised was fear. Schulz et al. (2014) have shown 

in their study comprising 14 adults with childhood ADHD (7 of them still fulfilling the diagnostic criteria 

of ADHD) functional anomalies in limbic networks for response execution in face emotion go/no-go task 

when compared to control subjects.  

The aim of our study was to find out whether there are differences in functional brain activity of adults 

with previous ADHD in their childhood/adolescence versus controls in blood oxygen level dependent 

(BOLD) signal in the face-processing network when viewing dynamic facial expressions of opposing 

valences of fear and happiness. For this purpose, we administered fMRI to measure brain response to 

faces in a sample of young adults drawn from the Northern Finland 1986 Birth Cohort (NFBC1986). 

Furthermore, given the importance of attention in face-processing and as a core symptom of ADHD, we 

also investigated the group differences in connectivity of the attention and face network during visual 

exposure to faces. For this purpose, we used a priori regions of interest (ROI) from meta-analyses by 

Neurosynth (http://neurosynth.org). The analysis was conducted in January 2019. 

2. Methods 

The Northern Ostrobothnia Hospital District Ethical Committee has approved the study, and informed 

consent was obtained from each participant according to the Helsinki declaration. 

2.1. Participants  
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The study population and controls were derived from the Northern Finland Birth Cohort 1986 

(NFBC1986) (Järvelin et al, 1993).  The invitation letter to participate in an adult ADHD field study was 

sent to all 105 subjects who had been given a definite diagnosis of current ADHD as part of a population-

based ADHD study at the age of 16-18 (Smalley et al., 2007; Hurtig et al., 2007). 52 subjects participated 

the adult ADHD field study. The adult ADHD field study is part of the larger Oulu Brain and Mind study 

(Veijola et al., 2013) and due to imaging schedule limitations, the facial expressions fMRI was done only 

for a randomly selected subgroup of participants. The data collection process is presented in figure 1. 

The study group for the facial expression fMRI analysis consisted of 23 individuals with a history of 

ADHD (17 male and 6 female) forming the group with previous ADHD (pADHD group) and 29 controls 

(23 male, 6 female) forming the control group. The mean age in the pADHD group was 22.7 y (SD 0.6) 

and in the control group 22.9 y (SD 0.9).  

The present status of ADHD symptoms was assessed by trained interviewers using a semi-structured 

interview adjusted for adult life based on diagnostic symptom criteria of the ICD-10 Classification of 

Mental and Behavioral Disorders (WHO 1993) and covering the 18 diagnostic symptoms of ADHD from 

the Manual of Mental Disorders DSM-5 (APA 2015). Symptoms were rated ADHD positive if they were 

reported to occur often or very often. None of the pADHD group or of the control group fulfilled DSM-5 

(APA 2013) diagnostic criteria for present ADHD (>5 inattention symptoms and >5 hyperactivity-

impulsivity symptoms). The mean number of all ADHD symptoms together was 1.78 (SD 2.13) for the 

pADHD group and 0.34 (SD 0.90) for the control group. The difference in the number of ADHD 

symptoms between the groups was statistically significant (Mann-Whitney U-test: p=0.004, Z=-2.898). 

None of the participants had any current or life-time ADHD medication or current other psychoactive 

medication or a positive drug test (urine sample). 
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The Full Scale Intelligence Quotient (FSIQ) was estimated with verbal and non-verbal subtests from 

Wechsler Adult Intelligence Scale III (WAIS III) (Wechsler, 1997) Finnish version: Vocabulary and 

Matrix Reasoning.  Global Assessment of Functioning (GAF) (Endicott et al., 1976) was completed as 

part of the interview protocol. The demographic data is presented in table 1. 

The Structured Clinical Interview for DSM-IV Axis I Disorders (SCID) (First et al, 1996) was conducted 

to assess present and lifetime major mental disorders. One of the control group and 5 of the study group 

had one or more present DSM-IV axis I disorders (table 2). None of the participants had any significant 

neurological or other somatic disorders. 

Groups did not differ in their framewise displacement, although pADHD tended to have a higher head 

motion during scanning (p-value=0.06). Average framewise displacements are provided in table 1. 

2.2. Emotion recognition test 

Participants of the present study completed a test of emotion recognition. The same test has been used in 

previous NFBC1986 analysis (Pulkkinen et al., 2015; Lieslehto et al., 2017). The test involved the 

viewing of 16 facial expressions on a computer screen: six happy, five fearful and five neutral facial 

expressions presented in a pseudo-random order contrasted to scrambled images having the same 

luminescence and colours. These facial expressions were the same as those presented during fMRI. Facial 

expressions were shown on a computer screen and participants were instructed to answer based on their 

first impression by pressing the response button. Participants were given five options: happy, fearful, 

angry, surprised and neutral facial expression.  Emotional facial expressions (happy and fearful) were 

dynamic, and the neutral facial expression was a static image.  
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2.3. Imaging methods and analyses 

The imaging was performed using a General Electric Signa 1.5 Tesla HDX with an 8-channel head-coil 

utilizing parallel imaging with an acceleration factor of 2.0 (TR 3200 ms, TE 45 ms, 37 oblique axial 

slices with 2.9 mm slice thickness and 0.3 mm space between the slices covering the whole brain, FOV 

25.6 x 25.6 cm, with a 128x128 matrix, i.e. 2 x 2 x 2.9 mm voxels, and flip angle of 90 degrees).  Due to 

T1 equilibrium effects, the first three images were excluded. The anatomical images for co-registration of 

fMRI data to Montreal Neurological Institute (MNI) standard space coordinates were obtained using T1-

weighted 3D FSPGR sequence (TR 12.4 ms, TE 5.2 ms, slice thickness 1mm, FOV 24.0 cm x 24.0 cm, 

256x256 matrix, and flip angle 20 degrees). The subjects were asked to lie still and relax and to look at 

the stimuli on a translucent screen that was seen through a mirror system installed in the head-coil. 

Hearing was protected with earplugs and motion was minimized with soft pads fitted over the ears. 

 

2.3.1. Facial expression stimuli  

Dynamic facial expression stimuli included happy and fearful expressions. The videos were selected from 

the “Helsinki University of Technology (TKK) video sequence collection” (Kätsyri et al., 2006). In order 

to remove the effect of primary visual activations, we used changing dynamic mosaic images of the same 

faces between randomly alternating video clips of happy and fearful facial expressions (figure 2). The 

dynamic part of each video clip lasted 1.2 ± 0.3 s (range 0.7-1.8 s) and the last frame was shown for 1-1.5 

s so that the total duration of each video clip was 2.5 s. The stimuli were shown in 30 s blocks of 12 times 

2.5 s video clips. Videos of happy expressions consisted of video clips of six actors and videos of fearful 

expressions consisted of video clips of five actors. 
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2.3.2. Pre-processing and analysis of imaging data 

Pre-processing and the analysis of the structural and functional data were conducted using FSL software 

version 5.07 (FMRIB Centre, University of Oxford, www.fmrib.ox.ac.uk/fsl). The following pre-

processing steps were conducted before contrast modeling: brain extraction with 3dSkullstrip (Smith, 

2002; Cox, 1996), motion correction with MCFLIRT (Jenkinson et al., 2002), spatial smoothing using a 

Gaussian kernel of FWHM 5.0 mm, linear co-registration and nonlinear normalization to the 2 mm MNI-

152 template (Jenkinson et al., 2001, 2002) and FSL´s high-pass filtering (cutoff =120 s) and 

prewhitening.  

 

Dynamic happy and fearful facial expression blocks were used as stimuli paradigms and dynamic mosaic 

blocks between them as baseline stimuli. Data processing was performed using FEAT version 6.00. FILM 

with local autocorrelation correction (Woolrich et al., 2004) was used for Individual time-series general 

linear modeling. Group level analysis was conducted using FLAME 1 (Beckmann et al. 2003; Woolrich 

et al. 2004) and Z (Gaussianized T/F) statistic images were thresholded using Z-score > 3.1 with cluster 

significance threshold of p<0.05. IQ was used as a nuisance regressor in the model as there was a group 

difference in IQ (table 1). Group difference in GAF was ignored as it would possibly relate to the clinical 

condition of interest. To define brain regions where study groups differed in blood oxygen level 

dependent (BOLD) responses to happy and fearful facial expressions FSLView (Harvard-Oxford, Juelich, 

MNI) was utilized.  
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2.3.3. Functional connectivity in attention network during visual 

exposure to happy and fearful faces 

First, we conducted an automated meta-analysis of 1831 attention-related brain imaging studies and 864 

face related studies in Neurosynth (http://www.neurosynth.org/) (Yarkoni et al., 2011) to further test the 

link of the neuronal correlates of attention to the processing of faces. The meta-analysis assessed the brain 

regions more strongly associated with the term “attention” and “faces” than with the other terms. This 

method yielded 20 regions of interest (ROIs) that are described in supplementary table 1. 

 

Second, for each individual and each ROI, the mean BOLD signal time-series was calculated by 

averaging the BOLD signal from all voxels constituting the ROI at every time point (150 time points in 

total). The BOLD time-series for each face condition were realized by concatenating the BOLD signal 

from the corresponding blocks (4 blocks per facial expression, 37 time points for happy and 38 time 

points for fearful facial expressions). We did not use BOLD signal during control condition (i.e. mosaic) 

in our functional connectivity analysis. Nuisance covariates including white matter (WM) signals, and 

cerebrospinal fluid (CSF) signals and six motion parameters were regressed out of the BOLD signals. 

WM and CSF voxels were identified by FSL's FAST and six motion parameters with MCFLIRT. For 

each participant and facial expression condition, we then created 20x20 correlation matrices by 

calculating Pearson’s correlation coefficient between each pair of ROIs.  

 

Third, Network Based Statistics (NBS) was used to identify ROI–ROI pairs that revealed group 

differences (pADHD vs. Controls) in functional connectivity per face condition. NBS approach tests 

whether a set of multiple pairwise correlations in BOLD signal associated with an effect of interest (e.g. 
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group differences) forms a connected component cluster of ROI–ROI pairs that would be unlikely to have 

occurred at random (Zalesky et al., 2010). NBS was conducted with Graphvar (Kruschwitz et al., 2015). 

For each face condition, we used an initial cluster-forming threshold of FDR-corrected p-value, generated 

randomized data with 5000 permutations, and considered network components statistically significant at 

an FWE-corrected threshold of p-value < 0.05. NBS results are visualized with BrainNet Viewer 

(https://www.nitrc.org/projects/bnv). In addition to IQ, which differed between groups, we added average 

BOLD response within the explored network as a covariate in the model to control for the effect of mean 

activation of each face emotion type (separately for happy and fearful facial expressions). 

 

 

 

3. Results 

3.1. Emotion recognition test 

There were no statistically significant differences between pADHD and control groups in the emotion 

recognition test as shown in the table 3. 

3.2. The fMRI results 

The fMRI results are presented in figures 3-4. Figure 3 and table 4 shows group differences in brain 

response to fearful faces. The pADHD group demonstrated elevated activity in the left inferior parietal 

lobe. No group differences in BOLD response were observed during happy facial expression. There were 

no group differences in Amygdala BOLD response to faces during happy (t-test, p= 0.32) or during 

fearful (t-test, p= 0.40) facial expressions. Figure 4 represents percent BOLD signal change (%BSC) 
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between groups in the Amygdala. The core symptoms of ADHD did not correlate with the %BSC in the 

left inferior parietal lobe (Spearman's rho = 0.1, p-value = 0.5).  

 

3.3. NBS 

NBS revealed that pADHD (vs. controls) demonstrated higher functional connectivity during visual 

exposure to happy faces (two-tailed p = 0.0146, FWE corrected). This network component included 

Posterior Cingulate Cortex, Right Ventral Frontal Cortex, Right Dorsal Parietal Cortex, Left 

Temporoparietal Junction and is depicted in Figure 5.  

 

 

 

 

 

4. Discussion 

In this study, we used both data driven and a priori ROI approaches in a population-based birth cohort 

sample (NFBC1986). Young adults with previous ADHD appear to differ from control individuals in the 

BOLD response to dynamic faces and in the degree of functional connectivity. Specifically, we found that 

pADHD group demonstrates higher BOLD response to fearful faces in left inferior parietal lobe. 

Furthermore, pADHD participants demonstrated higher functional connectivity in the links of the 

attention network during visual exposure to happy faces but not during fearful videos. Amygdala emotion 

areas showed no differences. 
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Inferior parietal lobule is the representational domain for perceived events and planned actions (Chong et 

al., 2008). Sarkheil et al. (2013) have indicated based on their study using dynamic emotional facial 

expression stimuli that inferior parietal lobules have a role in processing spatially relevant facial 

information, and a role in processing emotional contents of facial expressions. The results suggested a 

top-down role for action encoding networks in inferior parietal lobe in evaluation of facial expressions 

and support the idea that simulation of emotional display is involved in recognition of another 

individual´s emotion (Sarkheil et al., 2013; Adolphs et al., 2000). The elevated activation in inferior 

parietal lobule during fearful facial expression in pADHD group found in our study could refer to the 

need of more active use of the simulation process helping pADHD subjects to recognize the emotional 

contents of facial expressions. 

Meta-analytical approach in Neurosynth yielded several regions that are known to be involved in the 

dorsal and ventral attention networks (Kim et al., 2014). Specifically, using the results from a total of 2 

695 studies, we identified 20 brain regions that robustly engage during attention or face tasks. Functional 

connectivity in these regions appeared to differ between groups during happy faces. We speculate that 

this result indicates that a previous ADHD diagnosis may over-engage the attention network during visual 

exposure to faces. This is interesting since fear often elicits stronger signals and between-group 

differences than happy facial valence (Rahko et al., 2012). This might indicate that valence of the facial 

expression does not need to cause bigger signal changes but rather elicit more widely distributed 

connectivity increase. 

The precuneus/posterior cingulate cortex (PCC) has an important role in the integration of posterior 

association processes and anterior executive functions (Cavanna and Trimble, 2006). Precuneus/PCC 

along with medial prefrontal cortex and temporo-parietal junction have been connected to affective 
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mentalizing processes e.g. inferring another´s affective state (Corradi-Dell’Acqua et al., 2014). 

Precuneus/PCC has been connected to long-term memory and retrieval of previous social knowledge 

when interpreting emotional expressions and integrating other possible affective cues (e.g. tears with sad 

facial expressions) (Takahashi et al., 2015). Precuneus/PCC together with other parts of default mode 

network (DMN) have been connected also to mind wandering, which can lead to retrieval of an episodic 

memory (Spreng et al., 2009) affecting thus the interpreting process as well. Failure in suppressing DMN 

activation during goal-directed processes has been associated with momentary lapses in attention 

(Weissman et al., 2006). In ADHD, altered DMN connectivity has been related to attention lapses, 

working memory deficits and task performance variability (Broyd et al., 2009).  

In this study using dynamic facial videos, elevated activity connectivity in the pADHD group was seen 

only in precuneus and not in other parts of DMN. This might refer to the more active retrieval of previous 

social knowledge from the long-term memory helping the social recognizing process, but it might also 

refer to mind wandering and more quickly happening retrieval of information from episodic memory. The 

latter possibility might include a risk of hasty interpretations and impulsive reactions. 

In our study, we used dynamic happy and fearful facial expression stimuli. The tasks connected to facial 

expressions have varied, which possibly explains at least partly the differences of the results between 

different studies. E.g. in our study, we did not find differences between the pADHD group and control 

group in the activation of amygdala region. It has been suggested that over large time scales of dynamic 

stimuli and under habituation effect of trial repetitions subcortical BOLD responses (e.g. amygdala 

response) might be less traceable (van der Gaag et al., 2007; Sarkheil et. al., 2013). On the other hand, 

there were also no statistically significant differences between the study group and controls in emotion 

recognition test. 
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Our work has several strengths. The study is part of a population-based birth cohort study (NFBC1986), 

and thus, the participants were recruited from the general population representing the same age group 

from the same area. The population-based sample is likely to represent the natural course of ADHD, 

whereas the samples recruited from special clinics are likely to be biased to more severe cases.  The other 

DSM-IV Axis I Disorders were mostly one-off cases and were considered meaningless as regarding the 

results.   Due to statistically significant difference in IQ between the study group and control group, IQ 

was used as a nuisance factor to eliminate the possible effect to the results. We utilized dynamic facial 

expressions. We consider this as an advantage as there is evidence that dynamic facial expressions elicit a 

stronger response in different face processing regions compared to static images of facial expressions 

(Trautmann et al., 2009). 

This study also has limitations that should be addressed in future studies. First, our fMRI study was cross-

sectional, which prevented us from exploring the developmental aspects of previous ADHD diagnosis on 

brain response to faces. In addition, our sample sizes were relatively modest.  

Conclusions: In our study, we found stronger response and connectivity in subjects with previous ADHD 

in number of brain regions including those linked to processing emotional facial expressions and those 

linked to attention. This might indicate that although these individuals no longer fulfill the ADHD 

diagnosis, they exhibit overactive face network properties compared to controls. This is in line with 

former studies that have suggested that facial emotion recognition in ADHD does not alleviate across 

development and is partially distinct from core symptoms of ADHD (Borhani and Nejati. 2018). 
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Figure legends:  

 

Fig. 1) Data collection process. Youth Self Report (YSR) (Achenbach, 1991), The Swan Rating scale 

(SWAN) (Swanson et al., 20012), Schedule for Affective Disorders and Schizophrenia for School-Age 

Children – Present and Lifetime Version (K-SADS-PL) (Kaufman et al., 1997).  

 

f 

 

  

24 gestational 

week 

Birth 1.7.-85 – 30.6.-86 

n=9432 live born 

8 years 

n=9297 

15-16 years 

n=9215 

YSR questionnaire to adolescents + SWAN questionnaire to parents 

n=7344  n=6985 

 

16-18 years 

ADHD field study 

KIDDIE-SADS 

n=464      105 ADHD cases 

control 

subjects 

n=55 

ADHD at 

adolescence 

n=52 

21-23 years 

ADHD field study 

  
questionnaire to parents: 

-development, behaviour, Rutter A Q partly (n=8379) 

 

questionnaire to teachers: 

-behaviour and emotional disturbances, Rutter B 

(n=8525)  
SWAN <90th percentile 

YSR: attention factor <80th 

percentile, aggression factor 

<90th percentile 

 

Facial expressions 

fMRI study-study  

-pADHD goup n=23 

-control group n=29 
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Fig. 2) Example of dynamic facial expression stimuli. 
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Fig. 3) Group differences in BOLD response to fearful faces (warm color) and %BSC (percent BOLD 

signal change) in the significant clusters. 
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Fig. 4) BOLD response to happy and fearful facial expressions in the Amygdala. 

 

                  



22 

 

 

Fig. 5) Group differences in interregional connectivity. Figure represents those "connections" that were 

higher in pADHD group during visual exposure happy faces. 

 

  

                  



23 

 

 

Acknowledgements 

The study has been financed by grants from the Academy of Finland (Grant codes: 111711, 123772, 

124257, 212818, 214273), NARSAD: the Brain and Behaviour Research Fund (Dr. Mortimer D. Sackler 

Developmental Psychobiology Research Program Investigator grant), the Sigrid Juselius Foundation, 

Thule Institute University of Oulu Finland, Northern Ostrobothnia Hospital District, and the Alma and 

K.A. Snellman Foundation Oulu Finland, Alfred Kordelin Foundation (JL), Orion Research Grants (JL), 

the Finnish Medical Foundation (JL), Jalmari and Rauha Ahokas Foundation (JL), Yrjö Jahnsson's 

Foundation (JL). 

NFBC1986 has received financial support from the Academy of Finland (project grants 104781, 120315, 

129269, 1114194), University Hospital Oulu, Biocenter, University of Oulu, Finland (75617), the 

European Commission (EURO-BLCS, Framework 5 award QLG1-CT-2000-01643), NHLBI grant 

5R01HL087679-02, NIH/NIMH (5R01MH63706:02). 

 

Disclosure statement 

No competing financial interests exist.  

 

 

                  



24 

 

 

 

References 

Achenbach, T., ed., 1991. Manual for the Youth Self Report/4-18, and 1991 Profile. University of 

Vermont, Dept. of Psychiatry. Burlington, VT. 

Adolphs, R., Damasio, H., Tranel, D., Cooper, G., Damasio, A., 2000. A role for somatosensory cortices 

in the visual recognition of emotion as revealed by three-dimensional lesion mapping. J. Neurosci. 20, 

2683-2690. https://doi.org/10.1523/JNEUROSCI.20-07-02683.2000. 

American Psychiatric Association (APA), 1994. Diagnostic and Statistical Manual of Mental Disorders, 

fourth ed. (DSM-IV). American Psychiatric Press, Washington, DC. 

American Psychiatric Association (APA), 2013. Diagnostic and Statistical Manual of Mental Disorders, 

fifth ed. (DSM-5). American Psychiatric Press, Washington, DC. 

Beckmann, C., Jenkinson, M., Smith, S., 2003. General multilevel linear modeling for group analysis in 

fMRI. NeuroImage 20, 1052-1063. https://doi.org/10.1016/S1053-8119(03)00435-X. 

Borhani, K., Nejati, V., 2018. Emotional face recognition in individuals with attention-

deficit/hyperactivity disorder: a review article. Dev. Neuropsychol. 43, 256-277. 

https://doi.org/10.1080/87565641.2018.1440295. 

                  



25 

 

Brotman, M., Rich, B., Guyer, A., Lunsford, J., Horsey, S., Reising, M., Thomas, L., Fromm, S., Towbin, 

K., 2010. Amygdala activation during emotion processing of neutral faces in children with severe mood 

dysregulation versus ADHD or bipolar disorder. Am. J. Psychiatry 167, 61-69. 

https://doi.org/10.1176/appi.ajp.2009.09010043. 

Broyd, S., Demanuele, C., Depener, S., Helps, S., James, C., Sonuga-Barke, E., 2009. Default-mode brain 

dysfunction in mental disorders: a systematic review. Neurosci. Biobehav. Rev. 33, 279-296. 

https://doi.org/10.1016/j.neubiorev.2008.09.002. 

Cavanna, A., Trimble, M., 2006. The precuneus: a review of its functional anatomy and behavioural 

correlates. Brain 129, 564-583. https://doi.org/10.1093/brain/awl004. 

Chong, T.T., Cunnington, R., Williams, M.A., Kanwisher, N., Mattingley, J.B., 2008. fMRI adaptation 

reveals mirror neurons on human inferior parietal cortex. Curr. Biol. 28, 1576-80. 

https://doi.org/10.1016/j.cub.2008.08.068. 

Corbetta, M., Shulman, G.L., 2002. Control of goal-directed and stimulus-driven attention in the brain. 

Nat. Rev. Neurosci. 3, 201-15. https://doi.org/10.1038/nrn755. 

Corradi-Dell’Acqua, C., Hofstetter, C., Vuilleumier, P., 2014. Cognitive and affective theory of mind 

share the same local patterns of activity in posterior temporal but not medial prefrontal cortex. Soc. Cogn. 

Affect. Neurosci. 9, 1175-1184. https://doi.org/10.1093/scan/nst097. 

Cox, R.W., 1996. AFNI: software for analysis and visualization of functional magnetic resonance 

neuroimages. Comput. Biomed. Res. 29, 162-173. https://doi.org/10.1006/cbmr.1996.0014. 

                  



26 

 

Endicott, J., Spitzer, R., Fleiss, J., Cohen, J., 1976. The global assessment scale. A procedure for 

measuring overall severity of psychiatric disturbance. Arch. Gen. Psychiatry 33, 766-771. 

https://doi.org/10.1001/archpsyc.1976.01770060086012. 

Faraone, S., Biederman, J., Mick, E., 2006. The age-dependent decline of attention deficit hyperactivity 

disorder: a meta-analysis of follow-up studies. Psychol. Med. 36, 159-165. 

https://doi.org/10.1017/S003329170500471X. 

First, M., Spitzer, R., Gibbon, M., Williams, J., 1996. Structured Clinical Interview for DSM-IV Axis I 

Disorders, Clinical Version (SCID-CV). American Psychiatric Press Inc., Washington, DC. 

van der Gaag, C., Minderaa, R., Keysers, C., 2007. Facial expressions: What the mirror neuron system 

can and cannot tell us. Soc. Neurosci. 2, 179-222. https://doi.org/10.1080/17470910701376878. 

Haxby, J.V., Hoffman, E.A., Gobbini, M.I., 2000. The distributed human neural system for face 

perception. Trends. Cogn. Sci. 4, 223-233. https://doi.org/10.1016/S1364-6613(00)01482-0. 

Hurtig, T., Ebeling, H., Taanila, A., Miettunen, J., Smalley, S., McGough, J., Loo, S., Järvelin, M-R., 

Moilanen, I., 2007. ADHD symptoms and subtypes: relations between childhood and adolescent 

symptoms. J. Am. Acad. Child Adolesc. Psychiatry 46, 1605-1613. 

https://doi.org/10.1097/chi.0b013e318157517a. 

Järvelin, M., Hartikainen-Sorri, A., Rantakallio, P., 1993. Labour induction policy of different levels of 

specialisation. BJOG: Int. J. Obstet. Gynaecol. 100, 310-315. https://doi.org/10.1111/j.1471-

0528.1993.tb12971.x. 

                  



27 

 

Jenkinson, M., Smith, S., 2001. A global optimisation method for robust affine registration of brain 

images. Med. Image Anal. 5, 143-156. https://doi.org/10.1016/S1361-8415(01)00036-6. 

Jenkinson, M., Bannister, P., Brady, M., Smith, S., 2002. Improved optimization for the robust and 

accurate linear registration and motion correction of brain images. NeuroImage 17, 825-841. 

https://doi.org/10.1006/nimg.2002.1132. 

Kaufman, J., Birmaher, B., Brent, D., Rao, U., Flynn, C., Moreci, P., Williamson, D., Ryan, N., 1997. 

Schedule for Affective Disorders and Schizophrenia for School-Age Children – Present and Lifetime 

Version (K-SADS-PL): initial reliability and validity data. J. Am. Acad. Child Adolesc. Psychiatry 36, 

980-988. https://doi.org/10.1097/00004583-199707000-00021. 

Kim, H., 2014. Involvement of the dorsal and ventral attention networks in oddball stimulus processing: a 

meta-analysis. Hum. Brain Mapp. 35, 2265–2284. https://doi.org/10.1002/hbm.22326 

Kofler, M., Harmon, S., Aduen, P., Day, T., Austin, K., Spiegel, J., Irwin, L., Sarver, D., 2018. 

Neurocognitive and behavioral predictors of social problems in ADHD: A Bayesian framework. 

Neuropsychology 32, 344-355. https://doi.org/10.1037/neu0000416. 

Kruschwitz, J.D., List, D., Waller, L., Rubinov, M., Walter, H., 2015. GraphVar: A user-friendly toolbox 

for comprehensive graph analyses of functional brain connectivity. J. Neurosci. Methods 245, 107–115. 

https://doi.org/10.1016/j.jneumeth.2015.02.021. 

Kätsyri, J., 2006. Human Recognition of Basic Emotions from Posed and Animated Dynamic Facial 

Expressions. Dissertation. Helsinki University of Technology. 

                  



28 

 

Lieslehto, J., Kiviniemi, V., Mäki, P., Koivukangas, J., Nordström, T., Miettunen, J., Barnett, J., Jones, P., 

Murray, G., Moilanen, I., IMAGEN, Paus, T., Veijola, J., 2017. Early adversity and brain response to 

faces in young adulthood. Hum. Brain Mapp. 38, 4470–4478. https://doi.org/10.1002/hbm.23674. 

Malisza, K.L., Clancy, C., Shiloff, D., Holden, J., Jones, C., Paulson, K., Yu, D., Summers, R., Chudley, 

A., 2011. Functional magnetic resonance imaging of facial information processing in children with 

autistic disorder, attention deficit hyperactivity disorder and typically developing controls. Int. J. Adolesc. 

Med. Health 23, 269-277. https://doi.org/10.1515/ijamh.2011.055. 

Marsh, A., Finger, E., Mitchell, D., Reid, M., Sims, C., Kosson, D., Towbin, K., Leibenluft, E., Pine, D., 

Blair, R., 2008. Reduced amygdala response to fearful expressions in children and adolescents with 

callous-unemotional traits and disruptive behavior disorders. Am. J. Psychiatry 165, 712-720. 

https://doi.org/10.1176/appi.ajp.2007.07071145.  

Nijmeijer, J.S., Minderaa, R.B., Buitelaar, J.K., Mulligan, A., Hartman, C.A., Hoekstra, P.J., 2008. 

Attention-deficit/hyperactivity disorder and social dysfunctioning. Clin. Psychol. Rev. 28, 692-708. 

https://doi.org/10.1016/j.cpr.2007.10.003. 

Passarotti, A.M., Sweeney, J.A., Pavuluri, M.N., 2010. Emotion processing influences working memory 

circuits in pediatric bipolar disorder and attention-deficit/hyperactivity disorder. J. Am. Acad. Child 

Adolesc. Psychiatry 49, 1064-1080. https://doi.org/10.1016/j.jaac.2010.07.009. 

Pulkkinen, J., Nikkinen, J., Kiviniemi, V., Mäki, P., Miettunen, J., Koivukangas, J., Mukkala, S., 

Nordström, T., Barnett, J., Jones, P., Moilanen, I., Murray, G., Veijola, J., 2015. Functional mapping of 

dynamic happy and fearful facial expressions in young adults with familial risk for psychosis - Oulu brain 

and mind study. Schizophr. Res. 164, 242–249. https://doi.org/10.1016/j.schres.2015.01.039. 

                  



29 

 

Rahko, J., Paakki, J-J., Starck, T., Nikkinen, J., Pauls, D., Kätsyri, J., Jansson-Verkasalo, E., Carter, A., 

Hurtig, T., Mattila, M.-L., Jussila, K., Remes, J., Kuusikko-Gauffin, S., Sams, M., Bölte, S., Ebeling, H., 

Moilanen, I., Tervonen, O., Kiviniemi, V., 2012. Valence scaling of dynamic facial expressions is altered 

on high-functioning subjects with autism spectrum disorders: an fMRI study. J. Autism. Dev. Disord. 42, 

1011-1024. https://doi.org/10.1007/s10803-011-1332-8. 

Sarkheil, P., Goebel, R., Schneider, F., Mathiak, K., 2013. Emotion unfolded by motion: a role for 

parietal lobe in decoding dynamic facial expressions. Soc. Cogn. Affect. Neurosci. 8, 950–957. 

https://doi.org/10.1093/scan/nss092. 

Schulz, K., Bedard, A.-C., Fan, J., Clerkin, S., Dima, D., Newcorn, J., Halperin, J., 2014. Emotional bias 

of cognitive control in adults with childhood attention-deficit/hyperactivity disorder. NeuroImage Clin. 5, 

1-9. https://doi.org/10.1016/j.nicl.2014.05.016. 

Sinzig, J., Morsch, D., Lehmkuhl, G., 2008. Do hyperactivity, impulsivity and inattention have an impact 

on the ability of facial affect recognition in children with autism and ADHD? Eur. Child. Adolesc. 

Psychiatry 17, 63-72. https://doi.org/10.1007/s00787-007-0637-9. 

Smalley, S., McGough, J., Moilanen, I., Loo, S., Taanila, A., Ebeling, H., Hurtig, T., Kaakinen, M., 

Humphrey, L., McCracken, J., Varilo, T., Yang, M., Nelson, S., Peltonen, L., Järvelin, M.-R., 2007. 

Prevalence and Psychiatric Comorbidity of Attention-Deficit/Hyperactivity Disorder in an Adolescent 

Finnish Population. J. Am. Acad. Child. Adolesc. Psychiatry 46, 1575-1583. 

https://doi.org/10.1097/chi.0b013e3181573137. 

Smith, S.M., 2002. Fast robust automated brain extraction. Hum. Brain Mapp. 17, 143-155. 

https://doi.org/10.1002/hbm.10062. 

                  



30 

 

Spreng, R., Mar, R., Kim, S., 2009. The common neural basis of autobiographical memory, prospection, 

navigation, theory of mind, and the default mode: a quantitative meta-analysis. J. Cogn. Neurosci. 21, 

489-510. https://doi.org/10.1162/jocn.2008.21029. 

Swanson, J.M., Schuck, S., Mann Porter, M., Carlson, C., Hartman, C.A., Sergeant, J.A., Clevenger, W., 

Wasdell, M., McCleary, R., Lakes, K., Wigal, T., 2012. Categorical and Dimensional Definitions and 

Evaluations of Symptoms of ADHD: History of the SNAP and the SWAN Rating Scales. Int. J. Educ. 

Psychol. Assess. 10, 51-70. PMID: 26504617. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4618695/ 

Tahmasebi, A.M., Artiges, E., Banaschewski, T., Barker, G.J., Bruehl, R., Buchel, C., Conrod, P.J., Flor, 

H., Garavan, H., Gallinat, J., Heinz, A., Ittermann, B., Loth, E., Mareckova, K., Martinot, J., Poline, J., 

Rietschel, M., Smolka, M.N., Ströhle, A., Schumann, G., Paus, T., The IMAGEN Consortium, 2012. 

Creating probabilistic maps of the face network in the adolescent brain: A multicentre functional MRI 

study. Hum. Brain. Mapp. 33, 938–957. https://doi.org/10.1002/hbm.21261. 

Takahashi, H., Kitada, R., Sasaki, A., Kawamichi, H., Okazaki, S., Kochiyama, T., Sadato, N., 2015. 

Brain networks of affective mentalizing revealed be the tear effect: The integrative role of the medial 

prefrontal cortex and precuneus. Neurosci. Res. 101, 32-43. https://doi.org/10.1016/j.neures.2015.07.005. 

Trautmann, S., Fehr, T., Herrmann, M., 2009. Emotions in motion: Dynamic compared to static facial 

expressions of disgust and happiness reveal more widespread emotion-specific activations. Brain Res. 

1284, 100-115. https://doi.org/10.1016/j.brainres.2009.05.075. 

Uekermann, J., Kraemer, M., Abdel-Hamid, M., Schimmelmann, B.G., Hedebrand, J., Daum, I., 

Wiltfang, J., Kis, B., 2010. Social cognition in attention-deficit hyperactivity disorder (ADHD). Neurosci. 

Biobehav. Rev. 34, 734-743.  

                  



31 

 

Veijola, J., Mäki, P., Jääskeläinen, E., Koivukangas, J., Moilanen, I., Taanila, A., Nordström, T., Hurtig, 

T., Kiviniemi, V., Mukkala, S., Heinimaa, M., Lindholm, P., Jones, P.B., Barnett, J.H., Murray, G.K., 

Miettunen, J., 2013. Young people at risk for psychosis: case finding and sample characteristics of the 

Oulu Brain and Mind Study.  Early Interv. Psychiatry 7, 146-154. https://doi.org/10.1111/j.1751-

7893.2012.00360.x. 

Vuilleumier, P., Pourtois, G., 2007. Distributed and interactive brain mechanisms during emotion face 

perception: evidence from functional neuroimaging. Neuropsychologia 45, 174-194. 

https://doi.org/10.1016/j.neuropsychologia.2006.06.003. 

Wechsler, D., 1997. Wechsler Adult Intelligence Scale – Third ed. Manual. The Psychological 

Corporation 1997. 

Winston, J.S., O´Doherty, J., Dolan, R.J., 2003 Common and distinct neural responses during direct and 

incidental processing of multiple facial emotions. NeuroImage 20, 84-97. https://doi.org/10.1016/S1053-

8119(03)00303-3. 

Woolrich, M.W., Behrens, T.E.J., Beckmann, C.F., Jenkinson, M., Smith, S.M., 2004. Multilevel linear 

modelling for FMRI group analysis using Bayesian inference. NeuroImage 21, 1732-1747. 

https://doi.org/10.1016/j.neuroimage.2003.12.023. 

World health organization (WHO), 1993. The ICD-10 Classification of Mental and Behavioural 

Disorders: Diagnostic criteria for research. World Health Organization, Geneva. 

                  



32 

 

Yarkoni, T., Poldrack, R.A., Nichols, T.E., Van Essen, D.C., Wager, T.D., 2011. Large-scale automated 

synthesis of human functional neuroimaging data. Nat. Methods 8, 665-670. 

https://doi.org/10.1038/nmeth.1635. 

Zalesky, A., Fornito, A., Bullmore, E.T., 2010. Network-based statistic: identifying differences in brain 

networks. NeuroImage 53, 1197–1207. https://doi.org/10.1016/j.neuroimage.2010.06.041. 

Web references 

 Platform for large-scale, automated synthesis of functional magnetic resonance imaging (fMRI) data. 

http://neurosynth.org  

FMRIB Software Library v5.0 www.fmrib.ox.ac.uk/fsl  

 

The source for neuroimaging tools and resources https://www.nitrc.org/ 

  

                  



33 

 

Table 1. Demographic data  

 pADHD Controls 

   

number of subjects 23 29 

mean age in years (± SD) 22.7 (0.6) 22.9 (0.9) 

mean IQ (± SD) 96,1 (22.8) 112,8 (22.7) * 

mean GAF (± SD) 80.7 (5.0) 86.7 (8.1)** 

lefthanded 6 3 

Average framewise 

displacement 

0.044 0.064 

   

* Statistically significant difference between pADHD and cotrol groups (ANOVA: F = 

5.02, df = 1, p = 0.029 p = 0.029) 

** Statistically significant difference between pADHD and cotrol groups (Mann-Whitney U-

test: p<0.001 Z=-3,801). 

Attention deficient hyperactivity disorder (ADHD), Intelligent quotient (IQ), Global 

assessment of functioning (GAF), Standard deviation (SD) 
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Table 2. Current DSM-IV Axis I disorders according to the Structured Clinical Interview for DSM-IV 

Axis I Disorders (SCID)# in pADHD and control groups. 

DSM-IV Axis I disorder pAD
HD 

cont
rols 

dysthymic disorder 1 0 
specific phobia 2 1 
alcohol abuse 1 0 
adjustment disorder with depressed mood + alcohol dependence 1 0 
no DSM-IV Axis I disorder 18 28 

Total 23 29 
 

# First et al., 1996 

Table 3. Emotion recognition test 

Variable pADHD Controls Statistical testing 

(p-values) 

Emotion recognition 

[M (SD)] 

   

  Happyb 5.86 (0.47) 5.93 (0.37) 0.58a 

  Fearfulc 4.27 (1.03) 4.00 (1.07) 0.36a 

SD = standard deviation 

a=t-test 

b=max score was 6 

c=max score was 5 

Table 4. Between group deviation clusters  

Anatomical region(s) 

corresponding cluster 

Stimulus MNI-coordinates Voxels Z-scores   p-value 

X Y Z 

Inferior parietal lobule L/  Fearful -28 -74 50 105 4.35 0.0271 

 

                  


